0
0
Fork 0
mirror of https://github.com/go-gitea/gitea synced 2025-01-01 14:44:25 +01:00
gitea/vendor/github.com/RoaringBitmap/roaring/arraycontainer.go
2018-05-19 20:49:46 +08:00

960 lines
24 KiB
Go

package roaring
import (
"fmt"
)
//go:generate msgp -unexported
type arrayContainer struct {
content []uint16
}
func (ac *arrayContainer) String() string {
s := "{"
for it := ac.getShortIterator(); it.hasNext(); {
s += fmt.Sprintf("%v, ", it.next())
}
return s + "}"
}
func (ac *arrayContainer) fillLeastSignificant16bits(x []uint32, i int, mask uint32) {
for k := 0; k < len(ac.content); k++ {
x[k+i] = uint32(ac.content[k]) | mask
}
}
func (ac *arrayContainer) getShortIterator() shortIterable {
return &shortIterator{ac.content, 0}
}
func (ac *arrayContainer) getManyIterator() manyIterable {
return &manyIterator{ac.content, 0}
}
func (ac *arrayContainer) minimum() uint16 {
return ac.content[0] // assume not empty
}
func (ac *arrayContainer) maximum() uint16 {
return ac.content[len(ac.content)-1] // assume not empty
}
func (ac *arrayContainer) getSizeInBytes() int {
return ac.getCardinality() * 2
}
func (ac *arrayContainer) serializedSizeInBytes() int {
return ac.getCardinality() * 2
}
func arrayContainerSizeInBytes(card int) int {
return card * 2
}
// add the values in the range [firstOfRange,endx)
func (ac *arrayContainer) iaddRange(firstOfRange, endx int) container {
if firstOfRange >= endx {
return ac
}
indexstart := binarySearch(ac.content, uint16(firstOfRange))
if indexstart < 0 {
indexstart = -indexstart - 1
}
indexend := binarySearch(ac.content, uint16(endx-1))
if indexend < 0 {
indexend = -indexend - 1
} else {
indexend++
}
rangelength := endx - firstOfRange
newcardinality := indexstart + (ac.getCardinality() - indexend) + rangelength
if newcardinality > arrayDefaultMaxSize {
a := ac.toBitmapContainer()
return a.iaddRange(firstOfRange, endx)
}
if cap(ac.content) < newcardinality {
tmp := make([]uint16, newcardinality, newcardinality)
copy(tmp[:indexstart], ac.content[:indexstart])
copy(tmp[indexstart+rangelength:], ac.content[indexend:])
ac.content = tmp
} else {
ac.content = ac.content[:newcardinality]
copy(ac.content[indexstart+rangelength:], ac.content[indexend:])
}
for k := 0; k < rangelength; k++ {
ac.content[k+indexstart] = uint16(firstOfRange + k)
}
return ac
}
// remove the values in the range [firstOfRange,endx)
func (ac *arrayContainer) iremoveRange(firstOfRange, endx int) container {
if firstOfRange >= endx {
return ac
}
indexstart := binarySearch(ac.content, uint16(firstOfRange))
if indexstart < 0 {
indexstart = -indexstart - 1
}
indexend := binarySearch(ac.content, uint16(endx-1))
if indexend < 0 {
indexend = -indexend - 1
} else {
indexend++
}
rangelength := indexend - indexstart
answer := ac
copy(answer.content[indexstart:], ac.content[indexstart+rangelength:])
answer.content = answer.content[:ac.getCardinality()-rangelength]
return answer
}
// flip the values in the range [firstOfRange,endx)
func (ac *arrayContainer) not(firstOfRange, endx int) container {
if firstOfRange >= endx {
//p("arrayContainer.not(): exiting early with ac.clone()")
return ac.clone()
}
return ac.notClose(firstOfRange, endx-1) // remove everything in [firstOfRange,endx-1]
}
// flip the values in the range [firstOfRange,lastOfRange]
func (ac *arrayContainer) notClose(firstOfRange, lastOfRange int) container {
