mirror of
https://github.com/matrix-construct/construct
synced 2025-01-07 13:25:22 +01:00
1321 lines
29 KiB
C++
1321 lines
29 KiB
C++
// Tensor Construct
|
|
//
|
|
// Copyright (C) Matrix Construct Developers, Authors & Contributors
|
|
// Copyright (C) 2016-2021 Jason Volk <jason@zemos.net>
|
|
//
|
|
// Permission to use, copy, modify, and/or distribute this software for any
|
|
// purpose with or without fee is hereby granted, provided that the above
|
|
// copyright notice and this permission notice is present in all copies. The
|
|
// full license for this software is available in the LICENSE file.
|
|
|
|
namespace ircd::gpt::pipe
|
|
{
|
|
static void handle_quit() noexcept;
|
|
|
|
extern const ircd::run::changed quit_handler;
|
|
}
|
|
|
|
decltype(ircd::gpt::pipe::default_code)
|
|
ircd::gpt::pipe::default_code;
|
|
|
|
[[gnu::visibility("hidden")]]
|
|
decltype(ircd::gpt::pipe::quit_handler)
|
|
ircd::gpt::pipe::quit_handler
|
|
{
|
|
run::level::QUIT, handle_quit
|
|
};
|
|
|
|
[[gnu::cold]]
|
|
void
|
|
ircd::gpt::pipe::handle_quit()
|
|
noexcept
|
|
{
|
|
if constexpr(!IRCD_USE_OPENCL)
|
|
return;
|
|
|
|
const auto pending
|
|
{
|
|
cl::work::list.size()
|
|
};
|
|
|
|
if(pending)
|
|
log::warning
|
|
{
|
|
log, "Waiting for %zu pending tasks to leave the pipe...",
|
|
pending,
|
|
};
|
|
|
|
cl::sync();
|
|
ctx::yield();
|
|
pipe::default_code.reset();
|
|
}
|
|
|
|
//
|
|
// pipe::prof
|
|
//
|
|
|
|
ircd::string_view
|
|
ircd::gpt::pipe::debug(const mutable_buffer &buf,
|
|
const prof &p)
|
|
{
|
|
window_buffer window(buf);
|
|
for(uint i(0); i < p.stages; ++i)
|
|
window([&p, &i](auto buf)
|
|
{
|
|
size_t ret(0);
|
|
ret += consume(buf, size(debug(buf, p, i)));
|
|
ret += consume(buf, copy(buf, '\n'));
|
|
return ret;
|
|
});
|
|
|
|
return window.completed();
|
|
}
|
|
|
|
ircd::string_view
|
|
ircd::gpt::pipe::debug(const mutable_buffer &buf,
|
|
const prof &p,
|
|
const size_t &i)
|
|
{
|
|
using phase = prof::phase;
|
|
|
|
assert(i < p.info.size());
|
|
assert(i < p.ts.size());
|
|
|
|
char tbuf[5][32];
|
|
return fmt::sprintf
|
|
{
|
|
buf, "%-20s %04x [ %10s %10s %10s %10s %10s ]",
|
|
std::get<0>(p.info[i]),
|
|
std::get<1>(p.info[i]),
|
|
pretty(tbuf[0], p.ts[i][phase::QUEUE], 1),
|
|
pretty(tbuf[1], p.ts[i][phase::SUBMIT], 1),
|
|
pretty(tbuf[2], p.ts[i][phase::START], 1),
|
|
pretty(tbuf[3], p.ts[i][phase::END], 1),
|
|
pretty(tbuf[4], p.ts[i][phase::COMPLETE], 1),
|
|
};
|
|
}
|
|
|
|
//
|
|
// prof::prof
|
|
//
|
|
|
|
decltype(ircd::gpt::pipe::prof::info)
|
|
ircd::gpt::pipe::prof::info;
|
|
|
|
decltype(ircd::gpt::pipe::prof::name)
|
|
ircd::gpt::pipe::prof::name;
|
|
|
|
[[gnu::visibility("hidden")]]
|
|
decltype(ircd::gpt::pipe::prof::init)
|
|
ircd::gpt::pipe::prof::init;
|
|
|
|
ircd::gpt::pipe::prof::prof()
|
|
noexcept
|
|
{
|
|
for(uint i(0); i < stages; ++i)
|
|
for(uint j(0); j < phases; ++j)
|
|
ts[i][j] = 0ns;
|
|
}
|
|
|
|
ircd::gpt::pipe::prof::prof(const cycle &c)
|
|
{
|
|
if(!std::exchange(init, true))
|
|
init_info(c);
|
|
|
|
if(!cl::profile_queue)
|
|
return;
|
|
|
|
for(uint i(0); i < stages; ++i)
|
|
{
|
|
const cl::work::prof p
|
|
{
|
|
c.stage[i]
|
|
};
|
|
|
|
ts[i][phase::QUEUE] = p[phase::SUBMIT] > p[phase::QUEUE]?
|
|
p[phase::SUBMIT] - p[phase::QUEUE]: 0ns;
|
|
|
|
ts[i][phase::SUBMIT] = p[phase::START] > p[phase::SUBMIT]?
|
|
p[phase::START] - p[phase::SUBMIT]: 0ns;
|
|
|
|
ts[i][phase::START] = p[phase::END] > p[phase::START]?
|
|
p[phase::END] - p[phase::START]: 0ns;
|
|
|
|
ts[i][phase::END] = p[phase::END] > p[phase::QUEUE]?
|
|
p[phase::END] - p[phase::QUEUE]: 0ns;
|
|
|
|
ts[i][phase::COMPLETE] = p[phase::COMPLETE] > p[phase::QUEUE]?
