package brotli /* Copyright 2013 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* Utilities for building Huffman decoding tables. */ const huffmanMaxCodeLength = 15 /* Maximum possible Huffman table size for an alphabet size of (index * 32), max code length 15 and root table bits 8. */ var kMaxHuffmanTableSize = []uint16{ 256, 402, 436, 468, 500, 534, 566, 598, 630, 662, 694, 726, 758, 790, 822, 854, 886, 920, 952, 984, 1016, 1048, 1080, 1112, 1144, 1176, 1208, 1240, 1272, 1304, 1336, 1368, 1400, 1432, 1464, 1496, 1528, } /* BROTLI_NUM_BLOCK_LEN_SYMBOLS == 26 */ const huffmanMaxSize26 = 396 /* BROTLI_MAX_BLOCK_TYPE_SYMBOLS == 258 */ const huffmanMaxSize258 = 632 /* BROTLI_MAX_CONTEXT_MAP_SYMBOLS == 272 */ const huffmanMaxSize272 = 646 const huffmanMaxCodeLengthCodeLength = 5 /* Do not create this struct directly - use the ConstructHuffmanCode * constructor below! */ type huffmanCode struct { bits byte value uint16 } func constructHuffmanCode(bits byte, value uint16) huffmanCode { var h huffmanCode h.bits = bits h.value = value return h } /* Builds Huffman lookup table assuming code lengths are in symbol order. */ /* Builds Huffman lookup table assuming code lengths are in symbol order. Returns size of resulting table. */ /* Builds a simple Huffman table. The |num_symbols| parameter is to be interpreted as follows: 0 means 1 symbol, 1 means 2 symbols, 2 means 3 symbols, 3 means 4 symbols with lengths [2, 2, 2, 2], 4 means 4 symbols with lengths [1, 2, 3, 3]. */ /* Contains a collection of Huffman trees with the same alphabet size. */ /* max_symbol is needed due to simple codes since log2(alphabet_size) could be greater than log2(max_symbol). */ type huffmanTreeGroup struct { htrees [][]huffmanCode codes []huffmanCode alphabet_size uint16 max_symbol uint16 num_htrees uint16 } const reverseBitsMax = 8 const reverseBitsBase = 0 var kReverseBits = [1 << reverseBitsMax]byte{ 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF, } const reverseBitsLowest = (uint64(1) << (reverseBitsMax - 1 + reverseBitsBase)) /* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX), where reverse(value, len) is the bit-wise reversal of the len least significant bits of value. */ func reverseBits8(num uint64) uint64 { return uint64(kReverseBits[num]) } /* Stores code in table[0], table[step], table[2*step], ..., table[end] */ /* Assumes that end is an integer multiple of step */ func replicateValue(table []huffmanCode, step int, end int, code huffmanCode) { for { end -= step table[end] = code if end <= 0 { break } } } /* Returns the table width of the next 2nd level table. |count| is the histogram of bit lengths for the remaining symbols, |len| is the code length of the next processed symbol. */ func nextTableBitSize(count []uint16, len int, root_bits int) int { var left int = 1 << uint(len-root_bits) for len < huffmanMaxCodeLength { left -= int(count[len]) if left <= 0 { break } len++ left <<= 1 } return len - root_bits } func buildCodeLengthsHuffmanTable(table []huffmanCode, code_lengths []byte, count []uint16) { var code huffmanCode /* current table entry */ /* symbol index in original or sorted table */ /* prefix code */ /* prefix code addend */ /* step size to replicate values in current table */ /* size of current table */ /* symbols sorted by code length */ var symbol int var key uint64 var key_step uint64 var step int var table_size int var sorted [codeLengthCodes]int var offset [huffmanMaxCodeLengthCodeLength + 1]int var bits int var bits_count int /* offsets in sorted table for each length */ assert(huffmanMaxCodeLengthCodeLength <= reverseBitsMax) /* Generate offsets into sorted symbol table by code length. */ symbol = -1 bits = 1 var i int for i = 0; i < huffmanMaxCodeLengthCodeLength; i++ { symbol += int(count[bits]) offset[bits] = symbol bits++ } /* Symbols with code length 0 are placed after all other symbols. */ offset[0] = codeLengthCodes - 1 /* Sort symbols by length, by symbol order within each length. */ symbol = codeLengthCodes for { var i int for i = 0; i < 6; i++ { symbol-- sorted[offset[code_lengths[symbol]]] = symbol offset[code_lengths[symbol]]-- } if symbol == 0 { break } } table_size = 1 << huffmanMaxCodeLengthCodeLength /* Special case: all symbols but one have 0 code length. */ if offset[0] == 0 { code = constructHuffmanCode(0, uint16(sorted[0])) for key = 0; key < uint64(table_size); key++ { table[key] = code } return } /* Fill in table. */ key = 0 key_step = reverseBitsLowest symbol = 0 bits = 1 step = 2 for { for bits_count = int(count[bits]); bits_count != 0; bits_count-- { code = constructHuffmanCode(byte(bits), uint16(sorted[symbol])) symbol++ replicateValue(table[reverseBits8(key):], step, table_size, code) key += key_step } step <<= 1 key_step >>= 1 bits++ if bits > huffmanMaxCodeLengthCodeLength { break } } } func buildHuffmanTable(root_table []huffmanCode, root_bits int, symbol_lists symbolList, count []uint16) uint32 { var code huffmanCode /* current table entry */ /* next available space in table */ /* current code length */ /* symbol index in original or sorted table */ /* prefix code */ /* prefix code addend */ /* 2nd level table prefix code */ /* 2nd level table prefix code addend */ /* step size to replicate values in current table */ /* key length of current table */ /* size of current table */ /* sum of root table size and 2nd level table sizes */ var table []huffmanCode var len int var symbol int var key uint64 var key_step uint64 var sub_key uint64 var sub_key_step uint64 var step int var table_bits int var table_size int var total_size int var max_length int = -1 var bits int var bits_count int assert(root_bits <= reverseBitsMax) assert(huffmanMaxCodeLength-root_bits <= reverseBitsMax) for symbolListGet(symbol_lists, max_length) == 0xFFFF { max_length-- } max_length += huffmanMaxCodeLength + 1 table = root_table table_bits = root_bits table_size = 1 << uint(table_bits) total_size = table_size /* Fill in the root table. Reduce the table size to if possible, and create the repetitions by memcpy. */ if table_bits > max_length { table_bits = max_length table_size = 1 << uint(table_bits) } key = 0 key_step = reverseBitsLowest bits = 1 step = 2 for { symbol = bits - (huffmanMaxCodeLength + 1) for bits_count = int(count[bits]); bits_count != 0; bits_count-- { symbol = int(symbolListGet(symbol_lists, symbol)) code = constructHuffmanCode(byte(bits), uint16(symbol)) replicateValue(table[reverseBits8(key):], step, table_size, code) key += key_step } step <<= 1 key_step >>= 1 bits++ if bits > table_bits { break } } /* If root_bits != table_bits then replicate to fill the remaining slots. */ for total_size != table_size { copy(table[table_size:], table[:uint(table_size)]) table_size <<= 1 } /* Fill in 2nd level tables and add pointers to root table. */ key_step = reverseBitsLowest >> uint(root_bits-1) sub_key = reverseBitsLowest << 1 sub_key_step = reverseBitsLowest len = root_bits + 1 step = 2 for ; len <= max_length; len++ { symbol = len - (huffmanMaxCodeLength + 1) for ; count[len] != 0; count[len]-- { if sub_key == reverseBitsLowest<<1 { table = table[table_size:] table_bits = nextTableBitSize(count, int(len), root_bits) table_size = 1 << uint(table_bits) total_size += table_size sub_key = reverseBits8(key) key += key_step root_table[sub_key] = constructHuffmanCode(byte(table_bits+root_bits), uint16(uint64(uint(-cap(table)+cap(root_table)))-sub_key)) sub_key = 0 } symbol = int(symbolListGet(symbol_lists, symbol)) code = constructHuffmanCode(byte(len-root_bits), uint16(symbol)) replicateValue(table[reverseBits8(sub_key):], step, table_size, code) sub_key += sub_key_step } step <<= 1 sub_key_step >>= 1 } return uint32(total_size) } func buildSimpleHuffmanTable(table []huffmanCode, root_bits int, val []uint16, num_symbols uint32) uint32 { var table_size uint32 = 1 var goal_size uint32 = 1 << uint(root_bits) switch num_symbols { case 0: table[0] = constructHuffmanCode(0, val[0]) case 1: if val[1] > val[0] { table[0] = constructHuffmanCode(1, val[0]) table[1] = constructHuffmanCode(1, val[1]) } else { table[0] = constructHuffmanCode(1, val[1]) table[1] = constructHuffmanCode(1, val[0]) } table_size = 2 case 2: table[0] = constructHuffmanCode(1, val[0]) table[2] = constructHuffmanCode(1, val[0]) if val[2] > val[1] { table[1] = constructHuffmanCode(2, val[1]) table[3] = constructHuffmanCode(2, val[2]) } else { table[1] = constructHuffmanCode(2, val[2]) table[3] = constructHuffmanCode(2, val[1]) } table_size = 4 case 3: var i int var k int for i = 0; i < 3; i++ { for k = i + 1; k < 4; k++ { if val[k] < val[i] { var t uint16 = val[k] val[k] = val[i] val[i] = t } } } table[0] = constructHuffmanCode(2, val[0]) table[2] = constructHuffmanCode(2, val[1]) table[1] = constructHuffmanCode(2, val[2]) table[3] = constructHuffmanCode(2, val[3]) table_size = 4 case 4: if val[3] < val[2] { var t uint16 = val[3] val[3] = val[2] val[2] = t } table[0] = constructHuffmanCode(1, val[0]) table[1] = constructHuffmanCode(2, val[1]) table[2] = constructHuffmanCode(1, val[0]) table[3] = constructHuffmanCode(3, val[2]) table[4] = constructHuffmanCode(1, val[0]) table[5] = constructHuffmanCode(2, val[1]) table[6] = constructHuffmanCode(1, val[0]) table[7] = constructHuffmanCode(3, val[3]) table_size = 8 } for table_size != goal_size { copy(table[table_size:], table[:uint(table_size)]) table_size <<= 1 } return goal_size }