0
0
Fork 0
mirror of https://github.com/go-gitea/gitea synced 2024-12-21 08:54:23 +01:00
gitea/modules/queue/manager.go
zeripath 4e57bd1d30
Add number in queue status to monitor page (#18712)
Add number in queue status to the monitor page so that administrators can
assess how much work is left to be done in the queues.

Signed-off-by: Andrew Thornton <art27@cantab.net>

Co-authored-by: Lunny Xiao <xiaolunwen@gmail.com>
Co-authored-by: wxiaoguang <wxiaoguang@gmail.com>
2022-02-12 13:31:26 +08:00

462 lines
12 KiB
Go

// Copyright 2019 The Gitea Authors. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
package queue
import (
"context"
"fmt"
"reflect"
"sort"
"strings"
"sync"
"time"
"code.gitea.io/gitea/modules/json"
"code.gitea.io/gitea/modules/log"
)
var manager *Manager
// Manager is a queue manager
type Manager struct {
mutex sync.Mutex
counter int64
Queues map[int64]*ManagedQueue
}
// ManagedQueue represents a working queue with a Pool of workers.
//
// Although a ManagedQueue should really represent a Queue this does not
// necessarily have to be the case. This could be used to describe any queue.WorkerPool.
type ManagedQueue struct {
mutex sync.Mutex
QID int64
Type Type
Name string
Configuration interface{}
ExemplarType string
Managed interface{}
counter int64
PoolWorkers map[int64]*PoolWorkers
}
// Flushable represents a pool or queue that is flushable
type Flushable interface {
// Flush will add a flush worker to the pool - the worker should be autoregistered with the manager
Flush(time.Duration) error
// FlushWithContext is very similar to Flush
// NB: The worker will not be registered with the manager.
FlushWithContext(ctx context.Context) error
// IsEmpty will return if the managed pool is empty and has no work
IsEmpty() bool
}
// Pausable represents a pool or queue that is Pausable
type Pausable interface {
// IsPaused will return if the pool or queue is paused
IsPaused() bool
// Pause will pause the pool or queue
Pause()
// Resume will resume the pool or queue
Resume()
// IsPausedIsResumed will return a bool indicating if the pool or queue is paused and a channel that will be closed when it is resumed
IsPausedIsResumed() (paused, resumed <-chan struct{})
}
// ManagedPool is a simple interface to get certain details from a worker pool
type ManagedPool interface {
// AddWorkers adds a number of worker as group to the pool with the provided timeout. A CancelFunc is provided to cancel the group
AddWorkers(number int, timeout time.Duration) context.CancelFunc
// NumberOfWorkers returns the total number of workers in the pool
NumberOfWorkers() int
// MaxNumberOfWorkers returns the maximum number of workers the pool can dynamically grow to
MaxNumberOfWorkers() int
// SetMaxNumberOfWorkers sets the maximum number of workers the pool can dynamically grow to
SetMaxNumberOfWorkers(int)
// BoostTimeout returns the current timeout for worker groups created during a boost
BoostTimeout() time.Duration
// BlockTimeout returns the timeout the internal channel can block for before a boost would occur
BlockTimeout() time.Duration
// BoostWorkers sets the number of workers to be created during a boost
BoostWorkers() int
// SetPoolSettings sets the user updatable settings for the pool
SetPoolSettings(maxNumberOfWorkers, boostWorkers int, timeout time.Duration)
// NumberInQueue returns the total number of items in the pool
NumberInQueue() int64
// Done returns a channel that will be closed when the Pool's baseCtx is closed
Done() <-chan struct{}
}
// ManagedQueueList implements the sort.Interface