|
|
p[phase::COMPLETE] - p[phase::QUEUE]: 0ns;
|
|
}
|
|
}
|
|
|
|
[[gnu::visibility("hidden")]]
|
|
void
|
|
ircd::gpt::pipe::prof::init_info(const cycle &c)
|
|
{
|
|
static_assert
|
|
(
|
|
name.size() >= stages
|
|
);
|
|
|
|
for(uint i(0); i < stages; ++i)
|
|
info[i] = info_type
|
|
{
|
|
c.stage[i].name(name[i]),
|
|
c.stage[i].type(),
|
|
};
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// pipe::cycle
|
|
//
|
|
|
|
const ircd::gpt::ctrl &
|
|
ircd::gpt::pipe::acquire(cycle &cycle)
|
|
{
|
|
// Some tail stages may not be active each cycle
|
|
const auto last_exec
|
|
{
|
|
std::find_if(std::rbegin(cycle.stage), std::rend(cycle.stage), []
|
|
(const auto &work)
|
|
{
|
|
return work.handle;
|
|
})
|
|
};
|
|
assert(last_exec != std::rend(cycle.stage));
|
|
|
|
// Block here for results; the ircd::ctx will yield.
|
|
last_exec->wait();
|
|
|
|
// Get the pointer to the output buffer.
|
|
const auto ctrl
|
|
{
|
|
reinterpret_cast<const gpt::ctrl *>(cycle.desc.frame[cycle.frame].ptr())
|
|
};
|
|
|
|
// Check the output is a valid control page and return to user.
|
|
assert(ctrl);
|
|
assert(ctrl->magic != 0xDEADBEEF);
|
|
assert(ctrl->magic == 0xC7012C70UL);
|
|
return *ctrl;
|
|
}
|
|
|
|
//
|
|
// pipe::cycle::cycle
|
|
//
|
|
|
|
ircd::gpt::pipe::cycle::cycle(gpt::samp &samp)
|
|
:desc
|
|
{
|
|
samp.desc
|
|
}
|
|
,tick
|
|
{
|
|
samp.cycle
|
|
}
|
|
,count
|
|
{
|
|
samp.count
|
|
}
|
|
,tokens
|
|
{
|
|
samp.tokens
|
|
}
|
|
,cached
|
|
{
|
|
desc.cached
|
|
}
|
|
,frame
|
|
{
|
|
tick % samp.opts.frames
|
|
}
|
|
,range
|
|
{
|
|
samp.opts,
|
|
tick,
|
|
count,
|
|
tokens,
|
|
cached,
|
|
true,
|
|
((false) && gpt::model::cache_shared)
|
|
}
|
|
,stage
|
|
{
|
|
cl::exec // data
|
|
{
|
|
desc.opts, std::memory_order_release
|
|
},
|
|
cl::exec // data
|
|
{
|
|
desc.ctrl, std::memory_order_release
|
|
},
|
|
cl::exec // data
|
|
{
|
|
desc.frame[frame], std::memory_order_release
|
|
},
|
|
cl::exec // data
|
|
{
|
|
desc.model->decode->master[0], std::memory_order_release
|
|
},
|
|
cl::exec // Initial kernel
|
|
{
|
|
desc.alloc, range.alloc,
|
|
},
|
|
cl::exec // Initial cycle kernel
|
|
{
|
|
desc.enter, range.select,
|
|
},
|
|
cl::exec // Compute token and positional embeddings.
|
|
{
|
|
desc.lm_embed, range.embed,
|
|
},
|
|
// Forward Pass
|
|
cl::exec { desc.layer[0x00]->attn, range.attn },
|
|
cl::exec { desc.layer[0x00]->ffnn, range.ffnn },
|
|
cl::exec { desc.layer[0x01]->attn, range.attn },
|
|
cl::exec { desc.layer[0x01]->ffnn, range.ffnn },
|
|
cl::exec { desc.layer[0x02]->attn, range.attn },
|
|
cl::exec { desc.layer[0x02]->ffnn, range.ffnn },
|
|
cl::exec { desc.layer[0x03]->attn, range.attn },
|
|
cl::exec { desc.layer[0x03]->ffnn, range.ffnn },
|
|
cl::exec { desc.layer[0x04]->attn, range.attn },
|
|
cl::exec { desc.layer[0x04]->ffnn, range.ffnn },
|
|
cl::exec { desc.layer[0x05]->attn, range.attn },
|
|
cl::exec { desc.layer[0x05]->ffnn, range.ffnn },
|
|
cl::exec { desc.layer[0x06]->attn, range.attn },
|
|
cl::exec { desc.layer[0x06]->ffnn, range.ffnn },
|
|
cl::exec { desc.layer[0x07]->attn, range.attn },
|
|
cl::exec { desc.layer[0x07]->ffnn, range.ffnn },
|
|
cl::exec { desc.layer[0x08]->attn, range.attn },
|
|
cl::exec { desc.layer[0x08]->ffnn, range.ffnn },
|
|
cl::exec { desc.layer[0x09]->attn, range.attn },
|
|
cl::exec { desc.layer[0x09]->ffnn, range.ffnn },
|
|
cl::exec { desc.layer[0x0a]->attn, range.attn },
|
|
cl::exec { desc.layer[0x0a]->ffnn, range.ffnn },
|
|
cl::exec { desc.layer[0x0b]->attn, range.attn },
|
|
cl::exec { desc.layer[0x0b]->ffnn, range.fffnn },
|
|
cl::exec // Final normalization.
