0
0
Fork 0
mirror of https://github.com/matrix-org/dendrite synced 2024-12-15 15:33:42 +01:00
dendrite/roomserver/state/state.go
Neil Alexander b05e028f7d
Tweak LoadMembershipAtEvent behaviour when state not known (#2716)
Previously `LoadMembershipAtEvent` would fail if the state before one of
the events was not known, i.e. because it was an outlier. This modifies
it so that it gracefully handles not knowing the state and returns no
memberships instead, so that history visibility doesn't freak out and
kill `/sync` requests dead.
2022-09-13 12:52:09 +01:00

1387 lines
51 KiB
Go

// Copyright 2017 Vector Creations Ltd
// Copyright 2018 New Vector Ltd
// Copyright 2019-2020 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package state
import (
"context"
"database/sql"
"fmt"
"sort"
"sync"
"time"
"github.com/matrix-org/dendrite/roomserver/types"
"github.com/matrix-org/gomatrixserverlib"
"github.com/matrix-org/util"
"github.com/opentracing/opentracing-go"
"github.com/prometheus/client_golang/prometheus"
)
type StateResolutionStorage interface {
EventTypeNIDs(ctx context.Context, eventTypes []string) (map[string]types.EventTypeNID, error)
EventStateKeyNIDs(ctx context.Context, eventStateKeys []string) (map[string]types.EventStateKeyNID, error)
StateBlockNIDs(ctx context.Context, stateNIDs []types.StateSnapshotNID) ([]types.StateBlockNIDList, error)
StateEntries(ctx context.Context, stateBlockNIDs []types.StateBlockNID) ([]types.StateEntryList, error)
SnapshotNIDFromEventID(ctx context.Context, eventID string) (types.StateSnapshotNID, error)
StateEntriesForTuples(ctx context.Context, stateBlockNIDs []types.StateBlockNID, stateKeyTuples []types.StateKeyTuple) ([]types.StateEntryList, error)
StateAtEventIDs(ctx context.Context, eventIDs []string) ([]types.StateAtEvent, error)
AddState(ctx context.Context, roomNID types.RoomNID, stateBlockNIDs []types.StateBlockNID, state []types.StateEntry) (types.StateSnapshotNID, error)
Events(ctx context.Context, eventNIDs []types.EventNID) ([]types.Event, error)
EventsFromIDs(ctx context.Context, eventIDs []string) ([]types.Event, error)
}
type StateResolution struct {
db StateResolutionStorage
roomInfo *types.RoomInfo
events map[types.EventNID]*gomatrixserverlib.Event
}
func NewStateResolution(db StateResolutionStorage, roomInfo *types.RoomInfo) StateResolution {
return StateResolution{
db: db,
roomInfo: roomInfo,
events: make(map[types.EventNID]*gomatrixserverlib.Event),
}
}
// LoadStateAtSnapshot loads the full state of a room at a particular snapshot.
// This is typically the state before an event or the current state of a room.
// Returns a sorted list of state entries or an error if there was a problem talking to the database.
func (v *StateResolution) LoadStateAtSnapshot(
ctx context.Context, stateNID types.StateSnapshotNID,
) ([]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.LoadStateAtSnapshot")
defer span.Finish()
stateBlockNIDLists, err := v.db.StateBlockNIDs(ctx, []types.StateSnapshotNID{stateNID})
if err != nil {
return nil, err
}
// We've asked for exactly one snapshot from the db so we should have exactly one entry in the result.
stateBlockNIDList := stateBlockNIDLists[0]
stateEntryLists, err := v.db.StateEntries(ctx, stateBlockNIDList.StateBlockNIDs)
if err != nil {
return nil, err
}
stateEntriesMap := stateEntryListMap(stateEntryLists)
// Combine all the state entries for this snapshot.
// The order of state block NIDs in the list tells us the order to combine them in.
var fullState []types.StateEntry
for _, stateBlockNID := range stateBlockNIDList.StateBlockNIDs {
entries, ok := stateEntriesMap.lookup(stateBlockNID)
if !ok {
// This should only get hit if the database is corrupt.
// It should be impossible for an event to reference a NID that doesn't exist
panic(fmt.Errorf("corrupt DB: Missing state block numeric ID %d", stateBlockNID))
}
fullState = append(fullState, entries...)
}
// Stable sort so that the most recent entry for each state key stays
// remains later in the list than the older entries for the same state key.
sort.Stable(stateEntryByStateKeySorter(fullState))
// Unique returns the last entry and hence the most recent entry for each state key.
fullState = fullState[:util.Unique(stateEntryByStateKeySorter(fullState))]
return fullState, nil
}
// LoadStateAtEvent loads the full state of a room before a particular event.
func (v *StateResolution) LoadStateAtEvent(
ctx context.Context, eventID string,
) ([]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.LoadStateAtEvent")
defer span.Finish()
snapshotNID, err := v.db.SnapshotNIDFromEventID(ctx, eventID)
if err != nil {
return nil, fmt.Errorf("LoadStateAtEvent.SnapshotNIDFromEventID failed for event %s : %w", eventID, err)
}
if snapshotNID == 0 {
return nil, fmt.Errorf("LoadStateAtEvent.SnapshotNIDFromEventID(%s) returned 0 NID, was this event stored?", eventID)
}
stateEntries, err := v.LoadStateAtSnapshot(ctx, snapshotNID)
if err != nil {
return nil, err
}
return stateEntries, nil
}
func (v *StateResolution) LoadMembershipAtEvent(
ctx context.Context, eventIDs []string, stateKeyNID types.EventStateKeyNID,
) (map[string][]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.LoadMembershipAtEvent")
defer span.Finish()
// De-dupe snapshotNIDs
snapshotNIDMap := make(map[types.StateSnapshotNID][]string) // map from snapshot NID to eventIDs
for i := range eventIDs {
eventID := eventIDs[i]
snapshotNID, err := v.db.SnapshotNIDFromEventID(ctx, eventID)
if err != nil && err != sql.ErrNoRows {
return nil, fmt.Errorf("LoadStateAtEvent.SnapshotNIDFromEventID failed for event %s : %w", eventID, err)
}
if snapshotNID == 0 {
// If we don't know a state snapshot for this event then we can't calculate
// memberships at the time of the event, so skip over it. This means that
// it isn't guaranteed that the response map will contain every single event.