type ManagedQueueList []*ManagedQueue
// PoolWorkers represents a group of workers working on a queue
type PoolWorkers struct {
PID int64
Workers int
Start time.Time
Timeout time.Time
HasTimeout bool
Cancel context.CancelFunc
IsFlusher bool
}
// PoolWorkersList implements the sort.Interface for PoolWorkers
type PoolWorkersList []*PoolWorkers
func init() {
_ = GetManager()
}
// GetManager returns a Manager and initializes one as singleton if there's none yet
func GetManager() *Manager {
if manager == nil {
manager = &Manager{
Queues: make(map[int64]*ManagedQueue),
}
}
return manager
}
// Add adds a queue to this manager
func (m *Manager) Add(managed interface{},
t Type,
configuration,
exemplar interface{},
) int64 {
cfg, _ := json.Marshal(configuration)
mq := &ManagedQueue{
Type: t,
Configuration: string(cfg),
ExemplarType: reflect.TypeOf(exemplar).String(),
PoolWorkers: make(map[int64]*PoolWorkers),
Managed: managed,
}
m.mutex.Lock()
m.counter++
mq.QID = m.counter
mq.Name = fmt.Sprintf("queue-%d", mq.QID)
if named, ok := managed.(Named); ok {
name := named.Name()
if len(name) > 0 {
mq.Name = name
}
}
m.Queues[mq.QID] = mq
m.mutex.Unlock()
log.Trace("Queue Manager registered: %s (QID: %d)", mq.Name, mq.QID)
return mq.QID
}
// Remove a queue from the Manager
func (m *Manager) Remove(qid int64) {
m.mutex.Lock()
delete(m.Queues, qid)
m.mutex.Unlock()
log.Trace("Queue Manager removed: QID: %d", qid)
}
// GetManagedQueue by qid
func (m *Manager) GetManagedQueue(qid int64) *ManagedQueue {
m.mutex.Lock()
defer m.mutex.Unlock()
return m.Queues[qid]
}
// FlushAll flushes all the flushable queues attached to this manager
func (m *Manager) FlushAll(baseCtx context.Context, timeout time.Duration) error {
var ctx context.Context
var cancel context.CancelFunc
start := time.Now()
end := start
hasTimeout := false
if timeout > 0 {
ctx, cancel = context.WithTimeout(baseCtx, timeout)
end = start.Add(timeout)
hasTimeout = true
} else {
ctx, cancel = context.WithCancel(baseCtx)
}
defer cancel()
for {
select {
case <-ctx.Done():
mqs := m.ManagedQueues()
nonEmptyQueues := []string{}
for _, mq := range mqs {
if !mq.IsEmpty() {
nonEmptyQueues = append(nonEmptyQueues, mq.Name)
}
}
if len(nonEmptyQueues) > 0 {
return fmt.Errorf("flush timeout with non-empty queues: %s", strings.Join(nonEmptyQueues, ", "))
}
return nil
default:
}
mqs := m.ManagedQueues()
log.Debug("Found %d Managed Queues", len(mqs))
wg := sync.WaitGroup{}
wg.Add(len(mqs))
allEmpty := true
for _, mq := range mqs {
if mq.IsEmpty() {
wg.Done()
continue
}
if pausable, ok := mq.Managed.(Pausable); ok {
// no point flushing paused queues
if pausable.IsPaused() {
wg.Done()
continue
}
}
if pool, ok := mq.Managed.(ManagedPool); ok {
// No point into flushing pools when their base's ctx is already done.
select {
case <-pool.Done():
wg.Done()
continue
default:
}
}
allEmpty = false
if flushable, ok := mq.Managed.(Flushable); ok {
log.Debug("Flushing (flushable) queue: %s", mq.Name)
go func(q *ManagedQueue) {
localCtx, localCtxCancel := context.WithCancel(ctx)
pid := q.RegisterWorkers(1, start, hasTimeout, end, localCtxCancel, true)
err := flushable.FlushWithContext(localCtx)
if err != nil && err != ctx.Err() {
cancel()
}
q.CancelWorkers(pid)
localCtxCancel()
wg.Done()
}(mq)
} else {
log.Debug("Queue: %s is non-empty but is not flushable", mq.Name)
wg.Done()
}
}
if allEmpty {
log.Debug("All queues are empty")
break
}
// Ensure there are always at least 100ms between loops but not more if we've actually been doing some flushing
// but don't delay cancellation here.