|
|
{
|
|
desc.lm_norm, range.fnorm
|
|
},
|
|
cl::exec // Compute language logits.
|
|
{
|
|
desc.lm_logit, range.logit
|
|
},
|
|
cl::exec // Statistics on the logits.
|
|
{
|
|
desc.lm_logsm, range.logsm
|
|
},
|
|
cl::exec // Select next token.
|
|
{
|
|
desc.lm_select, range.select
|
|
},
|
|
cl::exec // Backpropagate
|
|
{
|
|
desc.lm_prop_embed, range.prop_embed
|
|
},
|
|
cl::exec // Backpropagate
|
|
{
|
|
desc.lm_prop_norm, range.prop_norm
|
|
},
|
|
// Backward Pass
|
|
cl::exec { desc.layer[0x0b]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x0b]->prop_attn, range.prop_attn },
|
|
cl::exec { desc.layer[0x0a]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x0a]->prop_attn, range.prop_attn },
|
|
cl::exec { desc.layer[0x09]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x09]->prop_attn, range.prop_attn },
|
|
cl::exec { desc.layer[0x08]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x08]->prop_attn, range.prop_attn },
|
|
cl::exec { desc.layer[0x07]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x07]->prop_attn, range.prop_attn },
|
|
cl::exec { desc.layer[0x06]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x06]->prop_attn, range.prop_attn },
|
|
cl::exec { desc.layer[0x05]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x05]->prop_attn, range.prop_attn },
|
|
cl::exec { desc.layer[0x04]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x04]->prop_attn, range.prop_attn },
|
|
cl::exec { desc.layer[0x03]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x03]->prop_attn, range.prop_attn },
|
|
cl::exec { desc.layer[0x02]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x02]->prop_attn, range.prop_attn },
|
|
cl::exec { desc.layer[0x01]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x01]->prop_attn, range.prop_attn },
|
|
cl::exec { desc.layer[0x00]->prop_ffnn, range.prop_ffnn },
|
|
cl::exec { desc.layer[0x00]->prop_attn, range.prop_attn },
|
|
cl::exec // Final kernel
|
|
{
|
|
desc.leave[frame], range.select
|
|
},
|
|
cl::exec // Frame out
|
|
{
|
|
desc.frame[frame], std::memory_order_consume
|
|
},
|
|
}
|
|
{
|
|
}
|
|
|
|
ircd::gpt::pipe::cycle::~cycle()
|
|
noexcept
|
|
{
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// pipe::range
|
|
//
|
|
|
|
ircd::gpt::pipe::range::range(const opts &opts,
|
|
const uint tick,
|
|
const uint count,
|
|
const uint tokens,
|
|
const uint cached,
|
|
const bool fwd,
|
|
const bool rev)
|
|
noexcept
|
|
:_full
|
|
{
|
|
{ opts.embed_width * (tokens - cached) },
|
|
{ opts.embed_width },
|
|
{ opts.embed_width * cached },
|
|
}
|
|
,_last
|
|
{
|
|
{ opts.embed_width * 1 },
|
|
{ opts.embed_width },
|
|
{ opts.embed_width * (count - 1) },
|
|
}
|
|
,alloc
|
|
{
|
|
{ opts.embed_width * (tick == 0) },
|
|
{ opts.embed_width },
|
|
}
|
|
,embed
|
|
{
|
|
fwd?
|
|
_full:
|
|
cl::kern::range{},
|
|
}
|
|
,attn
|
|
{
|
|
fwd?
|
|
_full:
|
|
cl::kern::range{},
|
|
}
|
|
,ffnn
|
|
{
|
|
fwd?
|
|
_full:
|
|
cl::kern::range{},
|
|
}
|
|
,fffnn
|
|
{
|
|
fwd && tokens > count?
|
|
_full:
|
|
fwd?
|
|
_last:
|
|
cl::kern::range{},
|
|
}
|
|
,fnorm
|
|
{
|
|
fwd?
|
|
_last:
|
|
cl::kern::range{},
|
|
}
|
|
,logit
|
|
{
|
|
{ pad_to(opts.logits, 64L) * int(fwd) },
|
|
{ 64L },
|
|
}
|
|
,logsm
|
|
{
|
|
{ 256UL * int(fwd) },
|
|
{ 256UL },
|
|
}
|
|
,select
|
|
{
|
|
{ 256UL * int(fwd) },
|
|
{ 256UL },
|
|
}
|
|
,prop_embed
|
|
{
|
|
{ opts.embed_width * int(rev) },
|
|
{ opts.embed_width },
|
|
}
|
|
,prop_norm
|
|
{
|
|
{ opts.embed_width * int(rev) },
|
|
{ opts.embed_width },
|
|
}
|
|
,prop_attn
|
|
{
|
|
{ opts.embed_width * int(rev) },
|
|
{ opts.embed_width },
|
|
}
|
|
,prop_ffnn
|
|
{
|
|
{ opts.embed_width * int(rev) },
|
|
{ opts.embed_width },
|
|
}
|
|
{
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// pipe::desc
|
|
//
|
|
|
|
ircd::gpt::pipe::desc::desc(const gpt::opts *const &opt,
|
|
gpt::ctrl *const &ctrl_,
|
|
pipe::model &model,
|
|
pipe::code &code)
|
|
:model
|
|
{
|
|
&model
|
|
}
|
|
,code
|
|
{
|
|
&code
|
|
}
|
|
,opts
|
|
{
|
|
const_buffer
|
|
{
|
|
