mirror of
https://github.com/go-gitea/gitea
synced 2024-12-21 06:04:13 +01:00
73 lines
2.2 KiB
HTML
73 lines
2.2 KiB
HTML
|
<!doctype html>
|
||
|
|
||
|
<title>CodeMirror: Mathematica mode</title>
|
||
|
<meta charset="utf-8"/>
|
||
|
<link rel=stylesheet href="../../doc/docs.css">
|
||
|
|
||
|
<link rel=stylesheet href=../../lib/codemirror.css>
|
||
|
<script src=../../lib/codemirror.js></script>
|
||
|
<script src=../../addon/edit/matchbrackets.js></script>
|
||
|
<script src=mathematica.js></script>
|
||
|
<style type=text/css>
|
||
|
.CodeMirror {border-top: 1px solid black; border-bottom: 1px solid black;}
|
||
|
</style>
|
||
|
<div id=nav>
|
||
|
<a href="http://codemirror.net"><h1>CodeMirror</h1><img id=logo src="../../doc/logo.png"></a>
|
||
|
|
||
|
<ul>
|
||
|
<li><a href="../../index.html">Home</a>
|
||
|
<li><a href="../../doc/manual.html">Manual</a>
|
||
|
<li><a href="https://github.com/codemirror/codemirror">Code</a>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<li><a href="../index.html">Language modes</a>
|
||
|
<li><a class=active href="#">Mathematica</a>
|
||
|
</ul>
|
||
|
</div>
|
||
|
|
||
|
<article>
|
||
|
<h2>Mathematica mode</h2>
|
||
|
|
||
|
|
||
|
<textarea id="mathematicaCode">
|
||
|
(* example Mathematica code *)
|
||
|
(* Dualisiert wird anhand einer Polarität an einer
|
||
|
Quadrik $x^t Q x = 0$ mit regulärer Matrix $Q$ (also
|
||
|
mit $det(Q) \neq 0$), z.B. die Identitätsmatrix.
|
||
|
$p$ ist eine Liste von Polynomen - ein Ideal. *)
|
||
|
dualize::"singular" = "Q must be regular: found Det[Q]==0.";
|
||
|
dualize[ Q_, p_ ] := Block[
|
||
|
{ m, n, xv, lv, uv, vars, polys, dual },
|
||
|
If[Det[Q] == 0,
|
||
|
Message[dualize::"singular"],
|
||
|
m = Length[p];
|
||
|
n = Length[Q] - 1;
|
||
|
xv = Table[Subscript[x, i], {i, 0, n}];
|
||
|
lv = Table[Subscript[l, i], {i, 1, m}];
|
||
|
uv = Table[Subscript[u, i], {i, 0, n}];
|
||
|
(* Konstruiere Ideal polys. *)
|
||
|
If[m == 0,
|
||
|
polys = Q.uv,
|
||
|
polys = Join[p, Q.uv - Transpose[Outer[D, p, xv]].lv]
|
||
|
];
|
||
|
(* Eliminiere die ersten n + 1 + m Variablen xv und lv
|
||
|
aus dem Ideal polys. *)
|
||
|
vars = Join[xv, lv];
|
||
|
dual = GroebnerBasis[polys, uv, vars];
|
||
|
(* Ersetze u mit x im Ergebnis. *)
|
||
|
ReplaceAll[dual, Rule[u, x]]
|
||
|
]
|
||
|
]
|
||
|
</textarea>
|
||
|
|
||
|
<script>
|
||
|
var mathematicaEditor = CodeMirror.fromTextArea(document.getElementById('mathematicaCode'), {
|
||
|
mode: 'text/x-mathematica',
|
||
|
lineNumbers: true,
|
||
|
matchBrackets: true
|
||
|
});
|
||
|
</script>
|
||
|
|
||
|
<p><strong>MIME types defined:</strong> <code>text/x-mathematica</code> (Mathematica).</p>
|
||
|
</article>
|