0
0
Fork 0
mirror of https://github.com/go-gitea/gitea synced 2024-11-26 07:52:52 +01:00
gitea/vendor/github.com/RoaringBitmap/roaring/rlei.go
2018-05-19 20:49:46 +08:00

695 lines
17 KiB
Go

package roaring
///////////////////////////////////////////////////
//
// container interface methods for runContainer16
//
///////////////////////////////////////////////////
import (
"fmt"
)
// compile time verify we meet interface requirements
var _ container = &runContainer16{}
func (rc *runContainer16) clone() container {
return newRunContainer16CopyIv(rc.iv)
}
func (rc *runContainer16) minimum() uint16 {
return rc.iv[0].start // assume not empty
}
func (rc *runContainer16) maximum() uint16 {
return rc.iv[len(rc.iv)-1].last() // assume not empty
}
func (rc *runContainer16) isFull() bool {
return (len(rc.iv) == 1) && ((rc.iv[0].start == 0) && (rc.iv[0].last() == MaxUint16))
}
func (rc *runContainer16) and(a container) container {
if rc.isFull() {
return a.clone()
}
switch c := a.(type) {
case *runContainer16:
return rc.intersect(c)
case *arrayContainer:
return rc.andArray(c)
case *bitmapContainer:
return rc.andBitmapContainer(c)
}
panic("unsupported container type")
}
func (rc *runContainer16) andCardinality(a container) int {
switch c := a.(type) {
case *runContainer16:
return int(rc.intersectCardinality(c))
case *arrayContainer:
return rc.andArrayCardinality(c)
case *bitmapContainer:
return rc.andBitmapContainerCardinality(c)
}
panic("unsupported container type")
}
// andBitmapContainer finds the intersection of rc and b.
func (rc *runContainer16) andBitmapContainer(bc *bitmapContainer) container {
bc2 := newBitmapContainerFromRun(rc)
return bc2.andBitmap(bc)
}
func (rc *runContainer16) andArrayCardinality(ac *arrayContainer) int {
pos := 0
answer := 0
maxpos := ac.getCardinality()
if maxpos == 0 {
return 0 // won't happen in actual code
}
v := ac.content[pos]
mainloop:
for _, p := range rc.iv {
for v < p.start {
pos++
if pos == maxpos {
break mainloop
}
v = ac.content[pos]
}
for v <= p.last() {
answer++
pos++
if pos == maxpos {
break mainloop
}
v = ac.content[pos]
}
}
return answer
}
func (rc *runContainer16) iand(a container) container {
if rc.isFull() {
return a.clone()
}
switch c := a.(type) {
case *runContainer16:
return rc.inplaceIntersect(c)
case *arrayContainer:
return rc.andArray(c)
case *bitmapContainer:
return rc.iandBitmapContainer(c)
}
panic("unsupported container type")
}
func (rc *runContainer16) inplaceIntersect(rc2 *runContainer16) container {
// TODO: optimize by doing less allocation, possibly?
// sect will be new
sect := rc.intersect(rc2)
*rc = *sect
return rc
}
func (rc *runContainer16) iandBitmapContainer(bc *bitmapContainer) container {
isect := rc.andBitmapContainer(bc)
*rc = *newRunContainer16FromContainer(isect)
return rc
}
func (rc *runContainer16) andArray(ac *arrayContainer) container {
if len(rc.iv) == 0 {
return newArrayContainer()
}
acCardinality := ac.getCardinality()
c := newArrayContainerCapacity(acCardinality)
for rlePos, arrayPos := 0, 0; arrayPos < acCardinality; {
iv := rc.iv[rlePos]
arrayVal := ac.content[arrayPos]
for iv.last() < arrayVal {
rlePos++
if rlePos == len(rc.iv) {
return c
}
iv = rc.iv[rlePos]
}
if iv.start > arrayVal {
arrayPos = advanceUntil(ac.content, arrayPos, len(ac.content), iv.start)
} else {
c.content = append(c.content, arrayVal)
arrayPos++
}
}
return c
}
func (rc *runContainer16) andNot(a container) container {
switch c := a.(type) {
case *arrayContainer:
return rc.andNotArray(c)
case *bitmapContainer:
return rc.andNotBitmap(c)
case *runContainer16:
return rc.andNotRunContainer16(c)
}
panic("unsupported container type")
}
func (rc *runContainer16) fillLeastSignificant16bits(x []uint32, i int, mask uint32) {
k := 0
var val int64
for _, p := range rc.iv {
n := p.runlen()
for j := int64(0); j < n; j++ {
val = int64(p.start) + j
x[k+i] = uint32(val) | mask
k++
}
}
}
func (rc *runContainer16) getShortIterator() shortIterable {
return rc.newRunIterator16()
}
func (rc *runContainer16) getManyIterator() manyIterable {
return rc.newManyRunIterator16()
}
// add the values in the range [firstOfRange, endx). endx
// is still abe to express 2^16 because it is an int not an uint16.