if firstOfRange > lastOfRange { // unlike add and remove, not uses an inclusive range [firstOfRange,lastOfRange]
//p("arrayContainer.notClose(): exiting early with ac.clone()")
return ac.clone()
}
// determine the span of array indices to be affected^M
startIndex := binarySearch(ac.content, uint16(firstOfRange))
//p("startIndex=%v", startIndex)
if startIndex < 0 {
startIndex = -startIndex - 1
}
lastIndex := binarySearch(ac.content, uint16(lastOfRange))
//p("lastIndex=%v", lastIndex)
if lastIndex < 0 {
lastIndex = -lastIndex - 2
}
currentValuesInRange := lastIndex - startIndex + 1
spanToBeFlipped := lastOfRange - firstOfRange + 1
newValuesInRange := spanToBeFlipped - currentValuesInRange
cardinalityChange := newValuesInRange - currentValuesInRange
newCardinality := len(ac.content) + cardinalityChange
//p("new card is %v", newCardinality)
if newCardinality > arrayDefaultMaxSize {
//p("new card over arrayDefaultMaxSize, so returning bitmap")
return ac.toBitmapContainer().not(firstOfRange, lastOfRange+1)
}
answer := newArrayContainer()
answer.content = make([]uint16, newCardinality, newCardinality) //a hack for sure
copy(answer.content, ac.content[:startIndex])
outPos := startIndex
inPos := startIndex
valInRange := firstOfRange
for ; valInRange <= lastOfRange && inPos <= lastIndex; valInRange++ {
if uint16(valInRange) != ac.content[inPos] {
answer.content[outPos] = uint16(valInRange)
outPos++
} else {
inPos++
}
}
for ; valInRange <= lastOfRange; valInRange++ {
answer.content[outPos] = uint16(valInRange)
outPos++
}
for i := lastIndex + 1; i < len(ac.content); i++ {
answer.content[outPos] = ac.content[i]
outPos++
}
answer.content = answer.content[:newCardinality]
return answer
}
func (ac *arrayContainer) equals(o container) bool {
srb, ok := o.(*arrayContainer)
if ok {
// Check if the containers are the same object.
if ac == srb {
return true
}
if len(srb.content) != len(ac.content) {
return false
}
for i, v := range ac.content {
if v != srb.content[i] {
return false
}
}
return true
}
// use generic comparison
bCard := o.getCardinality()
aCard := ac.getCardinality()
if bCard != aCard {
return false
}
ait := ac.getShortIterator()
bit := o.getShortIterator()
for ait.hasNext() {
if bit.next() != ait.next() {
return false
}
}
return true
}
func (ac *arrayContainer) toBitmapContainer() *bitmapContainer {
bc := newBitmapContainer()
bc.loadData(ac)
return bc
}
func (ac *arrayContainer) iadd(x uint16) (wasNew bool) {
// Special case adding to the end of the container.
l := len(ac.content)
if l > 0 && l < arrayDefaultMaxSize && ac.content[l-1] < x {
ac.content = append(ac.content, x)
return true
}
loc := binarySearch(ac.content, x)
if loc < 0 {
s := ac.content
i := -loc - 1
s = append(s, 0)
copy(s[i+1:], s[i:])
s[i] = x
ac.content = s
return true
}
return false
}
func (ac *arrayContainer) iaddReturnMinimized(x uint16) container {
// Special case adding to the end of the container.
l := len(ac.content)
if l > 0 && l < arrayDefaultMaxSize && ac.content[l-1] < x {
ac.content = append(ac.content, x)
return ac
}
loc := binarySearch(ac.content, x)
if loc < 0 {
if len(ac.content) >= arrayDefaultMaxSize {
a := ac.toBitmapContainer()
a.iadd(x)
return a
}
s := ac.content
i := -loc - 1
s = append(s, 0)
copy(s[i+1:], s[i:])
s[i] = x
ac.content = s
}
return ac
}
// iremoveReturnMinimized is allowed to change the return type to minimize storage.