continue
}
snapshotNIDMap[snapshotNID] = append(snapshotNIDMap[snapshotNID], eventID)
}
snapshotNIDs := make([]types.StateSnapshotNID, 0, len(snapshotNIDMap))
for nid := range snapshotNIDMap {
snapshotNIDs = append(snapshotNIDs, nid)
}
stateBlockNIDLists, err := v.db.StateBlockNIDs(ctx, snapshotNIDs)
if err != nil {
return nil, err
}
result := make(map[string][]types.StateEntry)
for _, stateBlockNIDList := range stateBlockNIDLists {
// Query the membership event for the user at the given stateblocks
stateEntryLists, err := v.db.StateEntriesForTuples(ctx, stateBlockNIDList.StateBlockNIDs, []types.StateKeyTuple{
{
EventTypeNID: types.MRoomMemberNID,
EventStateKeyNID: stateKeyNID,
},
})
if err != nil {
return nil, err
}
evIDs := snapshotNIDMap[stateBlockNIDList.StateSnapshotNID]
for _, evID := range evIDs {
for _, x := range stateEntryLists {
result[evID] = append(result[evID], x.StateEntries...)
}
}
}
return result, nil
}
// LoadStateAtEvent loads the full state of a room before a particular event.
func (v *StateResolution) LoadStateAtEventForHistoryVisibility(
ctx context.Context, eventID string,
) ([]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.LoadStateAtEvent")
defer span.Finish()
snapshotNID, err := v.db.SnapshotNIDFromEventID(ctx, eventID)
if err != nil {
return nil, fmt.Errorf("LoadStateAtEvent.SnapshotNIDFromEventID failed for event %s : %w", eventID, err)
}
if snapshotNID == 0 {
return nil, fmt.Errorf("LoadStateAtEvent.SnapshotNIDFromEventID(%s) returned 0 NID, was this event stored?", eventID)
}
stateEntries, err := v.LoadStateAtSnapshot(ctx, snapshotNID)
if err != nil {
return nil, err
}
return stateEntries, nil
}
// LoadCombinedStateAfterEvents loads a snapshot of the state after each of the events
// and combines those snapshots together into a single list. At this point it is
// possible to run into duplicate (type, state key) tuples.
func (v *StateResolution) LoadCombinedStateAfterEvents(
ctx context.Context, prevStates []types.StateAtEvent,
) ([]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.LoadCombinedStateAfterEvents")
defer span.Finish()
stateNIDs := make([]types.StateSnapshotNID, len(prevStates))
for i, state := range prevStates {
stateNIDs[i] = state.BeforeStateSnapshotNID
}
// Fetch the state snapshots for the state before the each prev event from the database.
// Deduplicate the IDs before passing them to the database.
// There could be duplicates because the events could be state events where
// the snapshot of the room state before them was the same.
stateBlockNIDLists, err := v.db.StateBlockNIDs(ctx, UniqueStateSnapshotNIDs(stateNIDs))
if err != nil {
return nil, fmt.Errorf("v.db.StateBlockNIDs: %w", err)
}
var stateBlockNIDs []types.StateBlockNID
for _, list := range stateBlockNIDLists {
stateBlockNIDs = append(stateBlockNIDs, list.StateBlockNIDs...)
}
// Fetch the state entries that will be combined to create the snapshots.
// Deduplicate the IDs before passing them to the database.
// There could be duplicates because a block of state entries could be reused by
// multiple snapshots.
stateEntryLists, err := v.db.StateEntries(ctx, uniqueStateBlockNIDs(stateBlockNIDs))
if err != nil {
return nil, fmt.Errorf("v.db.StateEntries: %w", err)
}
stateBlockNIDsMap := stateBlockNIDListMap(stateBlockNIDLists)
stateEntriesMap := stateEntryListMap(stateEntryLists)
// Combine the entries from all the snapshots of state after each prev event into a single list.
var combined []types.StateEntry
for _, prevState := range prevStates {
// Grab the list of state data NIDs for this snapshot.
stateBlockNIDs, ok := stateBlockNIDsMap.lookup(prevState.BeforeStateSnapshotNID)
if !ok {
// This should only get hit if the database is corrupt.
// It should be impossible for an event to reference a NID that doesn't exist
panic(fmt.Errorf("corrupt DB: Missing state snapshot numeric ID %d", prevState.BeforeStateSnapshotNID))
}
// Combine all the state entries for this snapshot.
// The order of state block NIDs in the list tells us the order to combine them in.
var fullState []types.StateEntry
for _, stateBlockNID := range stateBlockNIDs {
entries, ok := stateEntriesMap.lookup(stateBlockNID)
if !ok {
// This should only get hit if the database is corrupt.
// It should be impossible for an event to reference a NID that doesn't exist
panic(fmt.Errorf("corrupt DB: Missing state block numeric ID %d", stateBlockNID))
}
fullState = append(fullState, entries...)
}
if prevState.IsStateEvent() && !prevState.IsRejected {
// If the prev event was a state event then add an entry for the event itself
// so that we get the state after the event rather than the state before.
fullState = append(fullState, prevState.StateEntry)
}
// Stable sort so that the most recent entry for each state key stays
// remains later in the list than the older entries for the same state key.
sort.Stable(stateEntryByStateKeySorter(fullState))
// Unique returns the last entry and hence the most recent entry for each state key.
fullState = fullState[:util.Unique(stateEntryByStateKeySorter(fullState))]
// Add the full state for this StateSnapshotNID.
combined = append(combined, fullState...)
}
return combined, nil
}
// DifferenceBetweeenStateSnapshots works out which state entries have been added and removed between two snapshots.
func (v *StateResolution) DifferenceBetweeenStateSnapshots(
ctx context.Context, oldStateNID, newStateNID types.StateSnapshotNID,
) (removed, added []types.StateEntry, err error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.DifferenceBetweeenStateSnapshots")
defer span.Finish()
if oldStateNID == newStateNID {
// If the snapshot NIDs are the same then nothing has changed
return nil, nil, nil
}
var oldEntries []types.StateEntry
var newEntries []types.StateEntry
if oldStateNID != 0 {
oldEntries, err = v.LoadStateAtSnapshot(ctx, oldStateNID)
if err != nil {
return nil, nil, err
}
}
if newStateNID != 0 {
newEntries, err = v.LoadStateAtSnapshot(ctx, newStateNID)
if err != nil {
return nil, nil, err
}
}
var oldI int
var newI int
for {
switch {
case oldI == len(oldEntries):
// We've reached the end of the old entries.
// The rest of the new list must have been newly added.
added = append(added, newEntries[newI:]...)
return
case newI == len(newEntries):
// We've reached the end of the new entries.