reinterpret_cast<const char *>(opt),
|
|
sizeof(gpt::opts)
|
|
},
|
|
}
|
|
,ctrl
|
|
{
|
|
mutable_buffer
|
|
{
|
|
reinterpret_cast<char *>(ctrl_),
|
|
sizeof(gpt::ctrl)
|
|
},
|
|
}
|
|
,master
|
|
{
|
|
0
|
|
+ opt->layers * opt->context_tokens * opt->attn_elems * sizeof(float)
|
|
+ opt->context_tokens * opt->embed_elems * sizeof(float)
|
|
+ 65536 * sizeof(float)
|
|
+ opt->layers * opt->attn_self_elems * sizeof(float)
|
|
}
|
|
,state
|
|
{
|
|
master,
|
|
{
|
|
opt->layers * opt->context_tokens * opt->attn_elems * sizeof(float),
|
|
off_t(0),
|
|
}
|
|
}
|
|
,accum
|
|
{
|
|
master,
|
|
{
|
|
opt->context_tokens * opt->embed_elems * sizeof(float),
|
|
state.offset() + off_t(state.size()),
|
|
},
|
|
}
|
|
,logit
|
|
{
|
|
master,
|
|
{
|
|
65536 * sizeof(float),
|
|
accum.offset() + off_t(accum.size()),
|
|
},
|
|
}
|
|
,attns
|
|
{
|
|
master,
|
|
{
|
|
opt->layers * opt->attn_self_elems * sizeof(float),
|
|
logit.offset() + off_t(logit.size())
|
|
}
|
|
}
|
|
,frame
|
|
{
|
|
// size, read, write, }, // idx
|
|
{ sizeof(gpt::ctrl), true, false, }, // 0
|
|
{ sizeof(gpt::ctrl), true, false, }, // 1
|
|
{ sizeof(gpt::ctrl), true, false, }, // 2
|
|
{ sizeof(gpt::ctrl), true, false, }, // 3
|
|
{ sizeof(gpt::ctrl), true, false, }, // 4
|
|
{ sizeof(gpt::ctrl), true, false, }, // 5
|
|
{ sizeof(gpt::ctrl), true, false, }, // 6
|
|
{ sizeof(gpt::ctrl), true, false, }, // 7
|
|
}
|
|
,alloc
|
|
{
|
|
code,
|
|
"ircd_gpt_alloc",
|
|
model.decode->master[0],
|
|
master,
|
|
opts,
|
|
ctrl,
|
|
frame[0],
|
|
frame[1],
|
|
frame[2],
|
|
frame[3],
|
|
frame[4],
|
|
frame[5],
|
|
frame[6],
|
|
frame[7],
|
|
}
|
|
,enter
|
|
{
|
|
code,
|
|
"ircd_gpt_enter",
|
|
model.decode->master[0],
|
|
state,
|
|
master,
|
|
opts,
|
|
ctrl,
|
|
}
|
|
,lm_embed
|
|
{
|
|
code,
|
|
"ircd_gpt_lm_embed",
|
|
ctrl,
|
|
opts,
|
|
accum,
|
|
model.decode->embed.pos.param,
|
|
model.decode->embed.token.param,
|
|
}
|
|
,lm_norm
|
|
{
|
|
code,
|
|
"ircd_gpt_lm_norm",
|
|
ctrl,
|
|
opts,
|
|
accum,
|
|
model.decode->embed.norm.bias.param,
|
|
model.decode->embed.norm.weight.param,
|
|
}
|
|
,lm_logit
|
|
{
|
|
code,
|
|
"ircd_gpt_lm_logit",
|
|
ctrl,
|
|
opts,
|
|
logit,
|
|
accum,
|
|
model.decode->embed.pos.param,
|
|
model.decode->embed.token.param,
|
|
}
|
|
,lm_logsm
|
|
{
|
|
code,
|
|
"ircd_gpt_lm_logsm",
|
|
ctrl,
|
|
opts,
|
|
logit,
|
|
}
|
|
,lm_select
|
|
{
|
|
code,
|
|
"ircd_gpt_lm_select",
|
|
ctrl,
|
|
opts,
|
|
logit,
|
|
attns,
|
|
}
|
|
,lm_prop_embed
|
|
{
|
|
code,
|
|
"ircd_gpt_lm_embed_prop",
|
|
ctrl,
|
|
opts,
|
|
model.decode->embed.pos.param,
|
|
model.decode->embed.pos.moment[0],
|
|
model.decode->embed.pos.moment[1],
|
|
model.decode->embed.token.param,
|
|
model.decode->embed.token.moment[0],
|
|
model.decode->embed.token.moment[1],
|
|
}
|
|
,lm_prop_norm
|
|
{
|
|
code,
|
|
"ircd_gpt_norm_prop",
|
|
ctrl,
|
|
opts,
|
|
model.decode->embed.norm.bias.param,
|
|
model.decode->embed.norm.bias.moment[0],
|
|
model.decode->embed.norm.bias.moment[1],
|
|
model.decode->embed.norm.weight.param,
|
|
model.decode->embed.norm.weight.moment[0],
|
|
model.decode->embed.norm.weight.moment[1],
|
|
}
|
|
,leave
|
|
{
|
|
{
|
|
code,
|
|
"ircd_gpt_leave",
|
|
model.decode->master[0],
|
|
state,
|
|
master,
|
|
opts,
|
|
ctrl,
|
|
frame[0],
|
|
},
|
|
{
|
|
code,
|
|
"ircd_gpt_leave",
|
|
model.decode->master[0],
|
|
state,
|
|
master,
|
|
opts,
|
|
ctrl,
|
|
frame[1],
|
|
},
|
|
{
|
|
code,
|
|
"ircd_gpt_leave",
|
|
model.decode->master[0],
|
|
state,
|
|
master,
|
|
opts,
|
|
ctrl,
|
|
frame[2],
|
|
},
|
|
{
|
|
code,
|
|
"ircd_gpt_leave",
|
|
model.decode->master[0],
|
|
state,
|
|
master,
|
|
opts,
|
|
ctrl,
|
|
frame[3],
|
|
},
|
|
{
|
|
code,
|
|
"ircd_gpt_leave",
|
|
model.decode->master[0],
|
|
state,
|
|
master,
|
|
opts,
|
|
ctrl,
|
|
frame[4],
|
|
},
|
|
{
|
|
code,
|
|
"ircd_gpt_leave",
|
|
model.decode->master[0],
|
|
state,
|
|
master,
|
|
opts,
|
|
ctrl,
|
|
frame[5],
|
|
},
|
|
{
|
|
code,
|
|
"ircd_gpt_leave",
|
|
model.decode->master[0],
|
|
state,
|
|
master,
|
|
opts,
|
|
ctrl,
|
|
frame[6],
