mirror of
https://github.com/go-gitea/gitea
synced 2024-12-24 06:55:04 +01:00
326 lines
11 KiB
Go
326 lines
11 KiB
Go
|
// Copyright 2009 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package rsa
|
||
|
|
||
|
import (
|
||
|
"crypto"
|
||
|
"crypto/subtle"
|
||
|
"errors"
|
||
|
"io"
|
||
|
"math/big"
|
||
|
)
|
||
|
|
||
|
// This file implements encryption and decryption using PKCS#1 v1.5 padding.
|
||
|
|
||
|
// PKCS1v15DecrypterOpts is for passing options to PKCS#1 v1.5 decryption using
|
||
|
// the crypto.Decrypter interface.
|
||
|
type PKCS1v15DecryptOptions struct {
|
||
|
// SessionKeyLen is the length of the session key that is being
|
||
|
// decrypted. If not zero, then a padding error during decryption will
|
||
|
// cause a random plaintext of this length to be returned rather than
|
||
|
// an error. These alternatives happen in constant time.
|
||
|
SessionKeyLen int
|
||
|
}
|
||
|
|
||
|
// EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5.
|
||
|
// The message must be no longer than the length of the public modulus minus 11 bytes.
|
||
|
//
|
||
|
// The rand parameter is used as a source of entropy to ensure that encrypting
|
||
|
// the same message twice doesn't result in the same ciphertext.
|
||
|
//
|
||
|
// WARNING: use of this function to encrypt plaintexts other than session keys
|
||
|
// is dangerous. Use RSA OAEP in new protocols.
|
||
|
func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err error) {
|
||
|
if err := checkPub(pub); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
k := (pub.N.BitLen() + 7) / 8
|
||
|
if len(msg) > k-11 {
|
||
|
err = ErrMessageTooLong
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// EM = 0x00 || 0x02 || PS || 0x00 || M
|
||
|
em := make([]byte, k)
|
||
|
em[1] = 2
|
||
|
ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
|
||
|
err = nonZeroRandomBytes(ps, rand)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
em[len(em)-len(msg)-1] = 0
|
||
|
copy(mm, msg)
|
||
|
|
||
|
m := new(big.Int).SetBytes(em)
|
||
|
c := encrypt(new(big.Int), pub, m)
|
||
|
|
||
|
copyWithLeftPad(em, c.Bytes())
|
||
|
out = em
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5.
|
||
|
// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
|
||
|
//
|
||
|
// Note that whether this function returns an error or not discloses secret
|
||
|
// information. If an attacker can cause this function to run repeatedly and
|
||
|
// learn whether each instance returned an error then they can decrypt and
|
||
|
// forge signatures as if they had the private key. See
|
||
|
// DecryptPKCS1v15SessionKey for a way of solving this problem.
|
||
|
func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err error) {
|
||
|
if err := checkPub(&priv.PublicKey); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
if valid == 0 {
|
||
|
return nil, ErrDecryption
|
||
|
}
|
||
|
out = out[index:]
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5.
|
||
|
// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
|
||
|
// It returns an error if the ciphertext is the wrong length or if the
|
||
|
// ciphertext is greater than the public modulus. Otherwise, no error is
|
||
|
// returned. If the padding is valid, the resulting plaintext message is copied
|
||
|
// into key. Otherwise, key is unchanged. These alternatives occur in constant
|
||
|
// time. It is intended that the user of this function generate a random
|
||
|
// session key beforehand and continue the protocol with the resulting value.
|
||
|
// This will remove any possibility that an attacker can learn any information
|
||
|
// about the plaintext.
|
||
|
// See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
|
||
|
// Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
|
||
|
// (Crypto '98).
|
||
|
//
|
||
|
// Note that if the session key is too small then it may be possible for an
|
||
|
// attacker to brute-force it. If they can do that then they can learn whether
|
||
|
// a random value was used (because it'll be different for the same ciphertext)
|
||
|
// and thus whether the padding was correct. This defeats the point of this
|
||
|
// function. Using at least a 16-byte key will protect against this attack.
|
||
|
func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error) {
|
||
|
if err := checkPub(&priv.PublicKey); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
k := (priv.N.BitLen() + 7) / 8
|
||
|
if k-(len(key)+3+8) < 0 {
|
||
|
return ErrDecryption
|
||
|
}
|
||
|
|
||
|
valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if len(em) != k {
|
||
|
// This should be impossible because decryptPKCS1v15 always
|
||
|
// returns the full slice.
|
||
|
return ErrDecryption
|
||
|
}
|
||
|
|
||
|
valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
|
||
|
subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
|
||
|
// rand is not nil. It returns one or zero in valid that indicates whether the
|
||
|
// plaintext was correctly structured. In either case, the plaintext is
|
||
|
// returned in em so that it may be read independently of whether it was valid
|
||
|
// in order to maintain constant memory access patterns. If the plaintext was
|
||
|
// valid then index contains the index of the original message in em.
|
||
|
func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
|
||
|
k := (priv.N.BitLen() + 7) / 8
|
||
|
if k < 11 {
|
||
|
err = ErrDecryption
|
||
|
return
|
||
|
}
|
||
|
|
||
|
c := new(big.Int).SetBytes(ciphertext)
|
||
|
m, err := decrypt(rand, priv, c)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
em = leftPad(m.Bytes(), k)
|
||
|
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
|
||
|
secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
|
||
|
|
||
|
// The remainder of the plaintext must be a string of non-zero random
|
||
|
// octets, followed by a 0, followed by the message.
|
||
|
// lookingForIndex: 1 iff we are still looking for the zero.
|
||
|
// index: the offset of the first zero byte.
