package brotli import "encoding/binary" /* Copyright 2015 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* Function for fast encoding of an input fragment, independently from the input history. This function uses one-pass processing: when we find a backward match, we immediately emit the corresponding command and literal codes to the bit stream. Adapted from the CompressFragment() function in https://github.com/google/snappy/blob/master/snappy.cc */ const maxDistance_compress_fragment = 262128 func hash5(p []byte, shift uint) uint32 { var h uint64 = (binary.LittleEndian.Uint64(p) << 24) * uint64(kHashMul32) return uint32(h >> shift) } func hashBytesAtOffset5(v uint64, offset int, shift uint) uint32 { assert(offset >= 0) assert(offset <= 3) { var h uint64 = ((v >> uint(8*offset)) << 24) * uint64(kHashMul32) return uint32(h >> shift) } } func isMatch5(p1 []byte, p2 []byte) bool { var i int for i = 0; i < 5; i++ { if p1[i] != p2[i] { return false } } return true } /* Builds a literal prefix code into "depths" and "bits" based on the statistics of the "input" string and stores it into the bit stream. Note that the prefix code here is built from the pre-LZ77 input, therefore we can only approximate the statistics of the actual literal stream. Moreover, for long inputs we build a histogram from a sample of the input and thus have to assign a non-zero depth for each literal. Returns estimated compression ratio millibytes/char for encoding given input with generated code. */ func buildAndStoreLiteralPrefixCode(input []byte, input_size uint, depths []byte, bits []uint16, storage_ix *uint, storage []byte) uint { var histogram = [256]uint32{0} var histogram_total uint var i uint if input_size < 1<<15 { for i = 0; i < input_size; i++ { histogram[input[i]]++ } histogram_total = input_size for i = 0; i < 256; i++ { /* We weigh the first 11 samples with weight 3 to account for the balancing effect of the LZ77 phase on the histogram. */ var adjust uint32 = 2 * brotli_min_uint32_t(histogram[i], 11) histogram[i] += adjust histogram_total += uint(adjust) } } else { const kSampleRate uint = 29 for i = 0; i < input_size; i += kSampleRate { histogram[input[i]]++ } histogram_total = (input_size + kSampleRate - 1) / kSampleRate for i = 0; i < 256; i++ { /* We add 1 to each population count to avoid 0 bit depths (since this is only a sample and we don't know if the symbol appears or not), and we weigh the first 11 samples with weight 3 to account for the balancing effect of the LZ77 phase on the histogram (more frequent symbols are more likely to be in backward references instead as literals). */ var adjust uint32 = 1 + 2*brotli_min_uint32_t(histogram[i], 11) histogram[i] += adjust histogram_total += uint(adjust) } } buildAndStoreHuffmanTreeFast(histogram[:], histogram_total, /* max_bits = */ 8, depths, bits, storage_ix, storage) { var literal_ratio uint = 0 for i = 0; i < 256; i++ { if histogram[i] != 0 { literal_ratio += uint(histogram[i] * uint32(depths[i])) } } /* Estimated encoding ratio, millibytes per symbol. */ return (literal_ratio * 125) / histogram_total } } /* Builds a command and distance prefix code (each 64 symbols) into "depth" and "bits" based on "histogram" and stores it into the bit stream. */ func buildAndStoreCommandPrefixCode1(histogram []uint32, depth []byte, bits []uint16, storage_ix *uint, storage []byte) { var tree [129]huffmanTree var cmd_depth = [numCommandSymbols]byte{0} /* Tree size for building a tree over 64 symbols is 2 * 64 + 1. */ var cmd_bits [64]uint16 createHuffmanTree(histogram, 64, 15, tree[:], depth) createHuffmanTree(histogram[64:], 64, 14, tree[:], depth[64:]) /* We have to jump through a few