|
|
},
|
|
{
|
|
code,
|
|
"ircd_gpt_leave",
|
|
model.decode->master[0],
|
|
state,
|
|
master,
|
|
opts,
|
|
ctrl,
|
|
frame[7],
|
|
},
|
|
}
|
|
,layer
|
|
{
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x00),
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x01),
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x02),
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x03),
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x04),
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x05),
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x06),
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x07),
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x08),
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x09),
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x0a),
|
|
std::make_unique<struct desc::layer>(*this, opt, 0x0b),
|
|
}
|
|
{
|
|
}
|
|
|
|
//
|
|
// pipe::desc::layer
|
|
//
|
|
|
|
ircd::gpt::pipe::desc::layer::layer(pipe::desc &desc,
|
|
const gpt::opts *const &opts,
|
|
const uint laynum)
|
|
:state
|
|
{
|
|
desc.state,
|
|
{
|
|
opts->context_tokens * opts->attn_elems * sizeof(float),
|
|
laynum * opts->context_tokens * opts->attn_elems * sizeof(float),
|
|
}
|
|
}
|
|
,attns
|
|
{
|
|
desc.attns,
|
|
{
|
|
opts->attn_self_elems * sizeof(float),
|
|
laynum * opts->attn_self_elems * sizeof(float),
|
|
}
|
|
}
|
|
,attn
|
|
{
|
|
*desc.code,
|
|
"ircd_gpt_attn_fcon",
|
|
desc.ctrl,
|
|
desc.opts,
|
|
laynum,
|
|
state,
|
|
desc.accum,
|
|
desc.model->decode->layer[laynum].attn.norm.bias.param,
|
|
desc.model->decode->layer[laynum].attn.norm.weight.param,
|
|
desc.model->decode->layer[laynum].attn.fcon.bias.param,
|
|
desc.model->decode->layer[laynum].attn.fcon.weight.param,
|
|
}
|
|
,ffnn
|
|
{
|
|
*desc.code,
|
|
"ircd_gpt_coil",
|
|
desc.ctrl,
|
|
desc.opts,
|
|
laynum,
|
|
desc.accum,
|
|
attns,
|
|
state,
|
|
desc.model->decode->layer[laynum].attn.proj.bias.param,
|
|
desc.model->decode->layer[laynum].attn.proj.weight.param,
|
|
desc.model->decode->layer[laynum].ffnn.norm.bias.param,
|
|
desc.model->decode->layer[laynum].ffnn.norm.weight.param,
|
|
desc.model->decode->layer[laynum].ffnn.fcon.bias.param,
|
|
desc.model->decode->layer[laynum].ffnn.fcon.weight.param,
|
|
desc.model->decode->layer[laynum].ffnn.proj.bias.param,
|
|
desc.model->decode->layer[laynum].ffnn.proj.weight.param,
|
|
}
|
|
,prop_attn
|
|
{
|
|
*desc.code,
|
|
"ircd_gpt_coil_prop_attn",
|
|
desc.ctrl,
|
|
desc.opts,
|
|
desc.model->decode->layer[laynum].attn.norm.bias.param,
|
|
desc.model->decode->layer[laynum].attn.norm.bias.moment[0],
|
|
desc.model->decode->layer[laynum].attn.norm.bias.moment[1],
|
|
desc.model->decode->layer[laynum].attn.norm.weight.param,
|
|
desc.model->decode->layer[laynum].attn.norm.weight.moment[0],
|
|
desc.model->decode->layer[laynum].attn.norm.weight.moment[1],
|
|
desc.model->decode->layer[laynum].attn.fcon.bias.param,
|
|
desc.model->decode->layer[laynum].attn.fcon.bias.moment[0],
|
|
desc.model->decode->layer[laynum].attn.fcon.bias.moment[1],
|
|
desc.model->decode->layer[laynum].attn.fcon.weight.param,
|
|
desc.model->decode->layer[laynum].attn.fcon.weight.moment[0],
|
|
desc.model->decode->layer[laynum].attn.fcon.weight.moment[1],
|
|
desc.model->decode->layer[laynum].attn.proj.bias.param,
|
|
desc.model->decode->layer[laynum].attn.proj.bias.moment[0],
|
|
desc.model->decode->layer[laynum].attn.proj.bias.moment[1],
|
|
desc.model->decode->layer[laynum].attn.proj.weight.param,
|
|
desc.model->decode->layer[laynum].attn.proj.weight.moment[0],
|
|
desc.model->decode->layer[laynum].attn.proj.weight.moment[1],
|
|
}
|
|
,prop_ffnn
|
|
{
|
|
*desc.code,
|
|
"ircd_gpt_coil_prop_ffnn",
|
|
desc.ctrl,
|
|
desc.opts,
|
|
desc.model->decode->layer[laynum].ffnn.norm.bias.param,
|
|
desc.model->decode->layer[laynum].ffnn.norm.bias.moment[0],
|
|
desc.model->decode->layer[laynum].ffnn.norm.bias.moment[1],
|
|
desc.model->decode->layer[laynum].ffnn.norm.weight.param,
|
|
desc.model->decode->layer[laynum].ffnn.norm.weight.moment[0],
|
|