// The rest of the old list must be have been removed.
removed = append(removed, oldEntries[oldI:]...)
return
case oldEntries[oldI] == newEntries[newI]:
// The entry is in both lists so skip over it.
oldI++
newI++
case oldEntries[oldI].LessThan(newEntries[newI]):
// The lists are sorted so the old entry being less than the new entry means that it only appears in the old list.
removed = append(removed, oldEntries[oldI])
oldI++
default:
// Reaching the default case implies that the new entry is less than the old entry.
// Since the lists are sorted this means that it only appears in the new list.
added = append(added, newEntries[newI])
newI++
}
}
}
// LoadStateAtSnapshotForStringTuples loads the state for a list of event type and state key pairs at a snapshot.
// This is used when we only want to load a subset of the room state at a snapshot.
// If there is no entry for a given event type and state key pair then it will be discarded.
// This is typically the state before an event or the current state of a room.
// Returns a sorted list of state entries or an error if there was a problem talking to the database.
func (v *StateResolution) LoadStateAtSnapshotForStringTuples(
ctx context.Context,
stateNID types.StateSnapshotNID,
stateKeyTuples []gomatrixserverlib.StateKeyTuple,
) ([]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.LoadStateAtSnapshotForStringTuples")
defer span.Finish()
numericTuples, err := v.stringTuplesToNumericTuples(ctx, stateKeyTuples)
if err != nil {
return nil, err
}
return v.loadStateAtSnapshotForNumericTuples(ctx, stateNID, numericTuples)
}
// stringTuplesToNumericTuples converts the string state key tuples into numeric IDs
// If there isn't a numeric ID for either the event type or the event state key then the tuple is discarded.
// Returns an error if there was a problem talking to the database.
func (v *StateResolution) stringTuplesToNumericTuples(
ctx context.Context,
stringTuples []gomatrixserverlib.StateKeyTuple,
) ([]types.StateKeyTuple, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.stringTuplesToNumericTuples")
defer span.Finish()
eventTypes := make([]string, len(stringTuples))
stateKeys := make([]string, len(stringTuples))
for i := range stringTuples {
eventTypes[i] = stringTuples[i].EventType
stateKeys[i] = stringTuples[i].StateKey
}
eventTypes = util.UniqueStrings(eventTypes)
eventTypeMap, err := v.db.EventTypeNIDs(ctx, eventTypes)
if err != nil {
return nil, err
}
stateKeys = util.UniqueStrings(stateKeys)
stateKeyMap, err := v.db.EventStateKeyNIDs(ctx, stateKeys)
if err != nil {
return nil, err
}
var result []types.StateKeyTuple
for _, stringTuple := range stringTuples {
var numericTuple types.StateKeyTuple
var ok1, ok2 bool
numericTuple.EventTypeNID, ok1 = eventTypeMap[stringTuple.EventType]
numericTuple.EventStateKeyNID, ok2 = stateKeyMap[stringTuple.StateKey]
// Discard the tuple if there wasn't a numeric ID for either the event type or the state key.
if ok1 && ok2 {
result = append(result, numericTuple)
}
}
return result, nil
}
// loadStateAtSnapshotForNumericTuples loads the state for a list of event type and state key pairs at a snapshot.
// This is used when we only want to load a subset of the room state at a snapshot.
// If there is no entry for a given event type and state key pair then it will be discarded.
// This is typically the state before an event or the current state of a room.
// Returns a sorted list of state entries or an error if there was a problem talking to the database.
func (v *StateResolution) loadStateAtSnapshotForNumericTuples(
ctx context.Context,
stateNID types.StateSnapshotNID,
stateKeyTuples []types.StateKeyTuple,
) ([]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.loadStateAtSnapshotForNumericTuples")
defer span.Finish()
stateBlockNIDLists, err := v.db.StateBlockNIDs(ctx, []types.StateSnapshotNID{stateNID})
if err != nil {
return nil, err
}
// We've asked for exactly one snapshot from the db so we should have exactly one entry in the result.
stateBlockNIDList := stateBlockNIDLists[0]
stateEntryLists, err := v.db.StateEntriesForTuples(
ctx, stateBlockNIDList.StateBlockNIDs, stateKeyTuples,
)
if err != nil {
return nil, err
}
stateEntriesMap := stateEntryListMap(stateEntryLists)
// Combine all the state entries for this snapshot.
// The order of state block NIDs in the list tells us the order to combine them in.
var fullState []types.StateEntry
for _, stateBlockNID := range stateBlockNIDList.StateBlockNIDs {
entries, ok := stateEntriesMap.lookup(stateBlockNID)
if !ok {
// If the block is missing from the map it means that none of its entries matched a requested tuple.
// This can happen if the block doesn't contain an update for one of the requested tuples.
// If none of the requested tuples are in the block then it can be safely skipped.
continue
}
fullState = append(fullState, entries...)
}
// Stable sort so that the most recent entry for each state key stays
// remains later in the list than the older entries for the same state key.
sort.Stable(stateEntryByStateKeySorter(fullState))
// Unique returns the last entry and hence the most recent entry for each state key.
fullState = fullState[:util.Unique(stateEntryByStateKeySorter(fullState))]
return fullState, nil
}
// LoadStateAfterEventsForStringTuples loads the state for a list of event type
// and state key pairs after list of events.
// This is used when we only want to load a subset of the room state after a list of events.
// If there is no entry for a given event type and state key pair then it will be discarded.
// This is typically the state before an event.
// Returns a sorted list of state entries or an error if there was a problem talking to the database.
func (v *StateResolution) LoadStateAfterEventsForStringTuples(
ctx context.Context,
prevStates []types.StateAtEvent,
stateKeyTuples []gomatrixserverlib.StateKeyTuple,
) ([]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.LoadStateAfterEventsForStringTuples")
defer span.Finish()
numericTuples, err := v.stringTuplesToNumericTuples(ctx, stateKeyTuples)
if err != nil {
return nil, err
}
return v.loadStateAfterEventsForNumericTuples(ctx, prevStates, numericTuples)
}
func (v *StateResolution) loadStateAfterEventsForNumericTuples(
ctx context.Context,
prevStates []types.StateAtEvent,
stateKeyTuples []types.StateKeyTuple,
) ([]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.loadStateAfterEventsForNumericTuples")
defer span.Finish()
if len(prevStates) == 1 {
// Fast path for a single event.
prevState := prevStates[0]
result, err := v.loadStateAtSnapshotForNumericTuples(
ctx, prevState.BeforeStateSnapshotNID, stateKeyTuples,
)
if err != nil {
return nil, err
}
if prevState.IsStateEvent() {
// The result is current the state before the requested event.