hoops here in order to compute the command bits because the symbols are in a different order than in the full alphabet. This looks complicated, but having the symbols in this order in the command bits saves a few branches in the Emit* functions. */ copy(cmd_depth[:], depth[:24]) copy(cmd_depth[24:][:], depth[40:][:8]) copy(cmd_depth[32:][:], depth[24:][:8]) copy(cmd_depth[40:][:], depth[48:][:8]) copy(cmd_depth[48:][:], depth[32:][:8]) copy(cmd_depth[56:][:], depth[56:][:8]) convertBitDepthsToSymbols(cmd_depth[:], 64, cmd_bits[:]) copy(bits, cmd_bits[:24]) copy(bits[24:], cmd_bits[32:][:8]) copy(bits[32:], cmd_bits[48:][:8]) copy(bits[40:], cmd_bits[24:][:8]) copy(bits[48:], cmd_bits[40:][:8]) copy(bits[56:], cmd_bits[56:][:8]) convertBitDepthsToSymbols(depth[64:], 64, bits[64:]) { /* Create the bit length array for the full command alphabet. */ var i uint for i := 0; i < int(64); i++ { cmd_depth[i] = 0 } /* only 64 first values were used */ copy(cmd_depth[:], depth[:8]) copy(cmd_depth[64:][:], depth[8:][:8]) copy(cmd_depth[128:][:], depth[16:][:8]) copy(cmd_depth[192:][:], depth[24:][:8]) copy(cmd_depth[384:][:], depth[32:][:8]) for i = 0; i < 8; i++ { cmd_depth[128+8*i] = depth[40+i] cmd_depth[256+8*i] = depth[48+i] cmd_depth[448+8*i] = depth[56+i] } storeHuffmanTree(cmd_depth[:], numCommandSymbols, tree[:], storage_ix, storage) } storeHuffmanTree(depth[64:], 64, tree[:], storage_ix, storage) } /* REQUIRES: insertlen < 6210 */ func emitInsertLen1(insertlen uint, depth []byte, bits []uint16, histo []uint32, storage_ix *uint, storage []byte) { if insertlen < 6 { var code uint = insertlen + 40 writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage) histo[code]++ } else if insertlen < 130 { var tail uint = insertlen - 2 var nbits uint32 = log2FloorNonZero(tail) - 1 var prefix uint = tail >> nbits var inscode uint = uint((nbits << 1) + uint32(prefix) + 42) writeBits(uint(depth[inscode]), uint64(bits[inscode]), storage_ix, storage) writeBits(uint(nbits), uint64(tail)-(uint64(prefix)<> nbits var code uint = uint((nbits << 1) + uint32(prefix) + 20) writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage) writeBits(uint(nbits), uint64(tail)-(uint64(prefix)<> nbits var code uint = uint((nbits << 1) + uint32(prefix) + 4) writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage) writeBits(uint(nbits), uint64(tail)-(uint64(prefix)<> 5) + 30 writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage) writeBits(5, uint64(tail)&31, storage_ix, storage) writeBits(uint(depth[64]), uint64(bits[64]), storage_ix, storage) histo[code]++ histo[64]++ } else if copylen < 2120 { var tail uint = copylen - 72 var nbits uint32 = log2FloorNonZero(tail) var code uint = uint(nbits + 28) writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage) writeBits(uint(nbits), uint64(tail)-(uint64(uint(1))<> nbits) & 1 var offset uint = (2 + prefix) << nbits var distcode uint = uint(2*(nbits-1) + uint32(prefix) + 80) writeBits(uint(depth[distcode]), uint64(bits[distcode]), storage_ix, storage) writeBits(uint(nbits), uint64(d)-uint64(offset), storage_ix, storage) histo[distcode]++ } func emitLiterals(input []byte, len uint, depth []byte, bits []uint16, storage_ix *uint, storage []byte) { var j uint for j = 0; j < len; j++ { var lit byte = input[j] writeBits(uint(depth[lit]), uint64(bits[lit]), storage_ix, storage) } } /* REQUIRES: len <= 1 << 24. */ func storeMetaBlockHeader1(len uint, is_uncompressed bool, storage_ix *uint, storage []byte) { var nibbles uint = 6 /* ISLAST */ writeBits(1, 0, storage_ix, storage) if len <= 1<<16 { nibbles = 4 } else if len <= 1<<20 { nibbles = 5 } writeBits(2, uint64(nibbles)-4, storage_ix, storage) writeBits(nibbles*4, uint64(len)-1, storage_ix, storage) /* ISUNCOMPRESSED */ writeSingleBit(is_uncompressed, storage_ix, storage) } func updateBits(n_bits uint, bits uint32, pos uint, array []byte) { for n_bits > 0 { var byte_pos uint = pos >> 3 var n_unchanged_bits uint = pos & 7 var n_changed_bits uint = brotli_min_size_t(n_bits, 8-n_unchanged_bits) var total_bits uint = n_unchanged_bits + n_changed_bits var mask uint32 = (^((1 << total_bits) - 1)) | ((1 << n_unchanged_bits) - 1) var unchanged_bits uint32 = uint32(array[byte_pos]) & mask var changed_bits uint32 = bits & ((1 << n_changed_bits) - 1) array[byte_pos] = byte(changed_bits<>= n_changed_bits pos += n_changed_bits } } func rewindBitPosition1(new_storage_ix uint, storage_ix *uint, storage []byte) { var bitpos uint = new_storage_ix & 7 var mask uint = (1 << bitpos) - 1 storage[new_storage_ix>>3] &= byte(mask) *storage_ix = new_storage_ix } var shouldMergeBlock_kSampleRate uint = 43 func shouldMergeBlock(data []byte, len uint, depths []byte) bool { var histo = [256]uint{0} var i uint for i = 0; i < len; i += shouldMergeBlock_kSampleRate { histo[data[i]]++ } { var total uint = (len + shouldMergeBlock_kSampleRate - 1) / shouldMergeBlock_kSampleRate var r float64 = (fastLog2(total)+0.5)*float64(total) + 200 for i = 0; i < 256; i++ { r -= float64(histo[i]) * (float64(depths[i]) + fastLog2(histo[i])) } return r >= 0.0 } } func shouldUseUncompressedMode(metablock_start []byte, next_emit []byte, insertlen uint, literal_ratio uint) bool { var compressed uint = uint(-cap(next_emit) + cap(metablock_start)) if compressed*50 > insertlen { return false } else { return literal_ratio > 980 } } func emitUncompressedMetaBlock1(begin []byte, end []byte, storage_ix_start uint, storage_ix *uint, storage []byte) { var len uint = uint(-cap(end) + cap(begin)) rewindBitPosition1(storage_ix_start, storage_ix, storage) storeMetaBlockHeader1(uint(len), true, storage_ix, storage) *storage_ix = (*storage_ix + 7) &^ 7 copy(storage[*storage_ix>>3:], begin[:len]) *storage_ix += uint(len << 3) storage[*storage_ix>>3] = 0 } var kCmdHistoSeed = [128]uint32{ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, } var compressFragmentFastImpl_kFirstBlockSize uint = 3 << 15 var compressFragmentFastImpl_kMergeBlockSize uint = 1 << 16 func compressFragmentFastImpl(in []byte, input_size uint, is_last bool, table []int, table_bits uint, cmd_depth []byte, cmd_bits []uint16, cmd_code_numbits *uint, cmd_code []byte, storage_ix *uint, storage []byte) { var cmd_histo [128]uint32 var ip_end int var next_emit int = 0 var base_ip int = 0 var input int = 0 const kInputMarginBytes uint = windowGap const kMinMatchLen uint = 5 var metablock_start int = input var block_size uint = brotli_min_size_t(input_size, compressFragmentFastImpl_kFirstBlockSize) var total_block_size uint = block_size var mlen_storage_ix uint = *storage_ix + 3 var lit_depth [256]byte var lit_bits [256]uint16 var literal_ratio uint var ip int var last_distance int var shift uint = 64 - table_bits /* "next_emit" is a pointer to the first byte that is not covered by a previous copy. Bytes between "next_emit" and the start of the next copy or the end of the input will be emitted as literal bytes. */ /* Save the start of the first block for position and distance computations. */ /* Save the bit position of the MLEN field of the meta-block header, so that we can update it later if we decide to extend this meta-block. */ storeMetaBlockHeader1(block_size, false, storage_ix, storage) /* No block splits, no contexts. */ writeBits(13, 0, storage_ix, storage) literal_ratio = buildAndStoreLiteralPrefixCode(in[input:], block_size, lit_depth[:], lit_bits[:], storage_ix, storage) { /* Store