desc.model->decode->layer[laynum].ffnn.norm.weight.moment[1],
|
|
desc.model->decode->layer[laynum].ffnn.fcon.bias.param,
|
|
desc.model->decode->layer[laynum].ffnn.fcon.bias.moment[0],
|
|
desc.model->decode->layer[laynum].ffnn.fcon.bias.moment[1],
|
|
desc.model->decode->layer[laynum].ffnn.fcon.weight.param,
|
|
desc.model->decode->layer[laynum].ffnn.fcon.weight.moment[0],
|
|
desc.model->decode->layer[laynum].ffnn.fcon.weight.moment[1],
|
|
desc.model->decode->layer[laynum].ffnn.proj.bias.param,
|
|
desc.model->decode->layer[laynum].ffnn.proj.bias.moment[0],
|
|
desc.model->decode->layer[laynum].ffnn.proj.bias.moment[1],
|
|
desc.model->decode->layer[laynum].ffnn.proj.weight.param,
|
|
desc.model->decode->layer[laynum].ffnn.proj.weight.moment[0],
|
|
desc.model->decode->layer[laynum].ffnn.proj.weight.moment[1],
|
|
}
|
|
{
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// model
|
|
//
|
|
|
|
//
|
|
// pipe::model::model
|
|
//
|
|
|
|
ircd::gpt::pipe::model::model(gpt::model::decoder &decoder)
|
|
:decode_const
|
|
{
|
|
std::addressof(decoder)
|
|
}
|
|
,decode_mutable
|
|
{
|
|
std::addressof(decoder)
|
|
}
|
|
,decode
|
|
{
|
|
std::make_unique<model::decoder>(decoder)
|
|
}
|
|
{
|
|
}
|
|
|
|
ircd::gpt::pipe::model::model(const gpt::model::decoder &decoder)
|
|
:decode_const
|
|
{
|
|
std::addressof(decoder)
|
|
}
|
|
,decode
|
|
{
|
|
std::make_unique<model::decoder>(decoder)
|
|
}
|
|
{
|
|
}
|
|
|
|
ircd::gpt::pipe::model::~model()
|
|
noexcept
|
|
{
|
|
}
|
|
|
|
//
|
|
// pipe::model::decoder
|
|
//
|
|
|
|
ircd::gpt::pipe::model::decoder::decoder(gpt::model::decoder &decoder)
|
|
:master
|
|
{
|
|
// params
|
|
{
|
|
mutable_buffer
|
|
{
|
|
reinterpret_cast<char *>(&decoder) + sizeof(gpt::model::decoder) * 0,
|
|
sizeof(gpt::model::decoder)
|
|
}
|
|
},
|
|
// first moment
|
|
{
|
|
mutable_buffer
|
|
{
|
|
reinterpret_cast<char *>(&decoder) + sizeof(gpt::model::decoder) * 1,
|
|
sizeof(gpt::model::decoder)
|
|
}
|
|
},
|
|
// second moment
|
|
{
|
|
mutable_buffer
|
|
{
|
|
reinterpret_cast<char *>(&decoder) + sizeof(gpt::model::decoder) * 2,
|
|
sizeof(gpt::model::decoder)
|
|
}
|
|
},
|
|
}
|
|
,layer
|
|
{
|
|
{ master, sizeof(gpt::model::block) * 0x00, decoder.layer[0x00], 0x00, },
|
|
{ master, sizeof(gpt::model::block) * 0x01, decoder.layer[0x01], 0x01, },
|
|
{ master, sizeof(gpt::model::block) * 0x02, decoder.layer[0x02], 0x02, },
|
|
{ master, sizeof(gpt::model::block) * 0x03, decoder.layer[0x03], 0x03, },
|
|
{ master, sizeof(gpt::model::block) * 0x04, decoder.layer[0x04], 0x04, },
|
|
{ master, sizeof(gpt::model::block) * 0x05, decoder.layer[0x05], 0x05, },
|
|
{ master, sizeof(gpt::model::block) * 0x06, decoder.layer[0x06], 0x06, },
|
|
{ master, sizeof(gpt::model::block) * 0x07, decoder.layer[0x07], 0x07, },
|
|
{ master, sizeof(gpt::model::block) * 0x08, decoder.layer[0x08], 0x08, },
|
|
{ master, sizeof(gpt::model::block) * 0x09, decoder.layer[0x09], 0x09, },
|
|
{ master, sizeof(gpt::model::block) * 0x0a, decoder.layer[0x0a], 0x0a, },
|
|
{ master, sizeof(gpt::model::block) * 0x0b, decoder.layer[0x0b], 0x0b, },
|
|
}
|
|
,embed
|
|
{
|
|
master,
|
|
off_t(offsetof(gpt::model::decoder, embed)),
|
|
decoder.embed,
|
|
}
|
|
{
|
|
}
|
|
|
|
ircd::gpt::pipe::model::decoder::decoder(const gpt::model::decoder &decoder)
|
|
:master
|
|
{
|
|
// params
|
|
{
|
|
const_buffer
|
|
{
|
|
reinterpret_cast<const char *>(&decoder),
|
|
sizeof(gpt::model::decoder)
|
|
}
|
|
},
|
|
}
|
|
,layer
|
|
{
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x00])), decoder.layer[0x00], 0x00, },
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x01])), decoder.layer[0x01], 0x01, },
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x02])), decoder.layer[0x02], 0x02, },
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x03])), decoder.layer[0x03], 0x03, },
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x04])), decoder.layer[0x04], 0x04, },
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x05])), decoder.layer[0x05], 0x05, },