// We want the state after the requested event.
// If the requested event was a state event then we need to
// update that key in the result.
// If the requested event wasn't a state event then the state after
// it is the same as the state before it.
set := false
for i := range result {
if result[i].StateKeyTuple == prevState.StateKeyTuple {
result[i] = prevState.StateEntry
set = true
}
}
if !set { // no previous state exists for this event: add new state
result = append(result, prevState.StateEntry)
}
}
return result, nil
}
// Slow path for more that one event.
// Load the entire state so that we can do conflict resolution if we need to.
// TODO: The are some optimistations we could do here:
// 1) We only need to do conflict resolution if there is a conflict in the
// requested tuples so we might try loading just those tuples and then
// checking for conflicts.
// 2) When there is a conflict we still only need to load the state
// needed to do conflict resolution which would save us having to load
// the full state.
// TODO: Add metrics for this as it could take a long time for big rooms
// with large conflicts.
fullState, _, _, err := v.calculateStateAfterManyEvents(ctx, v.roomInfo.RoomVersion, prevStates)
if err != nil {
return nil, err
}
// Sort the full state so we can use it as a map.
sort.Sort(stateEntrySorter(fullState))
// Filter the full state down to the required tuples.
var result []types.StateEntry
for _, tuple := range stateKeyTuples {
eventNID, ok := stateEntryMap(fullState).lookup(tuple)
if ok {
result = append(result, types.StateEntry{
StateKeyTuple: tuple,
EventNID: eventNID,
})
}
}
sort.Sort(stateEntrySorter(result))
return result, nil
}
var calculateStateDurations = prometheus.NewHistogramVec(
prometheus.HistogramOpts{
Namespace: "dendrite",
Subsystem: "roomserver",
Name: "calculate_state_duration_milliseconds",
Help: "How long it takes to calculate the state after a list of events",
Buckets: []float64{ // milliseconds
5, 10, 25, 50, 75, 100, 200, 300, 400, 500,
1000, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000, 10000, 15000, 20000, 30000,
},
},
// Takes two labels:
// algorithm:
// The algorithm used to calculate the state or the step it failed on if it failed.
// Labels starting with "_" are used to indicate when the algorithm fails halfway.
// outcome:
// Whether the state was successfully calculated.
//
// The possible values for algorithm are:
// empty_state -> The list of events was empty so the state is empty.
// no_change -> The state hasn't changed.
// single_delta -> There was a single event added to the state in a way that can be encoded as a single delta
// full_state_no_conflicts -> We created a new copy of the full room state, but didn't enounter any conflicts
// while doing so.
// full_state_with_conflicts -> We created a new copy of the full room state and had to resolve conflicts to do so.
// _load_state_block_nids -> Failed loading the state block nids for a single previous state.
// _load_combined_state -> Failed to load the combined state.
// _resolve_conflicts -> Failed to resolve conflicts.
[]string{"algorithm", "outcome"},
)
var calculateStatePrevEventLength = prometheus.NewSummaryVec(
prometheus.SummaryOpts{
Namespace: "dendrite",
Subsystem: "roomserver",
Name: "calculate_state_prev_event_length",
Help: "The length of the list of events to calculate the state after",
},
[]string{"algorithm", "outcome"},
)
var calculateStateFullStateLength = prometheus.NewSummaryVec(
prometheus.SummaryOpts{
Namespace: "dendrite",
Subsystem: "roomserver",
Name: "calculate_state_full_state_length",
Help: "The length of the full room state.",
},
[]string{"algorithm", "outcome"},
)
var calculateStateConflictLength = prometheus.NewSummaryVec(
prometheus.SummaryOpts{
Namespace: "dendrite",
Subsystem: "roomserver",
Name: "calculate_state_conflict_state_length",
Help: "The length of the conflicted room state.",
},
[]string{"algorithm", "outcome"},
)
type calculateStateMetrics struct {
algorithm string
startTime time.Time
prevEventLength int
fullStateLength int
conflictLength int
}
func (c *calculateStateMetrics) stop(stateNID types.StateSnapshotNID, err error) (types.StateSnapshotNID, error) {
var outcome string
if err == nil {
outcome = "success"
} else {
outcome = "failure"
}
calculateStateDurations.WithLabelValues(c.algorithm, outcome).Observe(
float64(time.Since(c.startTime).Milliseconds()),
)
calculateStatePrevEventLength.WithLabelValues(c.algorithm, outcome).Observe(
float64(c.prevEventLength),
)
calculateStateFullStateLength.WithLabelValues(c.algorithm, outcome).Observe(
float64(c.fullStateLength),
)
calculateStateConflictLength.WithLabelValues(c.algorithm, outcome).Observe(
float64(c.conflictLength),
)
return stateNID, err
}
func init() {
prometheus.MustRegister(
calculateStateDurations, calculateStatePrevEventLength,
calculateStateFullStateLength, calculateStateConflictLength,
)
}
// CalculateAndStoreStateBeforeEvent calculates a snapshot of the state of a room before an event.
// Stores the snapshot of the state in the database.
// Returns a numeric ID for the snapshot of the state before the event.
func (v *StateResolution) CalculateAndStoreStateBeforeEvent(
ctx context.Context,
event *gomatrixserverlib.Event,
isRejected bool,
) (types.StateSnapshotNID, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.CalculateAndStoreStateBeforeEvent")
defer span.Finish()
// Load the state at the prev events.
prevStates, err := v.db.StateAtEventIDs(ctx, event.PrevEventIDs())
if err != nil {
return 0, err
}
// The state before this event will be the state after the events that came before it.
return v.CalculateAndStoreStateAfterEvents(ctx, prevStates)
}
// CalculateAndStoreStateAfterEvents finds the room state after the given events.
// Stores the resulting state in the database and returns a numeric ID for that snapshot.
func (v *StateResolution) CalculateAndStoreStateAfterEvents(
ctx context.Context,
prevStates []types.StateAtEvent,
) (types.StateSnapshotNID, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.CalculateAndStoreStateAfterEvents")
defer span.Finish()
metrics := calculateStateMetrics{startTime: time.Now(), prevEventLength: len(prevStates)}
if len(prevStates) == 0 {
// 2) There weren't any prev_events for this event so the state is
// empty.
metrics.algorithm = "empty_state"
stateNID, err := v.db.AddState(ctx, v.roomInfo.RoomNID, nil, nil)
if err != nil {
err = fmt.Errorf("v.db.AddState: %w", err)
}
return metrics.stop(stateNID, err)
}
if len(prevStates) == 1 {
prevState := prevStates[0]
if prevState.EventStateKeyNID == 0 || prevState.IsRejected {
// 3) None of the previous events were state events and they all
// have the same state, so this event has exactly the same state
// as the previous events.