the pre-compressed command and distance prefix codes. */ var i uint for i = 0; i+7 < *cmd_code_numbits; i += 8 { writeBits(8, uint64(cmd_code[i>>3]), storage_ix, storage) } } writeBits(*cmd_code_numbits&7, uint64(cmd_code[*cmd_code_numbits>>3]), storage_ix, storage) /* Initialize the command and distance histograms. We will gather statistics of command and distance codes during the processing of this block and use it to update the command and distance prefix codes for the next block. */ emit_commands: copy(cmd_histo[:], kCmdHistoSeed[:]) /* "ip" is the input pointer. */ ip = input last_distance = -1 ip_end = int(uint(input) + block_size) if block_size >= kInputMarginBytes { var len_limit uint = brotli_min_size_t(block_size-kMinMatchLen, input_size-kInputMarginBytes) var ip_limit int = int(uint(input) + len_limit) /* For the last block, we need to keep a 16 bytes margin so that we can be sure that all distances are at most window size - 16. For all other blocks, we only need to keep a margin of 5 bytes so that we don't go over the block size with a copy. */ var next_hash uint32 ip++ for next_hash = hash5(in[ip:], shift); ; { var skip uint32 = 32 var next_ip int = ip /* Step 1: Scan forward in the input looking for a 5-byte-long match. If we get close to exhausting the input then goto emit_remainder. Heuristic match skipping: If 32 bytes are scanned with no matches found, start looking only at every other byte. If 32 more bytes are scanned, look at every third byte, etc.. When a match is found, immediately go back to looking at every byte. This is a small loss (~5% performance, ~0.1% density) for compressible data due to more bookkeeping, but for non-compressible data (such as JPEG) it's a huge win since the compressor quickly "realizes" the data is incompressible and doesn't bother looking for matches everywhere. The "skip" variable keeps track of how many bytes there are since the last match; dividing it by 32 (i.e. right-shifting by five) gives the number of bytes to move ahead for each iteration. */ var candidate int assert(next_emit < ip) trawl: for { var hash uint32 = next_hash var bytes_between_hash_lookups uint32 = skip >> 5 skip++ assert(hash == hash5(in[next_ip:], shift)) ip = next_ip next_ip = int(uint32(ip) + bytes_between_hash_lookups) if next_ip > ip_limit { goto emit_remainder } next_hash = hash5(in[next_ip:], shift) candidate = ip - last_distance if isMatch5(in[ip:], in[candidate:]) { if candidate < ip { table[hash] = int(ip - base_ip) break } } candidate = base_ip + table[hash] assert(candidate >= base_ip) assert(candidate < ip) table[hash] = int(ip - base_ip) if !(!isMatch5(in[ip:], in[candidate:])) { break } } /* Check copy distance. If candidate is not feasible, continue search. Checking is done outside of hot loop to reduce overhead. */ if ip-candidate > maxDistance_compress_fragment { goto trawl } /* Step 2: Emit the found match together with the literal bytes from "next_emit" to the bit stream, and then see if we can find a next match immediately afterwards. Repeat until we find no match for the input without emitting some literal bytes. */ { var base int = ip /* > 0 */ var matched uint = 5 + findMatchLengthWithLimit(in[candidate+5:], in[ip+5:], uint(ip_end-ip)-5) var distance int = int(base - candidate) /* We have a 5-byte match at ip, and we need to emit bytes in [next_emit, ip). */ var insert uint = uint(base - next_emit) ip += int(matched) if insert < 6210 { emitInsertLen1(insert, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage) } else if shouldUseUncompressedMode(in[metablock_start:], in[next_emit:], insert, literal_ratio) { emitUncompressedMetaBlock1(in[metablock_start:], in[base:], mlen_storage_ix-3, storage_ix, storage) input_size -= uint(base - input) input = base next_emit = input goto next_block } else { emitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage) } emitLiterals(in[next_emit:], insert, lit_depth[:], lit_bits[:], storage_ix, storage) if distance == last_distance { writeBits(uint(cmd_depth[64]), uint64(cmd_bits[64]), storage_ix, storage) cmd_histo[64]++ } else { emitDistance1(uint(distance), cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage) last_distance = distance } emitCopyLenLastDistance1(matched, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage) next_emit = ip if ip >= ip_limit { goto emit_remainder } /* We could immediately start working at ip now, but to improve compression we first update "table" with the hashes of some positions within the last copy. */ { var input_bytes uint64 = binary.LittleEndian.Uint64(in[ip-3:]) var prev_hash uint32 = hashBytesAtOffset5(input_bytes, 0, shift) var cur_hash uint32 = hashBytesAtOffset5(input_bytes, 3, shift) table[prev_hash] = int(ip - base_ip - 3) prev_hash = hashBytesAtOffset5(input_bytes, 1, shift) table[prev_hash] = int(ip - base_ip - 2) prev_hash = hashBytesAtOffset5(input_bytes, 2, shift) table[prev_hash] = int(ip - base_ip - 1) candidate = base_ip + table[cur_hash] table[cur_hash] = int(ip - base_ip) } } for isMatch5(in[ip:], in[candidate:]) { var base int = ip /* We have a 5-byte match at ip, and no need to emit any literal bytes prior to ip. */ var matched uint = 5 + findMatchLengthWithLimit(in[candidate+5:], in[ip+5:], uint(ip_end-ip)-5) if ip-candidate > maxDistance_compress_fragment { break } ip += int(matched) last_distance = int(base - candidate) /* > 0 */ emitCopyLen1(matched, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage) emitDistance1(uint(last_distance), cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage) next_emit = ip if ip >= ip_limit { goto emit_remainder } /* We could immediately start working at ip now, but to improve compression we first update "table" with the hashes of some positions within the last copy. */ { var input_bytes uint64 = binary.LittleEndian.Uint64(in[ip-3:]) var prev_hash uint32 = hashBytesAtOffset5(input_bytes, 0, shift) var cur_hash uint32 = hashBytesAtOffset5(input_bytes, 3, shift) table[prev_hash] = int(ip - base_ip - 3) prev_hash = hashBytesAtOffset5(input_bytes, 1, shift) table[prev_hash] = int(ip - base_ip - 2) prev_hash = hashBytesAtOffset5(input_bytes, 2, shift) table[prev_hash] = int(ip - base_ip - 1) candidate = base_ip + table[cur_hash] table[cur_hash] = int(ip - base_ip) } } ip++ next_hash = hash5(in[ip:], shift) } } emit_remainder: assert(next_emit <= ip_end) input += int(block_size) input_size -= block_size block_size = brotli_min_size_t(input_size, compressFragmentFastImpl_kMergeBlockSize) /* Decide if we want to continue this meta-block instead of emitting the last insert-only command. */ if input_size > 0 && total_block_size+block_size <= 1<<20 && shouldMergeBlock(in[input:], block_size, lit_depth[:]) { assert(total_block_size > 1<<16) /* Update the size of the current meta-block and continue emitting commands. We can do this because the current size and the new size both have 5 nibbles. */ total_block_size += block_size updateBits(20, uint32(total_block_size-1), mlen_storage_ix, storage) goto emit_commands } /* Emit the remaining bytes as literals. */ if next_emit < ip_end { var insert uint = uint(ip_end - next_emit) if insert < 6210 { emitInsertLen1(insert, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage) emitLiterals(in[next_emit:], insert, lit_depth[:], lit_bits[:], storage_ix, storage) } else if