func (rc *runContainer16) iaddRange(firstOfRange, endx int) container {
if firstOfRange >= endx {
panic(fmt.Sprintf("invalid %v = endx >= firstOfRange", endx))
}
addme := newRunContainer16TakeOwnership([]interval16{
{
start: uint16(firstOfRange),
length: uint16(endx - 1 - firstOfRange),
},
})
*rc = *rc.union(addme)
return rc
}
// remove the values in the range [firstOfRange,endx)
func (rc *runContainer16) iremoveRange(firstOfRange, endx int) container {
if firstOfRange >= endx {
panic(fmt.Sprintf("request to iremove empty set [%v, %v),"+
" nothing to do.", firstOfRange, endx))
//return rc
}
x := newInterval16Range(uint16(firstOfRange), uint16(endx-1))
rc.isubtract(x)
return rc
}
// not flip the values in the range [firstOfRange,endx)
func (rc *runContainer16) not(firstOfRange, endx int) container {
if firstOfRange >= endx {
panic(fmt.Sprintf("invalid %v = endx >= firstOfRange = %v", endx, firstOfRange))
}
return rc.Not(firstOfRange, endx)
}
// Not flips the values in the range [firstOfRange,endx).
// This is not inplace. Only the returned value has the flipped bits.
//
// Currently implemented as (!A intersect B) union (A minus B),
// where A is rc, and B is the supplied [firstOfRange, endx) interval.
//
// TODO(time optimization): convert this to a single pass
// algorithm by copying AndNotRunContainer16() and modifying it.
// Current routine is correct but
// makes 2 more passes through the arrays than should be
// strictly necessary. Measure both ways though--this may not matter.
//
func (rc *runContainer16) Not(firstOfRange, endx int) *runContainer16 {
if firstOfRange >= endx {
panic(fmt.Sprintf("invalid %v = endx >= firstOfRange == %v", endx, firstOfRange))
}
if firstOfRange >= endx {
return rc.Clone()
}
a := rc
// algo:
// (!A intersect B) union (A minus B)
nota := a.invert()
bs := []interval16{newInterval16Range(uint16(firstOfRange), uint16(endx-1))}
b := newRunContainer16TakeOwnership(bs)
notAintersectB := nota.intersect(b)
aMinusB := a.AndNotRunContainer16(b)
rc2 := notAintersectB.union(aMinusB)
return rc2
}
// equals is now logical equals; it does not require the
// same underlying container type.
func (rc *runContainer16) equals(o container) bool {
srb, ok := o.(*runContainer16)
if !ok {
// maybe value instead of pointer
val, valok := o.(*runContainer16)
if valok {
srb = val
ok = true
}
}
if ok {
// Check if the containers are the same object.
if rc == srb {
return true
}
if len(srb.iv) != len(rc.iv) {
return false
}
for i, v := range rc.iv {
if v != srb.iv[i] {
return false
}
}
return true
}
// use generic comparison
if o.getCardinality() != rc.getCardinality() {
return false
}
rit := rc.getShortIterator()
bit := o.getShortIterator()
//k := 0
for rit.hasNext() {
if bit.next() != rit.next() {
return false
}
//k++
}
return true
}
func (rc *runContainer16) iaddReturnMinimized(x uint16) container {
rc.Add(x)
return rc
}
func (rc *runContainer16) iadd(x uint16) (wasNew bool) {
return rc.Add(x)
}
func (rc *runContainer16) iremoveReturnMinimized(x uint16) container {
rc.removeKey(x)
return rc
}
func (rc *runContainer16) iremove(x uint16) bool {
return rc.removeKey(x)
}
func (rc *runContainer16) or(a container) container {
if rc.isFull() {
return rc.clone()
}
switch c := a.(type) {
case *runContainer16:
return rc.union(c)
case *arrayContainer:
return rc.orArray(c)
case *bitmapContainer:
return rc.orBitmapContainer(c)
}
panic("unsupported container type")
}
func (rc *runContainer16) orCardinality(a container) int {
switch c := a.(type) {
case *runContainer16:
return int(rc.unionCardinality(c))
case *arrayContainer:
return rc.orArrayCardinality(c)
case *bitmapContainer:
return rc.orBitmapContainerCardinality(c)
}
panic("unsupported container type")
}
// orBitmapContainer finds the union of rc and bc.
