For a stable release you can use `:latest`, `:1` or specify a certain release like `:{{< version >}}`, but if you'd like to use the latest development version of Gitea then you could use the `:nightly` tag. If you'd like to run the latest commit from a release branch you can use the `:1.x-nightly` tag, where x is the minor version of Gitea. (e.g. `:1.16-nightly`)
-`USER_UID`: **1000**: The UID (Unix user ID) of the user that runs Gitea within the container. Match this to the UID of the owner of the `/data` volume if using host volumes (this is not necessary with named volumes).
-`USER_GID`: **1000**: The GID (Unix group ID) of the user that runs Gitea within the container. Match this to the GID of the owner of the `/data` volume if using host volumes (this is not necessary with named volumes).
Gitea will generate new secrets/tokens for every new installation automatically and write them into the app.ini. If you want to set the secrets/tokens manually, you can use the following docker commands to use of Gitea's built-in [generate utility functions](https://docs.gitea.io/en-us/command-line/#generate). Do not lose/change your SECRET_KEY after the installation, otherwise the encrypted data can not be decrypted anymore.
The following commands will output a new `SECRET_KEY` and `INTERNAL_TOKEN` to `stdout`, which you can then place in your environment variables.
```bash
docker run -it --rm gitea/gitea:1 gitea generate secret SECRET_KEY
docker run -it --rm gitea/gitea:1 gitea generate secret INTERNAL_TOKEN
```
```yaml
...
services:
server:
environment:
- GITEA__security__SECRET_KEY=[value returned by generate secret SECRET_KEY]
- GITEA__security__INTERNAL_TOKEN=[value returned by generate secret INTERNAL_TOKEN]
Since SSH is running inside the container, SSH needs to be passed through from the host to the container if SSH support is desired. One option would be to run the container SSH on a non-standard port (or moving the host port to a non-standard port). Another option which might be more straightforward is for Gitea users to ssh to a Gitea user on the host which will then relay those connections to the docker.
To understand what needs to happen, you first need to understand what happens without passthrough. So we will try to explain this:
1. The client adds their SSH public key to Gitea using the webpage.
2. Gitea will add an entry for this key to the `.ssh/authorized_keys` file of its running user, `git`.
3. This entry has the public key, but also has a `command=` option. It is this command that Gitea uses to match this key to the client user and manages authentication.
4. The client then makes an SSH request to the SSH server using the `git` user, e.g. `git clone git@domain:user/repo.git`.
5. The client will attempt to authenticate with the server, passing one or more public keys one at a time to the server.
6. For each key the client provides, the SSH server will first check its configuration for an `AuthorizedKeysCommand` to see if the public key matches, and then the `git` user's `authorized_keys` file.
7. The first entry that matches will be selected, and assuming this is a Gitea entry, the `command=` will now be executed.
8. The SSH server creates a user session for the `git` user, and using the shell for the `git` user runs the `command=`
9. This runs `gitea serv` which takes over control of the rest of the SSH session and manages gitea authentication & authorization of the git commands.
Now, for the SSH passthrough to work, we need the host SSH to match the public keys and then run the `gitea serv` on the docker. There are multiple ways of doing this. However, all of these require some information about the docker being passed to the host.
In this option, the idea is that the host simply uses the `authorized_keys` that gitea creates but at step 9 the `gitea` command that the host runs is a shim that actually runs ssh to go into the docker and then run the real docker `gitea` itself.
- To make the forwarding work, the SSH port of the container (22) needs to be mapped to the host port 2222 in `docker-compose.yml` . Since this port does not need to be exposed to the outside world, it can be mapped to the `localhost` of the host machine:
- Next on the host create the `git` user which shares the same `UID`/ `GID` as the container values `USER_UID`/ `USER_GID`. These values can be set as environment variables in the `docker-compose.yml`:
- Mount `/home/git/.ssh` of the host into the container. This ensures that the `authorized_keys` file is shared between the host `git` user and the container `git` user otherwise the SSH authentication cannot work inside the container.