func (ac *arrayContainer) iremoveReturnMinimized(x uint16) container {
ac.iremove(x)
return ac
}
func (ac *arrayContainer) iremove(x uint16) bool {
loc := binarySearch(ac.content, x)
if loc >= 0 {
s := ac.content
s = append(s[:loc], s[loc+1:]...)
ac.content = s
return true
}
return false
}
func (ac *arrayContainer) remove(x uint16) container {
out := &arrayContainer{make([]uint16, len(ac.content))}
copy(out.content, ac.content[:])
loc := binarySearch(out.content, x)
if loc >= 0 {
s := out.content
s = append(s[:loc], s[loc+1:]...)
out.content = s
}
return out
}
func (ac *arrayContainer) or(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.orArray(x)
case *bitmapContainer:
return x.orArray(ac)
case *runContainer16:
if x.isFull() {
return x.clone()
}
return x.orArray(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) orCardinality(a container) int {
switch x := a.(type) {
case *arrayContainer:
return ac.orArrayCardinality(x)
case *bitmapContainer:
return x.orArrayCardinality(ac)
case *runContainer16:
return x.orArrayCardinality(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) ior(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.iorArray(x)
case *bitmapContainer:
return a.(*bitmapContainer).orArray(ac)
//return ac.iorBitmap(x) // note: this does not make sense
case *runContainer16:
if x.isFull() {
return x.clone()
}
return ac.iorRun16(x)
}
panic("unsupported container type")
}
func (ac *arrayContainer) iorArray(value2 *arrayContainer) container {
value1 := ac
len1 := value1.getCardinality()
len2 := value2.getCardinality()
maxPossibleCardinality := len1 + len2
if maxPossibleCardinality > arrayDefaultMaxSize { // it could be a bitmap!
bc := newBitmapContainer()
for k := 0; k < len(value2.content); k++ {
v := value2.content[k]
i := uint(v) >> 6
mask := uint64(1) << (v % 64)
bc.bitmap[i] |= mask
}
for k := 0; k < len(ac.content); k++ {
v := ac.content[k]
i := uint(v) >> 6
mask := uint64(1) << (v % 64)
bc.bitmap[i] |= mask
}
bc.cardinality = int(popcntSlice(bc.bitmap))
if bc.cardinality <= arrayDefaultMaxSize {
return bc.toArrayContainer()
}
return bc
}
if maxPossibleCardinality > cap(value1.content) {
newcontent := make([]uint16, 0, maxPossibleCardinality)
copy(newcontent[len2:maxPossibleCardinality], ac.content[0:len1])
ac.content = newcontent
} else {
copy(ac.content[len2:maxPossibleCardinality], ac.content[0:len1])
}
nl := union2by2(value1.content[len2:maxPossibleCardinality], value2.content, ac.content)
ac.content = ac.content[:nl] // reslice to match actual used capacity
return ac
}
// Note: such code does not make practical sense, except for lazy evaluations
func (ac *arrayContainer) iorBitmap(bc2 *bitmapContainer) container {
bc1 := ac.toBitmapContainer()
bc1.iorBitmap(bc2)
*ac = *newArrayContainerFromBitmap(bc1)
return ac
}
func (ac *arrayContainer) iorRun16(rc *runContainer16) container {
bc1 := ac.toBitmapContainer()
bc2 := rc.toBitmapContainer()
bc1.iorBitmap(bc2)
*ac = *newArrayContainerFromBitmap(bc1)
return ac
}
func (ac *arrayContainer) lazyIOR(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.lazyIorArray(x)
case *bitmapContainer:
return ac.lazyIorBitmap(x)
case *runContainer16:
if x.isFull() {
return x.clone()
}
return ac.lazyIorRun16(x)
}
panic("unsupported container type")
}
func (ac *arrayContainer) lazyIorArray(ac2 *arrayContainer) container {
// TODO actually make this lazy
return ac.iorArray(ac2)
}
func (ac *arrayContainer) lazyIorBitmap(bc *bitmapContainer) container {
// TODO actually make this lazy
return ac.iorBitmap(bc)
}
func (ac *arrayContainer) lazyIorRun16(rc *runContainer16) container {
// TODO actually make this lazy
return ac.iorRun16(rc)
}
func (ac *arrayContainer) lazyOR(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.lazyorArray(x)
case *bitmapContainer:
return a.lazyOR(ac)
case *runContainer16:
if x.isFull() {
return x.clone()
}
return x.orArray(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) orArray(value2 *arrayContainer) container {
value1 := ac
maxPossibleCardinality := value1.getCardinality() + value2.getCardinality()
if maxPossibleCardinality > arrayDefaultMaxSize { // it could be a bitmap!