func (rc *runContainer16) orBitmapContainer(bc *bitmapContainer) container {
bc2 := newBitmapContainerFromRun(rc)
return bc2.iorBitmap(bc)
}
func (rc *runContainer16) andBitmapContainerCardinality(bc *bitmapContainer) int {
answer := 0
for i := range rc.iv {
answer += bc.getCardinalityInRange(uint(rc.iv[i].start), uint(rc.iv[i].last())+1)
}
//bc.computeCardinality()
return answer
}
func (rc *runContainer16) orBitmapContainerCardinality(bc *bitmapContainer) int {
return rc.getCardinality() + bc.getCardinality() - rc.andBitmapContainerCardinality(bc)
}
// orArray finds the union of rc and ac.
func (rc *runContainer16) orArray(ac *arrayContainer) container {
bc1 := newBitmapContainerFromRun(rc)
bc2 := ac.toBitmapContainer()
return bc1.orBitmap(bc2)
}
// orArray finds the union of rc and ac.
func (rc *runContainer16) orArrayCardinality(ac *arrayContainer) int {
return ac.getCardinality() + rc.getCardinality() - rc.andArrayCardinality(ac)
}
func (rc *runContainer16) ior(a container) container {
if rc.isFull() {
return rc
}
switch c := a.(type) {
case *runContainer16:
return rc.inplaceUnion(c)
case *arrayContainer:
return rc.iorArray(c)
case *bitmapContainer:
return rc.iorBitmapContainer(c)
}
panic("unsupported container type")
}
func (rc *runContainer16) inplaceUnion(rc2 *runContainer16) container {
p("rc.inplaceUnion with len(rc2.iv)=%v", len(rc2.iv))
for _, p := range rc2.iv {
last := int64(p.last())
for i := int64(p.start); i <= last; i++ {
rc.Add(uint16(i))
}
}
return rc
}
func (rc *runContainer16) iorBitmapContainer(bc *bitmapContainer) container {
it := bc.getShortIterator()
for it.hasNext() {
rc.Add(it.next())
}
return rc
}
func (rc *runContainer16) iorArray(ac *arrayContainer) container {
it := ac.getShortIterator()
for it.hasNext() {
rc.Add(it.next())
}
return rc
}
// lazyIOR is described (not yet implemented) in
// this nice note from @lemire on
// https://github.com/RoaringBitmap/roaring/pull/70#issuecomment-263613737
//
// Description of lazyOR and lazyIOR from @lemire:
//
// Lazy functions are optional and can be simply
// wrapper around non-lazy functions.
//
// The idea of "laziness" is as follows. It is
// inspired by the concept of lazy evaluation
// you might be familiar with (functional programming
// and all that). So a roaring bitmap is
// such that all its containers are, in some
// sense, chosen to use as little memory as
// possible. This is nice. Also, all bitsets
// are "cardinality aware" so that you can do
// fast rank/select queries, or query the
// cardinality of the whole bitmap... very fast,
// without latency.
//
// However, imagine that you are aggregating 100
// bitmaps together. So you OR the first two, then OR
// that with the third one and so forth. Clearly,
// intermediate bitmaps don't need to be as
// compressed as possible, right? They can be
// in a "dirty state". You only need the end
// result to be in a nice state... which you
// can achieve by calling repairAfterLazy at the end.
//
// The Java/C code does something special for
// the in-place lazy OR runs. The idea is that
// instead of taking two run containers and
// generating a new one, we actually try to
// do the computation in-place through a
// technique invented by @gssiyankai (pinging him!).
// What you do is you check whether the host
// run container has lots of extra capacity.
// If it does, you move its data at the end of
// the backing array, and then you write
// the answer at the beginning. What this
// trick does is minimize memory allocations.