// This should be the internal case.
metrics.algorithm = "no_change"
return metrics.stop(prevState.BeforeStateSnapshotNID, nil)
}
// The previous event was a state event so we need to store a copy
// of the previous state updated with that event.
stateBlockNIDLists, err := v.db.StateBlockNIDs(
ctx, []types.StateSnapshotNID{prevState.BeforeStateSnapshotNID},
)
if err != nil {
metrics.algorithm = "_load_state_blocks"
return metrics.stop(0, fmt.Errorf("v.db.StateBlockNIDs: %w", err))
}
stateBlockNIDs := stateBlockNIDLists[0].StateBlockNIDs
if len(stateBlockNIDs) < maxStateBlockNIDs {
// 4) The number of state data blocks is small enough that we can just
// add the state event as a block of size one to the end of the blocks.
metrics.algorithm = "single_delta"
stateNID, err := v.db.AddState(
ctx, v.roomInfo.RoomNID, stateBlockNIDs, []types.StateEntry{prevState.StateEntry},
)
if err != nil {
err = fmt.Errorf("v.db.AddState: %w", err)
}
return metrics.stop(stateNID, err)
}
// If there are too many deltas then we need to calculate the full state
// So fall through to calculateAndStoreStateAfterManyEvents
}
stateNID, err := v.calculateAndStoreStateAfterManyEvents(ctx, v.roomInfo.RoomNID, prevStates, metrics)
if err != nil {
return 0, fmt.Errorf("v.calculateAndStoreStateAfterManyEvents: %w", err)
}
return stateNID, nil
}
// maxStateBlockNIDs is the maximum number of state data blocks to use to encode a snapshot of room state.
// Increasing this number means that we can encode more of the state changes as simple deltas which means that
// we need fewer entries in the state data table. However making this number bigger will increase the size of
// the rows in the state table itself and will require more index lookups when retrieving a snapshot.
// TODO: Tune this to get the right balance between size and lookup performance.
const maxStateBlockNIDs = 64
// calculateAndStoreStateAfterManyEvents finds the room state after the given events.
// This handles the slow path of calculateAndStoreStateAfterEvents for when there is more than one event.
// Stores the resulting state and returns a numeric ID for the snapshot.
func (v *StateResolution) calculateAndStoreStateAfterManyEvents(
ctx context.Context,
roomNID types.RoomNID,
prevStates []types.StateAtEvent,
metrics calculateStateMetrics,
) (types.StateSnapshotNID, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.calculateAndStoreStateAfterManyEvents")
defer span.Finish()
state, algorithm, conflictLength, err :=
v.calculateStateAfterManyEvents(ctx, v.roomInfo.RoomVersion, prevStates)
metrics.algorithm = algorithm
if err != nil {
return metrics.stop(0, fmt.Errorf("v.calculateStateAfterManyEvents: %w", err))
}
// TODO: Check if we can encode the new state as a delta against the
// previous state.
metrics.conflictLength = conflictLength
metrics.fullStateLength = len(state)
return metrics.stop(v.db.AddState(ctx, roomNID, nil, state))
}
func (v *StateResolution) calculateStateAfterManyEvents(
ctx context.Context, roomVersion gomatrixserverlib.RoomVersion,
prevStates []types.StateAtEvent,
) (state []types.StateEntry, algorithm string, conflictLength int, err error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.calculateStateAfterManyEvents")
defer span.Finish()
var combined []types.StateEntry
// Conflict resolution.
// First stage: load the state after each of the prev events.
combined, err = v.LoadCombinedStateAfterEvents(ctx, prevStates)
if err != nil {
err = fmt.Errorf("v.LoadCombinedStateAfterEvents: %w", err)
algorithm = "_load_combined_state"
return
}
// Collect all the entries with the same type and key together.
// This is done so findDuplicateStateKeys can work in groups.
// We remove duplicates (same type, state key and event NID) too.
combined = combined[:util.SortAndUnique(stateEntrySorter(combined))]
// Find the conflicts
if conflicts := findDuplicateStateKeys(combined); len(conflicts) > 0 {
conflictMap := stateEntryMap(conflicts)
conflictLength = len(conflicts)
// 5) There are conflicting state events, for each conflict workout
// what the appropriate state event is.
// Work out which entries aren't conflicted.
var notConflicted []types.StateEntry
for _, entry := range combined {
if _, ok := conflictMap.lookup(entry.StateKeyTuple); !ok {
notConflicted = append(notConflicted, entry)
}
}
var resolved []types.StateEntry
resolved, err = v.resolveConflicts(ctx, roomVersion, notConflicted, conflicts)
if err != nil {
err = fmt.Errorf("v.resolveConflits: %w", err)
algorithm = "_resolve_conflicts"
return
}
algorithm = "full_state_with_conflicts"
state = resolved
} else {
algorithm = "full_state_no_conflicts"
// 6) There weren't any conflicts
state = combined
}
return
}
func (v *StateResolution) resolveConflicts(
ctx context.Context, version gomatrixserverlib.RoomVersion,
notConflicted, conflicted []types.StateEntry,
) ([]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.resolveConflicts")
defer span.Finish()
stateResAlgo, err := version.StateResAlgorithm()
if err != nil {
return nil, err
}
switch stateResAlgo {
case gomatrixserverlib.StateResV1:
return v.resolveConflictsV1(ctx, notConflicted, conflicted)
case gomatrixserverlib.StateResV2:
return v.resolveConflictsV2(ctx, notConflicted, conflicted)
}
return nil, fmt.Errorf("unsupported state resolution algorithm %v", stateResAlgo)
}
// resolveConflicts resolves a list of conflicted state entries. It takes two lists.
// The first is a list of all state entries that are not conflicted.
// The second is a list of all state entries that are conflicted
// A state entry is conflicted when there is more than one numeric event ID for the same state key tuple.
// Returns a list that combines the entries without conflicts with the result of state resolution for the entries with conflicts.
// The returned list is sorted by state key tuple.