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x06])), decoder.layer[0x06], 0x06, },
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x07])), decoder.layer[0x07], 0x07, },
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x08])), decoder.layer[0x08], 0x08, },
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x09])), decoder.layer[0x09], 0x09, },
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x0a])), decoder.layer[0x0a], 0x0a, },
|
|
{ master, off_t(offsetof(gpt::model::decoder, layer[0x0b])), decoder.layer[0x0b], 0x0b, },
|
|
}
|
|
,embed
|
|
{
|
|
master,
|
|
off_t(offsetof(gpt::model::decoder, embed)),
|
|
decoder.embed,
|
|
}
|
|
{
|
|
}
|
|
|
|
ircd::gpt::pipe::model::decoder::~decoder()
|
|
noexcept
|
|
{
|
|
}
|
|
|
|
//
|
|
// pipe::model::embed
|
|
//
|
|
|
|
ircd::gpt::pipe::model::embed::embed(cl::data *const master,
|
|
const off_t offset,
|
|
gpt::model::embed &embed)
|
|
:norm
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::embed, norm)) + off_t(offsetof(gpt::model::norm, bias)),
|
|
mutable_buffer{embed.norm.bias.elem},
|
|
offset + off_t(offsetof(gpt::model::embed, norm)) + off_t(offsetof(gpt::model::norm, weight)),
|
|
mutable_buffer{embed.norm.weight.elem},
|
|
}
|
|
,pos
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::embed, pos)),
|
|
mutable_buffer{embed.pos}
|
|
}
|
|
,token
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::embed, token)),
|
|
mutable_buffer{embed.token}
|
|
}
|
|
{
|
|
}
|
|
|
|
ircd::gpt::pipe::model::embed::embed(cl::data *const master,
|
|
const off_t offset,
|
|
const gpt::model::embed &embed)
|
|
:norm
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::embed, norm)) + off_t(offsetof(gpt::model::norm, bias)),
|
|
const_buffer{embed.norm.bias.elem},
|
|
offset + off_t(offsetof(gpt::model::embed, norm)) + off_t(offsetof(gpt::model::norm, weight)),
|
|
const_buffer{embed.norm.weight.elem},
|
|
}
|
|
,pos
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::embed, pos)),
|
|
const_buffer{embed.pos}
|
|
}
|
|
,token
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::embed, token)),
|
|
const_buffer{embed.token}
|
|
}
|
|
{
|
|
}
|
|
|
|
//
|
|
// pipe::model::block
|
|
//
|
|
|
|
ircd::gpt::pipe::model::block::block(cl::data *const master,
|
|
const off_t offset,
|
|
gpt::model::block &block,
|
|
const size_t layer)
|
|
:attn
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::block, attn)),
|
|
block.attn,
|
|
}
|
|
,ffnn
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::block, ffnn)),
|
|
block.ffnn,
|
|
}
|
|
{
|
|
}
|
|
|
|
ircd::gpt::pipe::model::block::block(cl::data *const master,
|
|
const off_t offset,
|
|
const gpt::model::block &block,
|
|
const size_t layer)
|
|
:attn
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::block, attn)),
|
|
block.attn,
|
|
}
|
|
,ffnn
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::block, ffnn)),
|
|
block.ffnn,
|
|
}
|
|
{
|
|
}
|
|
|
|
//
|
|
// pipe::model::ffnn
|
|
//
|
|
|
|
ircd::gpt::pipe::model::ffnn::ffnn(cl::data *const master,
|
|
const off_t offset,
|
|
gpt::model::ffnn &ffnn)
|
|
:norm
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::ffnn, norm)) + off_t(offsetof(gpt::model::norm, bias)),
|
|
mutable_buffer{ffnn.norm.bias.elem},
|
|
offset + off_t(offsetof(gpt::model::ffnn, norm)) + off_t(offsetof(gpt::model::norm, weight)),
|
|
mutable_buffer{ffnn.norm.weight.elem},
|
|
}
|
|
,fcon
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::ffnn, fcon_bias)),
|
|
mutable_buffer{ffnn.fcon_bias.fcon},
|
|
offset + off_t(offsetof(gpt::model::ffnn, fcon_weight)),
|
|
mutable_buffer{ffnn.fcon_weight},
|
|
}
|
|
,proj
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::ffnn, proj_bias)),
|
|
mutable_buffer{ffnn.proj_bias.elem},
|
|
offset + off_t(offsetof(gpt::model::ffnn, proj_weight)),
|
|
mutable_buffer{ffnn.proj_weight},
|
|
}
|
|
{
|
|
}
|
|
|
|
ircd::gpt::pipe::model::ffnn::ffnn(cl::data *const master,
|
|
const off_t offset,
|
|
const gpt::model::ffnn &ffnn)
|
|
:norm
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::ffnn, norm)) + off_t(offsetof(gpt::model::norm, bias)),