bc := newBitmapContainer()
for k := 0; k < len(value2.content); k++ {
v := value2.content[k]
i := uint(v) >> 6
mask := uint64(1) << (v % 64)
bc.bitmap[i] |= mask
}
for k := 0; k < len(ac.content); k++ {
v := ac.content[k]
i := uint(v) >> 6
mask := uint64(1) << (v % 64)
bc.bitmap[i] |= mask
}
bc.cardinality = int(popcntSlice(bc.bitmap))
if bc.cardinality <= arrayDefaultMaxSize {
return bc.toArrayContainer()
}
return bc
}
answer := newArrayContainerCapacity(maxPossibleCardinality)
nl := union2by2(value1.content, value2.content, answer.content)
answer.content = answer.content[:nl] // reslice to match actual used capacity
return answer
}
func (ac *arrayContainer) orArrayCardinality(value2 *arrayContainer) int {
return union2by2Cardinality(ac.content, value2.content)
}
func (ac *arrayContainer) lazyorArray(value2 *arrayContainer) container {
value1 := ac
maxPossibleCardinality := value1.getCardinality() + value2.getCardinality()
if maxPossibleCardinality > arrayLazyLowerBound { // it could be a bitmap!^M
bc := newBitmapContainer()
for k := 0; k < len(value2.content); k++ {
v := value2.content[k]
i := uint(v) >> 6
mask := uint64(1) << (v % 64)
bc.bitmap[i] |= mask
}
for k := 0; k < len(ac.content); k++ {
v := ac.content[k]
i := uint(v) >> 6
mask := uint64(1) << (v % 64)
bc.bitmap[i] |= mask
}
bc.cardinality = invalidCardinality
return bc
}
answer := newArrayContainerCapacity(maxPossibleCardinality)
nl := union2by2(value1.content, value2.content, answer.content)
answer.content = answer.content[:nl] // reslice to match actual used capacity
return answer
}
func (ac *arrayContainer) and(a container) container {
//p("ac.and() called")
switch x := a.(type) {
case *arrayContainer:
return ac.andArray(x)
case *bitmapContainer:
return x.and(ac)
case *runContainer16:
if x.isFull() {
return ac.clone()
}
return x.andArray(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) andCardinality(a container) int {
switch x := a.(type) {
case *arrayContainer:
return ac.andArrayCardinality(x)
case *bitmapContainer:
return x.andCardinality(ac)
case *runContainer16:
return x.andArrayCardinality(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) intersects(a container) bool {
switch x := a.(type) {
case *arrayContainer:
return ac.intersectsArray(x)
case *bitmapContainer:
return x.intersects(ac)
case *runContainer16:
return x.intersects(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) iand(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.iandArray(x)
case *bitmapContainer:
return ac.iandBitmap(x)
case *runContainer16:
if x.isFull() {
return ac.clone()
}
return x.andArray(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) iandBitmap(bc *bitmapContainer) container {
pos := 0
c := ac.getCardinality()
for k := 0; k < c; k++ {
// branchless
v := ac.content[k]
ac.content[pos] = v
pos += int(bc.bitValue(v))
}
ac.content = ac.content[:pos]
return ac
}
func (ac *arrayContainer) xor(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.xorArray(x)
case *bitmapContainer:
return a.xor(ac)
case *runContainer16:
return x.xorArray(ac)
}
panic("unsupported container type")
}
func (ac *arrayContainer) xorArray(value2 *arrayContainer) container {
value1 := ac
totalCardinality := value1.getCardinality() + value2.getCardinality()
if totalCardinality > arrayDefaultMaxSize { // it could be a bitmap!