// Returns an error if there was a problem talking to the database.
func (v *StateResolution) resolveConflictsV1(
ctx context.Context,
notConflicted, conflicted []types.StateEntry,
) ([]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.resolveConflictsV1")
defer span.Finish()
// Load the conflicted events
conflictedEvents, eventIDMap, err := v.loadStateEvents(ctx, conflicted)
if err != nil {
return nil, err
}
// Work out which auth events we need to load.
needed := gomatrixserverlib.StateNeededForAuth(conflictedEvents)
// Find the numeric IDs for the necessary state keys.
var neededStateKeys []string
neededStateKeys = append(neededStateKeys, needed.Member...)
neededStateKeys = append(neededStateKeys, needed.ThirdPartyInvite...)
stateKeyNIDMap, err := v.db.EventStateKeyNIDs(ctx, neededStateKeys)
if err != nil {
return nil, err
}
// Load the necessary auth events.
tuplesNeeded := v.stateKeyTuplesNeeded(stateKeyNIDMap, needed)
var authEntries []types.StateEntry
for _, tuple := range tuplesNeeded {
if eventNID, ok := stateEntryMap(notConflicted).lookup(tuple); ok {
authEntries = append(authEntries, types.StateEntry{
StateKeyTuple: tuple,
EventNID: eventNID,
})
}
}
authEvents, _, err := v.loadStateEvents(ctx, authEntries)
if err != nil {
return nil, err
}
// Resolve the conflicts.
resolvedEvents := gomatrixserverlib.ResolveStateConflicts(conflictedEvents, authEvents)
// Map from the full events back to numeric state entries.
for _, resolvedEvent := range resolvedEvents {
entry, ok := eventIDMap[resolvedEvent.EventID()]
if !ok {
panic(fmt.Errorf("missing state entry for event ID %q", resolvedEvent.EventID()))
}
notConflicted = append(notConflicted, entry)
}
// Sort the result so it can be searched.
sort.Sort(stateEntrySorter(notConflicted))
return notConflicted, nil
}
// resolveConflicts resolves a list of conflicted state entries. It takes two lists.
// The first is a list of all state entries that are not conflicted.
// The second is a list of all state entries that are conflicted
// A state entry is conflicted when there is more than one numeric event ID for the same state key tuple.
// Returns a list that combines the entries without conflicts with the result of state resolution for the entries with conflicts.
// The returned list is sorted by state key tuple.
// Returns an error if there was a problem talking to the database.
func (v *StateResolution) resolveConflictsV2(
ctx context.Context,
notConflicted, conflicted []types.StateEntry,
) ([]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.resolveConflictsV2")
defer span.Finish()
estimate := len(conflicted) + len(notConflicted)
eventIDMap := make(map[string]types.StateEntry, estimate)
// Load the conflicted events
conflictedEvents, conflictedEventMap, err := v.loadStateEvents(ctx, conflicted)
if err != nil {
return nil, err
}
for k, v := range conflictedEventMap {
eventIDMap[k] = v
}
// Load the non-conflicted events
nonConflictedEvents, nonConflictedEventMap, err := v.loadStateEvents(ctx, notConflicted)
if err != nil {
return nil, err
}
for k, v := range nonConflictedEventMap {
eventIDMap[k] = v
}
// For each conflicted event, we will add a new set of auth events. Auth
// events may be duplicated across these sets but that's OK.
authSets := make(map[string][]*gomatrixserverlib.Event, len(conflicted))
authEvents := make([]*gomatrixserverlib.Event, 0, estimate*3)
gotAuthEvents := make(map[string]struct{}, estimate*3)
authDifference := make([]*gomatrixserverlib.Event, 0, estimate)
knownAuthEvents := make(map[string]types.Event, estimate*3)
// For each conflicted event, let's try and get the needed auth events.
if err = func() error {
span, sctx := opentracing.StartSpanFromContext(ctx, "StateResolution.loadAuthEvents")
defer span.Finish()
loader := authEventLoader{
v: v,
lookupFromDB: make([]string, 0, len(conflictedEvents)*3),
lookupFromMem: make([]string, 0, len(conflictedEvents)*3),
lookedUpEvents: make([]types.Event, 0, len(conflictedEvents)*3),
eventMap: map[string]types.Event{},
}
for _, conflictedEvent := range conflictedEvents {
// Work out which auth events we need to load.
key := conflictedEvent.EventID()
// Store the newly found auth events in the auth set for this event.
var authEventMap map[string]types.StateEntry
authSets[key], authEventMap, err = loader.loadAuthEvents(sctx, conflictedEvent, knownAuthEvents)
if err != nil {
return err
}
for k, v := range authEventMap {
eventIDMap[k] = v
}
// Only add auth events into the authEvents slice once, otherwise the
// check for the auth difference can become expensive and produce
// duplicate entries, which just waste memory and CPU time.
for _, event := range authSets[key] {
if _, ok := gotAuthEvents[event.EventID()]; !ok {
authEvents = append(authEvents, event)
gotAuthEvents[event.EventID()] = struct{}{}
}
}
}
return nil
}(); err != nil {
return nil, err
}
// Kill the reference to this so that the GC may pick it up, since we no
// longer need this after this point.
gotAuthEvents = nil // nolint:ineffassign
// This function helps us to work out whether an event exists in one of the
// auth sets.
isInAuthList := func(k string, event *gomatrixserverlib.Event) bool {
for _, e := range authSets[k] {
if e.EventID() == event.EventID() {
return true
}
}
return false
}
// This function works out if an event exists in all of the auth sets.
isInAllAuthLists := func(event *gomatrixserverlib.Event) bool {
for k := range authSets {
if !isInAuthList(k, event) {
return false
}
}
return true
}
// Look through all of the auth events that we've been given and work out if
// there are any events which don't appear in all of the auth sets. If they
// don't then we add them to the auth difference.
func() {
span, _ := opentracing.StartSpanFromContext(ctx, "isInAllAuthLists")
defer span.Finish()
for _, event := range authEvents {
if !isInAllAuthLists(event) {
authDifference = append(authDifference, event)
}
}
}()
// Resolve the conflicts.
resolvedEvents := func() []*gomatrixserverlib.Event {
span, _ := opentracing.StartSpanFromContext(ctx, "gomatrixserverlib.ResolveStateConflictsV2")
defer span.Finish()
return gomatrixserverlib.ResolveStateConflictsV2(
conflictedEvents,
nonConflictedEvents,
authEvents,
authDifference,
)
}()
// Map from the full events back to numeric state entries.