|
|
const_buffer{ffnn.norm.bias.elem},
|
|
offset + off_t(offsetof(gpt::model::ffnn, norm)) + off_t(offsetof(gpt::model::norm, weight)),
|
|
const_buffer{ffnn.norm.weight.elem},
|
|
}
|
|
,fcon
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::ffnn, fcon_bias)),
|
|
const_buffer{ffnn.fcon_bias.fcon},
|
|
offset + off_t(offsetof(gpt::model::ffnn, fcon_weight)),
|
|
const_buffer{ffnn.fcon_weight},
|
|
}
|
|
,proj
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::ffnn, proj_bias)),
|
|
const_buffer{ffnn.proj_bias.elem},
|
|
offset + off_t(offsetof(gpt::model::ffnn, proj_weight)),
|
|
const_buffer{ffnn.proj_weight},
|
|
}
|
|
{
|
|
}
|
|
|
|
//
|
|
// pipe::model::attn
|
|
//
|
|
|
|
ircd::gpt::pipe::model::attn::attn(cl::data *const master,
|
|
const off_t offset,
|
|
gpt::model::attn &attn)
|
|
:norm
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::attn, norm)) + off_t(offsetof(gpt::model::norm, bias)),
|
|
mutable_buffer{attn.norm.bias.elem},
|
|
offset + off_t(offsetof(gpt::model::attn, norm)) + off_t(offsetof(gpt::model::norm, weight)),
|
|
mutable_buffer{attn.norm.weight.elem},
|
|
}
|
|
,fcon
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::attn, fcon_bias)),
|
|
mutable_buffer{attn.fcon_bias.fcon},
|
|
offset + off_t(offsetof(gpt::model::attn, fcon_weight)),
|
|
mutable_buffer{attn.fcon_weight},
|
|
}
|
|
,proj
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::attn, proj_bias)),
|
|
mutable_buffer{attn.proj_bias.elem},
|
|
offset + off_t(offsetof(gpt::model::attn, proj_weight)),
|
|
mutable_buffer{attn.proj_weight},
|
|
}
|
|
{
|
|
}
|
|
|
|
ircd::gpt::pipe::model::attn::attn(cl::data *const master,
|
|
const off_t offset,
|
|
const gpt::model::attn &attn)
|
|
:norm
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::attn, norm)) + off_t(offsetof(gpt::model::norm, bias)),
|
|
const_buffer{attn.norm.bias.elem},
|
|
offset + off_t(offsetof(gpt::model::attn, norm)) + off_t(offsetof(gpt::model::norm, weight)),
|
|
const_buffer{attn.norm.weight.elem},
|
|
}
|
|
,fcon
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::attn, fcon_bias)),
|
|
const_buffer{attn.fcon_bias.fcon},
|
|
offset + off_t(offsetof(gpt::model::attn, fcon_weight)),
|
|
const_buffer{attn.fcon_weight},
|
|
}
|
|
,proj
|
|
{
|
|
master,
|
|
offset + off_t(offsetof(gpt::model::attn, proj_bias)),
|
|
const_buffer{attn.proj_bias.elem},
|
|
offset + off_t(offsetof(gpt::model::attn, proj_weight)),
|
|
const_buffer{attn.proj_weight},
|
|
}
|
|
{
|
|
}
|
|
|
|
//
|
|
// pipe::model::tensor
|
|
//
|
|
|
|
ircd::gpt::pipe::model::tensor::tensor(cl::data *const master,
|
|
const off_t bias_offset,
|
|
const mutable_buffer &bias,
|
|
const off_t weight_offset,
|
|
const mutable_buffer &weight)
|
|
:bias
|
|
{
|
|
master,
|
|
bias_offset,
|
|
bias,
|
|
}
|
|
,weight
|
|
{
|
|
master,
|
|
weight_offset,
|
|
weight,
|
|
}
|
|
{
|
|
}
|
|
|
|
ircd::gpt::pipe::model::tensor::tensor(cl::data *const master,
|
|
const off_t bias_offset,
|
|
const const_buffer &bias,
|
|
const off_t weight_offset,
|
|
const const_buffer &weight)
|
|
:bias
|
|
{
|
|
master,
|
|
bias_offset,
|
|
bias,
|
|
}
|
|
,weight
|
|
{
|
|
master,
|
|
weight_offset,
|
|
weight,
|
|
}
|
|
{
|
|
}
|
|
|
|
//
|
|
// pipe::model::matrix
|
|
//
|
|
|
|
ircd::gpt::pipe::model::matrix::matrix(cl::data *const master,
|
|
const off_t offset,
|
|
const mutable_buffer ¶m)
|
|
:param
|
|
{
|
|
master[0],
|
|
{
|
|
pad_to(ircd::size(param), 4096),
|
|
offset,
|
|
},
|
|
}
|
|
,moment
|
|
{
|
|
// first moment
|
|
{
|
|
master[1],
|
|
{
|
|
pad_to(ircd::size(param), 4096),
|
|
offset,
|
|
},
|
|
},
|
|
|
|
// second moment
|
|
{
|
|
master[2],
|
|
{
|
|
pad_to(ircd::size(param), 4096),
|
|
offset,
|
|
},
|
|
},
|
|
}
|
|
{
|
|
assert(aligned(offset, 4096));
|
|
}
|
|
|
|
ircd::gpt::pipe::model::matrix::matrix(cl::data *const master,
|
|
const off_t offset,
|
|
const const_buffer ¶m)
|
|
:param
|
|
{
|
|
master[0],
|
|
{
|
|
pad_to(ircd::size(param), 4096),
|
|
offset,
|
|
},
|
|
}
|
|
{
|
|
assert(aligned(offset, 4096));
|
|
}
|