|
||
|
lookingForIndex := 1
|
||
|
|
||
|
for i := 2; i < len(em); i++ {
|
||
|
equals0 := subtle.ConstantTimeByteEq(em[i], 0)
|
||
|
index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
|
||
|
lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
|
||
|
}
|
||
|
|
||
|
// The PS padding must be at least 8 bytes long, and it starts two
|
||
|
// bytes into em.
|
||
|
validPS := subtle.ConstantTimeLessOrEq(2+8, index)
|
||
|
|
||
|
valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
|
||
|
index = subtle.ConstantTimeSelect(valid, index+1, 0)
|
||
|
return valid, em, index, nil
|
||
|
}
|
||
|
|
||
|
// nonZeroRandomBytes fills the given slice with non-zero random octets.
|
||
|
func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
|
||
|
_, err = io.ReadFull(rand, s)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
for i := 0; i < len(s); i++ {
|
||
|
for s[i] == 0 {
|
||
|
_, err = io.ReadFull(rand, s[i:i+1])
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
// In tests, the PRNG may return all zeros so we do
|
||
|
// this to break the loop.
|
||
|
s[i] ^= 0x42
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// These are ASN1 DER structures:
|
||
|
// DigestInfo ::= SEQUENCE {
|
||
|
// digestAlgorithm AlgorithmIdentifier,
|
||
|
// digest OCTET STRING
|
||
|
// }
|
||
|
// For performance, we don't use the generic ASN1 encoder. Rather, we
|
||
|
// precompute a prefix of the digest value that makes a valid ASN1 DER string
|
||
|
// with the correct contents.
|
||
|
var hashPrefixes = map[crypto.Hash][]byte{
|
||
|
crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
|
||
|
crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
|
||
|
crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
|
||
|
crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
|
||
|
crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
|
||
|
crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
|
||
|
crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix.
|
||
|
crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
|
||
|
}
|
||
|
|
||
|
// SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5.
|
||
|
// Note that hashed must be the result of hashing the input message using the
|
||
|
// given hash function. If hash is zero, hashed is signed directly. This isn't
|
||
|
// advisable except for interoperability.
|
||
|
//
|
||
|
// If rand is not nil then RSA blinding will be used to avoid timing side-channel attacks.
|
||
|
//
|
||
|
// This function is deterministic. Thus, if the set of possible messages is
|
||
|
// small, an attacker may be able to build a map from messages to signatures
|
||
|
// and identify the signed messages. As ever, signatures provide authenticity,
|
||
|
// not confidentiality.
|
||
|
func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error) {
|
||
|
hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
tLen := len(prefix) + hashLen
|
||
|
k := (priv.N.BitLen() + 7) / 8
|
||
|
if k < tLen+11 {
|
||
|
return nil, ErrMessageTooLong
|
||
|
}
|
||
|
|
||
|
// EM = 0x00 || 0x01 || PS || 0x00 || T
|
||
|
em := make([]byte, k)
|
||
|
em[1] = 1
|
||
|
for i := 2; i < k-tLen-1; i++ {
|
||
|
em[i] = 0xff
|
||
|
}
|
||
|
copy(em[k-tLen:k-hashLen], prefix)
|
||
|
copy(em[k-hashLen:k], hashed)
|
||
|
|
||
|
m := new(big.Int).SetBytes(em)
|
||
|
c, err := decryptAndCheck(rand, priv, m)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
copyWithLeftPad(em, c.Bytes())
|
||
|
s = em
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature.
|
||
|
// hashed is the result of hashing the input message using the given hash
|
||
|
// function and sig is the signature. A valid signature is indicated by
|
||
|
// returning a nil error. If hash is zero then hashed is used directly. This
|
||
|
// isn't advisable except for interoperability.
|
||
|
func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error) {
|
||
|
hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
tLen := len(prefix) + hashLen
|
||
|
k := (pub.N.BitLen() + 7) / 8
|
||
|
if k < tLen+11 {
|
||
|
err = ErrVerification
|
||
|
return
|
||
|
}
|
||
|
|
||
|
c := new(big.Int).SetBytes(sig)
|
||
|
m := encrypt(new(big.Int), pub, c)
|
||
|
em := leftPad(m.Bytes(), k)
|
||
|
// EM = 0x00 || 0x01 || PS || 0x00 || T
|
||
|
|
||
|
ok := subtle.ConstantTimeByteEq(em[0], 0)
|
||
|
ok &= subtle.ConstantTimeByteEq(em[1], 1)
|
||
|
ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
|
||
|
ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
|
||
|
ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
|
||
|
|
||
|
for i := 2; i < k-tLen-1; i++ {
|
||
|
ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
|
||
|
}
|
||
|
|
||
|
if ok != 1 {
|
||
|
return ErrVerification
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
|
||
|
// Special case: crypto.Hash(0) is used to indicate that the data is
|
||
|
// signed directly.
|
||
|
if hash == 0 {
|
||
|
return inLen, nil, nil
|
||
|
}
|
||
|
|
||
|
hashLen = hash.Size()
|
||
|
if inLen != hashLen {
|
||
|
return 0, nil, errors.New("crypto/rsa: input must be hashed message")
|
||
|
}
|
||
|
prefix, ok := hashPrefixes[hash]
|
||
|
if !ok {
|
||
|
return 0, nil, errors.New("crypto/rsa: unsupported hash function")
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// copyWithLeftPad copies src to the end of dest, padding with zero bytes as
|
||
|
// needed.
|
||
|
func copyWithLeftPad(dest, src []byte) {
|
||
|
numPaddingBytes := len(dest) - len(src)
|
||
|
for i := 0; i < numPaddingBytes; i++ {
|
||
|
dest[i] = 0
|
||
|
}
|
||
|
copy(dest[numPaddingBytes:], src)
|
||
|
}
|