shouldUseUncompressedMode(in[metablock_start:], in[next_emit:], insert, literal_ratio) { emitUncompressedMetaBlock1(in[metablock_start:], in[ip_end:], mlen_storage_ix-3, storage_ix, storage) } else { emitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage) emitLiterals(in[next_emit:], insert, lit_depth[:], lit_bits[:], storage_ix, storage) } } next_emit = ip_end /* If we have more data, write a new meta-block header and prefix codes and then continue emitting commands. */ next_block: if input_size > 0 { metablock_start = input block_size = brotli_min_size_t(input_size, compressFragmentFastImpl_kFirstBlockSize) total_block_size = block_size /* Save the bit position of the MLEN field of the meta-block header, so that we can update it later if we decide to extend this meta-block. */ mlen_storage_ix = *storage_ix + 3 storeMetaBlockHeader1(block_size, false, storage_ix, storage) /* No block splits, no contexts. */ writeBits(13, 0, storage_ix, storage) literal_ratio = buildAndStoreLiteralPrefixCode(in[input:], block_size, lit_depth[:], lit_bits[:], storage_ix, storage) buildAndStoreCommandPrefixCode1(cmd_histo[:], cmd_depth, cmd_bits, storage_ix, storage) goto emit_commands } if !is_last { /* If this is not the last block, update the command and distance prefix codes for the next block and store the compressed forms. */ cmd_code[0] = 0 *cmd_code_numbits = 0 buildAndStoreCommandPrefixCode1(cmd_histo[:], cmd_depth, cmd_bits, cmd_code_numbits, cmd_code) } } /* Compresses "input" string to the "*storage" buffer as one or more complete meta-blocks, and updates the "*storage_ix" bit position. If "is_last" is 1, emits an additional empty last meta-block. "cmd_depth" and "cmd_bits" contain the command and distance prefix codes (see comment in encode.h) used for the encoding of this input fragment. If "is_last" is 0, they are updated to reflect the statistics of this input fragment, to be used for the encoding of the next fragment. "*cmd_code_numbits" is the number of bits of the compressed representation of the command and distance prefix codes, and "cmd_code" is an array of at least "(*cmd_code_numbits + 7) >> 3" size that contains the compressed command and distance prefix codes. If "is_last" is 0, these are also updated to represent the updated "cmd_depth" and "cmd_bits". REQUIRES: "input_size" is greater than zero, or "is_last" is 1. REQUIRES: "input_size" is less or equal to maximal metablock size (1 << 24). REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. REQUIRES: "table_size" is an odd (9, 11, 13, 15) power of two OUTPUT: maximal copy distance <= |input_size| OUTPUT: maximal copy distance <= BROTLI_MAX_BACKWARD_LIMIT(18) */ func compressFragmentFast(input []byte, input_size uint, is_last bool, table []int, table_size uint, cmd_depth []byte, cmd_bits []uint16, cmd_code_numbits *uint, cmd_code []byte, storage_ix *uint, storage []byte) { var initial_storage_ix uint = *storage_ix var table_bits uint = uint(log2FloorNonZero(table_size)) if input_size == 0 { assert(is_last) writeBits(1, 1, storage_ix, storage) /* islast */ writeBits(1, 1, storage_ix, storage) /* isempty */ *storage_ix = (*storage_ix + 7) &^ 7 return } compressFragmentFastImpl(input, input_size, is_last, table, table_bits, cmd_depth, cmd_bits, cmd_code_numbits, cmd_code, storage_ix, storage) /* If output is larger than single uncompressed block, rewrite it. */ if *storage_ix-initial_storage_ix > 31+(input_size<<3) { emitUncompressedMetaBlock1(input, input[input_size:], initial_storage_ix, storage_ix, storage) } if is_last { writeBits(1, 1, storage_ix, storage) /* islast */ writeBits(1, 1, storage_ix, storage) /* isempty */ *storage_ix = (*storage_ix + 7) &^ 7 } }