- Now a SSH key pair needs to be created on the host. This key pair will be used to authenticate the `git` user on the host to the container. As an administrative user on the host run: (by administrative user we mean a user that can sudo to root)
-`/home/git/.ssh/authorized_keys` on the host now needs to be modified. It needs to act in the same way as `authorized_keys` within the Gitea container. Therefore add the public key of the key you created above ("Gitea Host Key") to `~/git/.ssh/authorized_keys`. As an administrative user on the host run:
Important: The pubkey from the `git` user needs to be added "as is" while all other pubkeys added via the Gitea web interface will be prefixed with `command="/usr [...]`.
`/home/git/.ssh/authorized_keys` should then look somewhat like
- The next step is to create the fake host `gitea` command that will forward commands from the host to the container. The name of this file depends on your version of Gitea:
- However, because `/home/git/.ssh/` on the host is mounted as `/data/git/.ssh` this means that the key has been added to the host `git` user's `authorized_keys` file too.
- This command matches the location of the Gitea binary on the container, but also the location of the shim on the host.
4. The client then makes an SSH request to the host SSH server using the `git` user, e.g. `git clone git@domain:user/repo.git`.
5. The client will attempt to authenticate with the server, passing one or more public keys in turn to the host.
6. For each key the client provides, the host SSH server will first check its configuration for an `AuthorizedKeysCommand` to see if the public key matches, and then the host `git` user's `authorized_keys` file.
- Because `/home/git/.ssh/` on the host is mounted as `/data/git/.ssh` this means that the key they added to the Gitea web will be found
7. The first entry that matches will be selected, and assuming this is a Gitea entry, the `command=` will now be executed.
8. The host SSH server creates a user session for the `git` user, and using the shell for the host `git` user runs the `command=`
9. This means that the host runs the host `/usr/local/bin/gitea` shim that opens an SSH from the host to container passing the rest of the command arguments directly to `/usr/local/bin/gitea` on the container.
10. Meaning that the container `gitea serv` is run, taking over control of the rest of the SSH session and managing gitea authentication & authorization of the git commands.
In this option, the idea is that the host simply uses the `authorized_keys` that gitea creates but at step 8 above we change the shell that the host runs to ssh directly into the docker and then run the shell there. This means that the `gitea` that is then run is the real docker `gitea`.
- However, because `/home/git/.ssh/` on the host is mounted as `/data/git/.ssh` this means that the key has been added to the host `git` user's `authorized_keys` file too.
3. This entry has the public key, but also has a `command=` option.
- This command matches the location of the Gitea binary on the container.
4. The client then makes an SSH request to the host SSH server using the `git` user, e.g. `git clone git@domain:user/repo.git`.
5. The client will attempt to authenticate with the server, passing one or more public keys in turn to the host.
6. For each key the client provides, the host SSH server will first check its configuration for an `AuthorizedKeysCommand` to see if the public key matches, and then the host `git` user's `authorized_keys` file.
- Because `/home/git/.ssh/` on the host is mounted as `/data/git/.ssh` this means that the key they added to the Gitea web will be found
7. The first entry that matches will be selected, and assuming this is a Gitea entry, the `command=` will now be executed.
8. The host SSH server creates a user session for the `git` user, and using the shell for the host `git` user runs the `command=`
9. The shell of the host `git` user is now our `ssh-shell` which opens an SSH connection from the host to container, (which opens a shell on the container for the container `git`).
10. The container shell now runs the `command=` option meaning that the container `gitea serv` is run, taking over control of the rest of the SSH session and managing gitea authentication & authorization of the git commands.
- However, because `/home/git/.ssh/` on the host is mounted as `/data/git/.ssh` this means that the key has been added to the host `git` user's `authorized_keys` file too.
3. This entry has the public key, but also has a `command=` option.
- This command matches the location of the Gitea binary on the container.
4. The client then makes an SSH request to the host SSH server using the `git` user, e.g. `git clone git@domain:user/repo.git`.
5. The client will attempt to authenticate with the server, passing one or more public keys in turn to the host.
6. For each key the client provides, the host SSH server will first check its configuration for an `AuthorizedKeysCommand` to see if the public key matches, and then the host `git` user's `authorized_keys` file.
- Because `/home/git/.ssh/` on the host is mounted as `/data/git/.ssh` this means that the key they added to the Gitea web will be found
7. The first entry that matches will be selected, and assuming this is a Gitea entry, the `command=` will now be executed.