bc := newBitmapContainer()
for k := 0; k < len(value2.content); k++ {
v := value2.content[k]
i := uint(v) >> 6
bc.bitmap[i] ^= (uint64(1) << (v % 64))
}
for k := 0; k < len(ac.content); k++ {
v := ac.content[k]
i := uint(v) >> 6
bc.bitmap[i] ^= (uint64(1) << (v % 64))
}
bc.computeCardinality()
if bc.cardinality <= arrayDefaultMaxSize {
return bc.toArrayContainer()
}
return bc
}
desiredCapacity := totalCardinality
answer := newArrayContainerCapacity(desiredCapacity)
length := exclusiveUnion2by2(value1.content, value2.content, answer.content)
answer.content = answer.content[:length]
return answer
}
func (ac *arrayContainer) andNot(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.andNotArray(x)
case *bitmapContainer:
return ac.andNotBitmap(x)
case *runContainer16:
return ac.andNotRun16(x)
}
panic("unsupported container type")
}
func (ac *arrayContainer) andNotRun16(rc *runContainer16) container {
acb := ac.toBitmapContainer()
rcb := rc.toBitmapContainer()
return acb.andNotBitmap(rcb)
}
func (ac *arrayContainer) iandNot(a container) container {
switch x := a.(type) {
case *arrayContainer:
return ac.iandNotArray(x)
case *bitmapContainer:
return ac.iandNotBitmap(x)
case *runContainer16:
return ac.iandNotRun16(x)
}
panic("unsupported container type")
}
func (ac *arrayContainer) iandNotRun16(rc *runContainer16) container {
rcb := rc.toBitmapContainer()
acb := ac.toBitmapContainer()
acb.iandNotBitmapSurely(rcb)
*ac = *(acb.toArrayContainer())
return ac
}
func (ac *arrayContainer) andNotArray(value2 *arrayContainer) container {
value1 := ac
desiredcapacity := value1.getCardinality()
answer := newArrayContainerCapacity(desiredcapacity)
length := difference(value1.content, value2.content, answer.content)
answer.content = answer.content[:length]
return answer
}
func (ac *arrayContainer) iandNotArray(value2 *arrayContainer) container {
length := difference(ac.content, value2.content, ac.content)
ac.content = ac.content[:length]
return ac
}
func (ac *arrayContainer) andNotBitmap(value2 *bitmapContainer) container {
desiredcapacity := ac.getCardinality()
answer := newArrayContainerCapacity(desiredcapacity)
answer.content = answer.content[:desiredcapacity]
pos := 0
for _, v := range ac.content {
answer.content[pos] = v
pos += 1 - int(value2.bitValue(v))
}
answer.content = answer.content[:pos]
return answer
}
func (ac *arrayContainer) andBitmap(value2 *bitmapContainer) container {
desiredcapacity := ac.getCardinality()
answer := newArrayContainerCapacity(desiredcapacity)
answer.content = answer.content[:desiredcapacity]
pos := 0
for _, v := range ac.content {
answer.content[pos] = v
pos += int(value2.bitValue(v))
}
answer.content = answer.content[:pos]