for _, resolvedEvent := range resolvedEvents {
entry, ok := eventIDMap[resolvedEvent.EventID()]
if !ok {
return nil, fmt.Errorf("missing state entry for event ID %q", resolvedEvent.EventID())
}
notConflicted = append(notConflicted, entry)
}
// Sort the result so it can be searched.
sort.Sort(stateEntrySorter(notConflicted))
return notConflicted, nil
}
// stateKeyTuplesNeeded works out which numeric state key tuples we need to authenticate some events.
func (v *StateResolution) stateKeyTuplesNeeded(stateKeyNIDMap map[string]types.EventStateKeyNID, stateNeeded gomatrixserverlib.StateNeeded) []types.StateKeyTuple {
var keyTuples []types.StateKeyTuple
if stateNeeded.Create {
keyTuples = append(keyTuples, types.StateKeyTuple{
EventTypeNID: types.MRoomCreateNID,
EventStateKeyNID: types.EmptyStateKeyNID,
})
}
if stateNeeded.PowerLevels {
keyTuples = append(keyTuples, types.StateKeyTuple{
EventTypeNID: types.MRoomPowerLevelsNID,
EventStateKeyNID: types.EmptyStateKeyNID,
})
}
if stateNeeded.JoinRules {
keyTuples = append(keyTuples, types.StateKeyTuple{
EventTypeNID: types.MRoomJoinRulesNID,
EventStateKeyNID: types.EmptyStateKeyNID,
})
}
for _, member := range stateNeeded.Member {
stateKeyNID, ok := stateKeyNIDMap[member]
if ok {
keyTuples = append(keyTuples, types.StateKeyTuple{
EventTypeNID: types.MRoomMemberNID,
EventStateKeyNID: stateKeyNID,
})
}
}
for _, token := range stateNeeded.ThirdPartyInvite {
stateKeyNID, ok := stateKeyNIDMap[token]
if ok {
keyTuples = append(keyTuples, types.StateKeyTuple{
EventTypeNID: types.MRoomThirdPartyInviteNID,
EventStateKeyNID: stateKeyNID,
})
}
}
return keyTuples
}
// loadStateEvents loads the matrix events for a list of state entries.
// Returns a list of state events in no particular order and a map from string event ID back to state entry.
// The map can be used to recover which numeric state entry a given event is for.
// Returns an error if there was a problem talking to the database.
func (v *StateResolution) loadStateEvents(
ctx context.Context, entries []types.StateEntry,
) ([]*gomatrixserverlib.Event, map[string]types.StateEntry, error) {
span, ctx := opentracing.StartSpanFromContext(ctx, "StateResolution.loadStateEvents")
defer span.Finish()
result := make([]*gomatrixserverlib.Event, 0, len(entries))
eventEntries := make([]types.StateEntry, 0, len(entries))
eventNIDs := make(types.EventNIDs, 0, len(entries))
for _, entry := range entries {
if e, ok := v.events[entry.EventNID]; ok {
result = append(result, e)
} else {
eventEntries = append(eventEntries, entry)
eventNIDs = append(eventNIDs, entry.EventNID)
}
}
events, err := v.db.Events(ctx, eventNIDs)
if err != nil {
return nil, nil, err
}
eventIDMap := map[string]types.StateEntry{}
for _, entry := range eventEntries {
event, ok := eventMap(events).lookup(entry.EventNID)
if !ok {
panic(fmt.Errorf("corrupt DB: Missing event numeric ID %d", entry.EventNID))
}
result = append(result, event.Event)
eventIDMap[event.Event.EventID()] = entry
v.events[entry.EventNID] = event.Event
}
return result, eventIDMap, nil
}
type authEventLoader struct {
sync.Mutex
v *StateResolution
lookupFromDB []string // scratch space
lookupFromMem []string // scratch space
lookedUpEvents []types.Event // scratch space
eventMap map[string]types.Event
}
// loadAuthEvents loads all of the auth events for a given event recursively,
// along with a map that contains state entries for all of the auth events.
func (l *authEventLoader) loadAuthEvents(
ctx context.Context, event *gomatrixserverlib.Event, eventMap map[string]types.Event,
) ([]*gomatrixserverlib.Event, map[string]types.StateEntry, error) {
l.Lock()
defer l.Unlock()
authEvents := []types.Event{} // our returned list
included := map[string]struct{}{} // dedupes authEvents above
queue := event.AuthEventIDs()
for i := 0; i < len(queue); i++ {
// Reuse the same underlying memory, since it reduces the
// amount of allocations we make the more times we call
// loadAuthEvents.
l.lookupFromDB = l.lookupFromDB[:0]
l.lookupFromMem = l.lookupFromMem[:0]
l.lookedUpEvents = l.lookedUpEvents[:0]
// Separate out the list of events in the queue based on if
// we think we already know the event in memory or not.
for _, authEventID := range queue {
if _, ok := included[authEventID]; ok {
continue
}
if _, ok := eventMap[authEventID]; ok {
l.lookupFromMem = append(l.lookupFromMem, authEventID)
} else {
l.lookupFromDB = append(l.lookupFromDB, authEventID)
}
}
// If there's nothing to do, stop here.
if len(l.lookupFromDB) == 0 && len(l.lookupFromMem) == 0 {
break
}
// If we need to get events from the database, go and fetch
// those now.
if len(l.lookupFromDB) > 0 {
eventsFromDB, err := l.v.db.EventsFromIDs(ctx, l.lookupFromDB)
if err != nil {
return nil, nil, fmt.Errorf("v.db.EventsFromIDs: %w", err)
}
l.lookedUpEvents = append(l.lookedUpEvents, eventsFromDB...)
for _, event := range eventsFromDB {
eventMap[event.EventID()] = event
}
}
// Fill in the gaps with events that we already have in memory.
if len(l.lookupFromMem) > 0 {
for _, eventID := range l.lookupFromMem {
l.lookedUpEvents = append(l.lookedUpEvents, eventMap[eventID])
}
}
// From the events that we've retrieved, work out which auth
// events to look up on the next iteration.