select {
case <-ctx.Done():
case <-time.After(100 * time.Millisecond):
}
wg.Wait()
}
return nil
}
// ManagedQueues returns the managed queues
func (m *Manager) ManagedQueues() []*ManagedQueue {
m.mutex.Lock()
mqs := make([]*ManagedQueue, 0, len(m.Queues))
for _, mq := range m.Queues {
mqs = append(mqs, mq)
}
m.mutex.Unlock()
sort.Sort(ManagedQueueList(mqs))
return mqs
}
// Workers returns the poolworkers
func (q *ManagedQueue) Workers() []*PoolWorkers {
q.mutex.Lock()
workers := make([]*PoolWorkers, 0, len(q.PoolWorkers))
for _, worker := range q.PoolWorkers {
workers = append(workers, worker)
}
q.mutex.Unlock()
sort.Sort(PoolWorkersList(workers))
return workers
}
// RegisterWorkers registers workers to this queue
func (q *ManagedQueue) RegisterWorkers(number int, start time.Time, hasTimeout bool, timeout time.Time, cancel context.CancelFunc, isFlusher bool) int64 {
q.mutex.Lock()
defer q.mutex.Unlock()
q.counter++
q.PoolWorkers[q.counter] = &PoolWorkers{
PID: q.counter,
Workers: number,
Start: start,
Timeout: timeout,
HasTimeout: hasTimeout,
Cancel: cancel,
IsFlusher: isFlusher,
}
return q.counter
}
// CancelWorkers cancels pooled workers with pid
func (q *ManagedQueue) CancelWorkers(pid int64) {
q.mutex.Lock()
pw, ok := q.PoolWorkers[pid]
q.mutex.Unlock()
if !ok {
return
}
pw.Cancel()
}
// RemoveWorkers deletes pooled workers with pid
func (q *ManagedQueue) RemoveWorkers(pid int64) {
q.mutex.Lock()
pw, ok := q.PoolWorkers[pid]
delete(q.PoolWorkers, pid)
q.mutex.Unlock()
if ok && pw.Cancel != nil {
pw.Cancel()
}
}
// AddWorkers adds workers to the queue if it has registered an add worker function
func (q *ManagedQueue) AddWorkers(number int, timeout time.Duration) context.CancelFunc {
if pool, ok := q.Managed.(ManagedPool); ok {
// the cancel will be added to the pool workers description above
return pool.AddWorkers(number, timeout)
}
return nil
}
// Flushable returns true if the queue is flushable
func (q *ManagedQueue) Flushable() bool {
_, ok := q.Managed.(Flushable)
return ok
}
// Flush flushes the queue with a timeout
func (q *ManagedQueue) Flush(timeout time.Duration) error {
if flushable, ok := q.Managed.(Flushable); ok {
// the cancel will be added to the pool workers description above
return flushable.Flush(timeout)
}
return nil
}
// IsEmpty returns if the queue is empty
func (q *ManagedQueue) IsEmpty() bool {
if flushable, ok := q.Managed.(Flushable); ok {
return flushable.IsEmpty()
}
return true
}
// Pausable returns whether the queue is Pausable
func (q *ManagedQueue) Pausable() bool {
_, ok := q.Managed.(Pausable)
return ok
}
// Pause pauses the queue
func (q *ManagedQueue) Pause() {
if pausable, ok := q.Managed.(Pausable); ok {
pausable.Pause()
}
}
// IsPaused reveals if the queue is paused
func (q *ManagedQueue) IsPaused() bool {
if pausable, ok := q.Managed.(Pausable); ok {
return pausable.IsPaused()
}
return false
}
// Resume resumes the queue
func (q *ManagedQueue) Resume() {
if pausable, ok := q.Managed.(Pausable); ok {
pausable.Resume()
}
}
// NumberOfWorkers returns the number of workers in the queue
func (q *ManagedQueue) NumberOfWorkers() int {
if pool, ok := q.Managed.(ManagedPool); ok {
return pool.NumberOfWorkers()
}
return -1
}
// MaxNumberOfWorkers returns the maximum number of workers for the pool
func (q *ManagedQueue) MaxNumberOfWorkers() int {
if pool, ok := q.Managed.(ManagedPool); ok {
return pool.MaxNumberOfWorkers()
}
return 0
}
// BoostWorkers returns the number of workers for a boost
func (q *ManagedQueue) BoostWorkers() int {
if pool, ok := q.Managed.(ManagedPool); ok {
return pool.BoostWorkers()
}
return -1
}
// BoostTimeout returns the timeout of the next boost
func (q *ManagedQueue) BoostTimeout() time.Duration {
if pool, ok := q.Managed.(ManagedPool); ok {
return pool.BoostTimeout()
}
return 0
}
// BlockTimeout returns the timeout til the next boost
func (q *ManagedQueue) BlockTimeout() time.Duration {
if pool, ok := q.Managed.(ManagedPool); ok {
return pool.BlockTimeout()
}
return 0
}
// SetPoolSettings sets the setable boost values
func (q *ManagedQueue) SetPoolSettings(maxNumberOfWorkers, boostWorkers int, timeout time.Duration) {
if pool, ok := q.Managed.(ManagedPool); ok {
pool.SetPoolSettings(maxNumberOfWorkers, boostWorkers, timeout)
}
}
// NumberInQueue returns the number of items in the queue
func (q *ManagedQueue) NumberInQueue() int64 {
if pool, ok := q.Managed.(ManagedPool); ok {
return pool.NumberInQueue()
}
return -1
}
func (l ManagedQueueList) Len() int {
return len(l)
}
func (l ManagedQueueList) Less(i, j int) bool {
return l[i].Name < l[j].Name
}
func (l ManagedQueueList) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}
func (l PoolWorkersList) Len() int {
return len(l)
}
func (l PoolWorkersList) Less(i, j int) bool {
return l[i].Start.Before(l[j].Start)
}
func (l PoolWorkersList) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}