return answer
}
func (ac *arrayContainer) iandNotBitmap(value2 *bitmapContainer) container {
pos := 0
for _, v := range ac.content {
ac.content[pos] = v
pos += 1 - int(value2.bitValue(v))
}
ac.content = ac.content[:pos]
return ac
}
func copyOf(array []uint16, size int) []uint16 {
result := make([]uint16, size)
for i, x := range array {
if i == size {
break
}
result[i] = x
}
return result
}
// flip the values in the range [firstOfRange,endx)
func (ac *arrayContainer) inot(firstOfRange, endx int) container {
if firstOfRange >= endx {
return ac
}
return ac.inotClose(firstOfRange, endx-1) // remove everything in [firstOfRange,endx-1]
}
// flip the values in the range [firstOfRange,lastOfRange]
func (ac *arrayContainer) inotClose(firstOfRange, lastOfRange int) container {
//p("ac.inotClose() starting")
if firstOfRange > lastOfRange { // unlike add and remove, not uses an inclusive range [firstOfRange,lastOfRange]
return ac
}
// determine the span of array indices to be affected
startIndex := binarySearch(ac.content, uint16(firstOfRange))
if startIndex < 0 {
startIndex = -startIndex - 1
}
lastIndex := binarySearch(ac.content, uint16(lastOfRange))
if lastIndex < 0 {
lastIndex = -lastIndex - 1 - 1
}
currentValuesInRange := lastIndex - startIndex + 1
spanToBeFlipped := lastOfRange - firstOfRange + 1
newValuesInRange := spanToBeFlipped - currentValuesInRange
buffer := make([]uint16, newValuesInRange)
cardinalityChange := newValuesInRange - currentValuesInRange
newCardinality := len(ac.content) + cardinalityChange
if cardinalityChange > 0 {
if newCardinality > len(ac.content) {
if newCardinality > arrayDefaultMaxSize {
//p("ac.inotClose() converting to bitmap and doing inot there")
bcRet := ac.toBitmapContainer()
bcRet.inot(firstOfRange, lastOfRange+1)
*ac = *bcRet.toArrayContainer()
return bcRet
}
ac.content = copyOf(ac.content, newCardinality)
}
base := lastIndex + 1
copy(ac.content[lastIndex+1+cardinalityChange:], ac.content[base:base+len(ac.content)-1-lastIndex])
ac.negateRange(buffer, startIndex, lastIndex, firstOfRange, lastOfRange+1)
} else { // no expansion needed
ac.negateRange(buffer, startIndex, lastIndex, firstOfRange, lastOfRange+1)
if cardinalityChange < 0 {
for i := startIndex + newValuesInRange; i < newCardinality; i++ {
ac.content[i] = ac.content[i-cardinalityChange]
}
}
}
ac.content = ac.content[:newCardinality]
//p("bottom of ac.inotClose(): returning ac")
return ac
}
func (ac *arrayContainer) negateRange(buffer []uint16, startIndex, lastIndex, startRange, lastRange int) {
// compute the negation into buffer
outPos := 0
inPos := startIndex // value here always >= valInRange,
// until it is exhausted
// n.b., we can start initially exhausted.