8. The host SSH server creates a user session for the `git` user, and using the shell for the host `git` user runs the `command=`
9. The shell of the host `git` user is now our `docker-shell` which uses `docker exec` to open a shell for the `git` user on the container.
10. The container shell now runs the `command=` option meaning that the container `gitea serv` is run, taking over control of the rest of the SSH session and managing gitea authentication & authorization of the git commands.
Note that `gitea` in the docker command above is the name of the container. If you named yours differently, don't forget to change that. The host `git` user also has to have
A Docker execing shim could be created similarly to above.
### Docker Shell with AuthorizedKeysCommand
The AuthorizedKeysCommand route provides another option that does not require many changes to the compose file or the `authorized_keys` - but does require changes to the host `/etc/sshd_config`.
In this option, the idea is that the host SSH uses an `AuthorizedKeysCommand` instead of relying on sharing the `authorized_keys` file that gitea creates. We continue to use a special shell at step 8 above to exec into the docker and then run the shell there. This means that the `gitea` that is then run is the real docker `gitea`.
- On the host create a `git` user with permission to run `docker exec`.
- Modify the `git` user's shell to forward commands to the `sh` executable inside the container using `docker exec`. As an administrative user on the host run:
Now all attempts to login as the `git` user on the host will be forwarded to the docker - including the `SSH_ORIGINAL_COMMAND`. We now need to set-up SSH authentication on the host.
We will do this by leveraging the [SSH AuthorizedKeysCommand](https://docs.gitea.io/en-us/command-line/#keys) to match the keys against those accepted by Gitea.
Here is a detailed explanation what is happening when a SSH request is made:
1. The client adds their SSH public key to Gitea using the webpage.
2. Gitea in the container will add an entry for this key to its database.
3. The client then makes an SSH request to the host SSH server using the `git` user, e.g. `git clone git@domain:user/repo.git`.
4. The client will attempt to authenticate with the server, passing one or more public keys in turn to the host.
5. For each key the client provides, the host SSH server will checks its configuration for an `AuthorizedKeysCommand`.
6. The host runs the above `AuthorizedKeysCommand`, which execs in to the docker and then runs the `gitea keys` command.
7. Gitea on the docker will look in it's database to see if the public key matches and will return an entry like that of an `authorized_keys` command.
8. This entry has the public key, but also has a `command=` option which matches the location of the Gitea binary on the container.
9. The host SSH server creates a user session for the `git` user, and using the shell for the host `git` user runs the `command=`.
10. The shell of the host `git` user is now our `docker-shell` which uses `docker exec` to open a shell for the `git` user on the container.
11. The container shell now runs the `command=` option meaning that the container `gitea serv` is run, taking over control of the rest of the SSH session and managing gitea authentication & authorization of the git commands.
A Docker execing shim could be created similarly to above.
### SSH Shell with AuthorizedKeysCommand
Create a key for the host `git` user as above, add it to the docker `/data/git/.ssh/authorized_keys` then finally create and set the `ssh-shell` as above.
Add the following block to `/etc/ssh/sshd_config`, on the host:
Here is a detailed explanation what is happening when a SSH request is made:
1. The client adds their SSH public key to Gitea using the webpage.
2. Gitea in the container will add an entry for this key to its database.
3. The client then makes an SSH request to the host SSH server using the `git` user, e.g. `git clone git@domain:user/repo.git`.
4. The client will attempt to authenticate with the server, passing one or more public keys in turn to the host.
5. For each key the client provides, the host SSH server will checks its configuration for an `AuthorizedKeysCommand`.
6. The host runs the above `AuthorizedKeysCommand`, which will SSH in to the docker and then run the `gitea keys` command.
7. Gitea on the docker will look in it's database to see if the public key matches and will return an entry like that of an `authorized_keys` command.
8. This entry has the public key, but also has a `command=` option which matches the location of the Gitea binary on the container.
9. The host SSH server creates a user session for the `git` user, and using the shell for the host `git` user runs the `command=`.
10. The shell of the host `git` user is now our `git-shell` which uses SSH to open a shell for the `git` user on the container.
11. The container shell now runs the `command=` option meaning that the container `gitea serv` is run, taking over control of the rest of the SSH session and managing gitea authentication & authorization of the git commands.