add := map[string]struct{}{}
for _, event := range l.lookedUpEvents {
authEvents = append(authEvents, event)
included[event.EventID()] = struct{}{}
for _, authEventID := range event.AuthEventIDs() {
if _, ok := included[authEventID]; ok {
continue
}
add[authEventID] = struct{}{}
}
}
for authEventID := range add {
queue = append(queue, authEventID)
}
}
authEventTypes := map[string]struct{}{}
authEventStateKeys := map[string]struct{}{}
for _, authEvent := range authEvents {
authEventTypes[authEvent.Type()] = struct{}{}
authEventStateKeys[*authEvent.StateKey()] = struct{}{}
}
lookupAuthEventTypes := make([]string, 0, len(authEventTypes))
lookupAuthEventStateKeys := make([]string, 0, len(authEventStateKeys))
for eventType := range authEventTypes {
lookupAuthEventTypes = append(lookupAuthEventTypes, eventType)
}
for eventStateKey := range authEventStateKeys {
lookupAuthEventStateKeys = append(lookupAuthEventStateKeys, eventStateKey)
}
eventTypes, err := l.v.db.EventTypeNIDs(ctx, lookupAuthEventTypes)
if err != nil {
return nil, nil, fmt.Errorf("v.db.EventTypeNIDs: %w", err)
}
eventStateKeys, err := l.v.db.EventStateKeyNIDs(ctx, lookupAuthEventStateKeys)
if err != nil {
return nil, nil, fmt.Errorf("v.db.EventStateKeyNIDs: %w", err)
}
stateEntryMap := map[string]types.StateEntry{}
for _, authEvent := range authEvents {
stateEntryMap[authEvent.EventID()] = types.StateEntry{
EventNID: authEvent.EventNID,
StateKeyTuple: types.StateKeyTuple{
EventTypeNID: eventTypes[authEvent.Type()],
EventStateKeyNID: eventStateKeys[*authEvent.StateKey()],
},
}
}
nakedEvents := make([]*gomatrixserverlib.Event, 0, len(authEvents))
for _, authEvent := range authEvents {
nakedEvents = append(nakedEvents, authEvent.Event)
}
return nakedEvents, stateEntryMap, nil
}
// findDuplicateStateKeys finds the state entries where the state key tuple appears more than once in a sorted list.
// Returns a sorted list of those state entries.
func findDuplicateStateKeys(a []types.StateEntry) []types.StateEntry {
var result []types.StateEntry
// j is the starting index of a block of entries with the same state key tuple.
j := 0
for i := 1; i < len(a); i++ {
// Check if the state key tuple matches the start of the block
if a[j].StateKeyTuple != a[i].StateKeyTuple {
// If the state key tuple is different then we've reached the end of a block of duplicates.
// Check if the size of the block is bigger than one.
// If the size is one then there was only a single entry with that state key tuple so we don't add it to the result
if j+1 != i {
// Add the block to the result.
result = append(result, a[j:i]...)
}
// Start a new block for the next state key tuple.
j = i
}
}
// Check if the last block with the same state key tuple had more than one event in it.
if j+1 != len(a) {
result = append(result, a[j:]...)
}
return result
}
type stateEntrySorter []types.StateEntry
func (s stateEntrySorter) Len() int { return len(s) }
func (s stateEntrySorter) Less(i, j int) bool { return s[i].LessThan(s[j]) }
func (s stateEntrySorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
type stateBlockNIDListMap []types.StateBlockNIDList
func (m stateBlockNIDListMap) lookup(stateNID types.StateSnapshotNID) (stateBlockNIDs []types.StateBlockNID, ok bool) {
list := []types.StateBlockNIDList(m)
i := sort.Search(len(list), func(i int) bool {
return list[i].StateSnapshotNID >= stateNID
})
if i < len(list) && list[i].StateSnapshotNID == stateNID {
ok = true
stateBlockNIDs = list[i].StateBlockNIDs
}
return
}
type stateEntryListMap []types.StateEntryList
func (m stateEntryListMap) lookup(stateBlockNID types.StateBlockNID) (stateEntries []types.StateEntry, ok bool) {
list := []types.StateEntryList(m)
i := sort.Search(len(list), func(i int) bool {
return list[i].StateBlockNID >= stateBlockNID
})
if i < len(list) && list[i].StateBlockNID == stateBlockNID {
ok = true
stateEntries = list[i].StateEntries
}
return
}
type stateEntryByStateKeySorter []types.StateEntry
func (s stateEntryByStateKeySorter) Len() int { return len(s) }
func (s stateEntryByStateKeySorter) Less(i, j int) bool {
return s[i].StateKeyTuple.LessThan(s[j].StateKeyTuple)
}
func (s stateEntryByStateKeySorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
type stateNIDSorter []types.StateSnapshotNID
func (s stateNIDSorter) Len() int { return len(s) }
func (s stateNIDSorter) Less(i, j int) bool { return s[i] < s[j] }
func (s stateNIDSorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func UniqueStateSnapshotNIDs(nids []types.StateSnapshotNID) []types.StateSnapshotNID {
return nids[:util.SortAndUnique(stateNIDSorter(nids))]
}
type stateBlockNIDSorter []types.StateBlockNID
func (s stateBlockNIDSorter) Len() int { return len(s) }
func (s stateBlockNIDSorter) Less(i, j int) bool { return s[i] < s[j] }
func (s stateBlockNIDSorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func uniqueStateBlockNIDs(nids []types.StateBlockNID) []types.StateBlockNID {
return nids[:util.SortAndUnique(stateBlockNIDSorter(nids))]
}
// Map from event type, state key tuple to numeric event ID.
// Implemented using binary search on a sorted array.
type stateEntryMap []types.StateEntry
// lookup an entry in the event map.
func (m stateEntryMap) lookup(stateKey types.StateKeyTuple) (eventNID types.EventNID, ok bool) {
// Since the list is sorted we can implement this using binary search.
// This is faster than using a hash map.
// We don't have to worry about pathological cases because the keys are fixed
// size and are controlled by us.
list := []types.StateEntry(m)
i := sort.Search(len(list), func(i int) bool {
return !list[i].StateKeyTuple.LessThan(stateKey)
})
if i < len(list) && list[i].StateKeyTuple == stateKey {
ok = true
eventNID = list[i].EventNID
}
return
}
// Map from numeric event ID to event.
// Implemented using binary search on a sorted array.
type eventMap []types.Event
// lookup an entry in the event map.
func (m eventMap) lookup(eventNID types.EventNID) (event *types.Event, ok bool) {
// Since the list is sorted we can implement this using binary search.
// This is faster than using a hash map.
// We don't have to worry about pathological cases because the keys are fixed
// size are controlled by us.
list := []types.Event(m)
i := sort.Search(len(list), func(i int) bool {
return list[i].EventNID >= eventNID
})
if i < len(list) && list[i].EventNID == eventNID {
ok = true
event = &list[i]
}
return
}