valInRange := startRange
for ; valInRange < lastRange && inPos <= lastIndex; valInRange++ {
if uint16(valInRange) != ac.content[inPos] {
buffer[outPos] = uint16(valInRange)
outPos++
} else {
inPos++
}
}
// if there are extra items (greater than the biggest
// pre-existing one in range), buffer them
for ; valInRange < lastRange; valInRange++ {
buffer[outPos] = uint16(valInRange)
outPos++
}
if outPos != len(buffer) {
panic("negateRange: internal bug")
}
for i, item := range buffer {
ac.content[i+startIndex] = item
}
}
func (ac *arrayContainer) isFull() bool {
return false
}
func (ac *arrayContainer) andArray(value2 *arrayContainer) container {
desiredcapacity := minOfInt(ac.getCardinality(), value2.getCardinality())
answer := newArrayContainerCapacity(desiredcapacity)
length := intersection2by2(
ac.content,
value2.content,
answer.content)
answer.content = answer.content[:length]
return answer
}
func (ac *arrayContainer) andArrayCardinality(value2 *arrayContainer) int {
return intersection2by2Cardinality(
ac.content,
value2.content)
}
func (ac *arrayContainer) intersectsArray(value2 *arrayContainer) bool {
return intersects2by2(
ac.content,
value2.content)
}
func (ac *arrayContainer) iandArray(value2 *arrayContainer) container {
length := intersection2by2(
ac.content,
value2.content,
ac.content)
ac.content = ac.content[:length]
return ac
}
func (ac *arrayContainer) getCardinality() int {
return len(ac.content)
}
func (ac *arrayContainer) rank(x uint16) int {
answer := binarySearch(ac.content, x)
if answer >= 0 {
return answer + 1
}
return -answer - 1
}
func (ac *arrayContainer) selectInt(x uint16) int {
return int(ac.content[x])
}
func (ac *arrayContainer) clone() container {
ptr := arrayContainer{make([]uint16, len(ac.content))}
copy(ptr.content, ac.content[:])
return &ptr
}
func (ac *arrayContainer) contains(x uint16) bool {
return binarySearch(ac.content, x) >= 0
}
func (ac *arrayContainer) loadData(bitmapContainer *bitmapContainer) {
ac.content = make([]uint16, bitmapContainer.cardinality, bitmapContainer.cardinality)
bitmapContainer.fillArray(ac.content)
}
func newArrayContainer() *arrayContainer {
p := new(arrayContainer)
return p
}
func newArrayContainerFromBitmap(bc *bitmapContainer) *arrayContainer {
ac := &arrayContainer{}
ac.loadData(bc)
return ac
}
func newArrayContainerCapacity(size int) *arrayContainer {
p := new(arrayContainer)
p.content = make([]uint16, 0, size)
return p
}
func newArrayContainerSize(size int) *arrayContainer {
p := new(arrayContainer)
p.content = make([]uint16, size, size)
return p
}
func newArrayContainerRange(firstOfRun, lastOfRun int) *arrayContainer {
valuesInRange := lastOfRun - firstOfRun + 1
this := newArrayContainerCapacity(valuesInRange)
for i := 0; i < valuesInRange; i++ {
this.content = append(this.content, uint16(firstOfRun+i))
}
return this
}
func (ac *arrayContainer) numberOfRuns() (nr int) {
n := len(ac.content)
var runlen uint16
var cur, prev uint16
switch n {
case 0:
return 0
case 1:
return 1
default:
for i := 1; i < n; i++ {
prev = ac.content[i-1]
cur = ac.content[i]
if cur == prev+1 {
runlen++
} else {
if cur < prev {
panic("then fundamental arrayContainer assumption of sorted ac.content was broken")
}
if cur == prev {
panic("then fundamental arrayContainer assumption of deduplicated content was broken")
} else {
nr++
runlen = 0
}
}
}
nr++
}
return
}
// convert to run or array *if needed*
func (ac *arrayContainer) toEfficientContainer() container {
numRuns := ac.numberOfRuns()
sizeAsRunContainer := runContainer16SerializedSizeInBytes(numRuns)
sizeAsBitmapContainer := bitmapContainerSizeInBytes()
card := ac.getCardinality()
sizeAsArrayContainer := arrayContainerSizeInBytes(card)
if sizeAsRunContainer <= minOfInt(sizeAsBitmapContainer, sizeAsArrayContainer) {
return newRunContainer16FromArray(ac)
}
if card <= arrayDefaultMaxSize {
return ac
}
return ac.toBitmapContainer()
}
func (ac *arrayContainer) containerType() contype {
return arrayContype
}