//
func (rc *runContainer16) lazyIOR(a container) container {
// not lazy at the moment
// TODO: make it lazy
return rc.ior(a)
/*
switch c := a.(type) {
case *arrayContainer:
return rc.lazyIorArray(c)
case *bitmapContainer:
return rc.lazyIorBitmap(c)
case *runContainer16:
return rc.lazyIorRun16(c)
}
panic("unsupported container type")
*/
}
// lazyOR is described above in lazyIOR.
func (rc *runContainer16) lazyOR(a container) container {
// not lazy at the moment
// TODO: make it lazy
return rc.or(a)
/*
switch c := a.(type) {
case *arrayContainer:
return rc.lazyOrArray(c)
case *bitmapContainer:
return rc.lazyOrBitmap(c)
case *runContainer16:
return rc.lazyOrRunContainer16(c)
}
panic("unsupported container type")
*/
}
func (rc *runContainer16) intersects(a container) bool {
// TODO: optimize by doing inplace/less allocation, possibly?
isect := rc.and(a)
return isect.getCardinality() > 0
}
func (rc *runContainer16) xor(a container) container {
switch c := a.(type) {
case *arrayContainer:
return rc.xorArray(c)
case *bitmapContainer:
return rc.xorBitmap(c)
case *runContainer16:
return rc.xorRunContainer16(c)
}
panic("unsupported container type")
}
func (rc *runContainer16) iandNot(a container) container {
switch c := a.(type) {
case *arrayContainer:
return rc.iandNotArray(c)
case *bitmapContainer:
return rc.iandNotBitmap(c)
case *runContainer16:
return rc.iandNotRunContainer16(c)
}
panic("unsupported container type")
}
// flip the values in the range [firstOfRange,endx)
func (rc *runContainer16) inot(firstOfRange, endx int) container {
if firstOfRange >= endx {
panic(fmt.Sprintf("invalid %v = endx >= firstOfRange = %v", endx, firstOfRange))
}
// TODO: minimize copies, do it all inplace; not() makes a copy.
rc = rc.Not(firstOfRange, endx)
return rc
}
func (rc *runContainer16) getCardinality() int {
return int(rc.cardinality())
}
func (rc *runContainer16) rank(x uint16) int {
n := int64(len(rc.iv))
xx := int64(x)
w, already, _ := rc.search(xx, nil)
if w < 0 {
return 0
}
if !already && w == n-1 {
return rc.getCardinality()
}
var rnk int64
if !already {
for i := int64(0); i <= w; i++ {
rnk += rc.iv[i].runlen()
}
return int(rnk)
}
for i := int64(0); i < w; i++ {
rnk += rc.iv[i].runlen()
}
rnk += int64(x-rc.iv[w].start) + 1
return int(rnk)
}
func (rc *runContainer16) selectInt(x uint16) int {
return rc.selectInt16(x)
}
func (rc *runContainer16) andNotRunContainer16(b *runContainer16) container {
return rc.AndNotRunContainer16(b)
}
func (rc *runContainer16) andNotArray(ac *arrayContainer) container {
rcb := rc.toBitmapContainer()
acb := ac.toBitmapContainer()
return rcb.andNotBitmap(acb)
}
func (rc *runContainer16) andNotBitmap(bc *bitmapContainer) container {
rcb := rc.toBitmapContainer()
return rcb.andNotBitmap(bc)
}
func (rc *runContainer16) toBitmapContainer() *bitmapContainer {
p("run16 toBitmap starting; rc has %v ranges", len(rc.iv))
bc := newBitmapContainer()
for i := range rc.iv {
bc.iaddRange(int(rc.iv[i].start), int(rc.iv[i].last())+1)
}
bc.computeCardinality()
return bc
}
func (rc *runContainer16) iandNotRunContainer16(x2 *runContainer16) container {
rcb := rc.toBitmapContainer()
x2b := x2.toBitmapContainer()
rcb.iandNotBitmapSurely(x2b)
// TODO: check size and optimize the return value
// TODO: is inplace modification really required? If not, elide the copy.
rc2 := newRunContainer16FromBitmapContainer(rcb)
*rc = *rc2
return rc
}
func (rc *runContainer16) iandNotArray(ac *arrayContainer) container {
rcb := rc.toBitmapContainer()
acb := ac.toBitmapContainer()
rcb.iandNotBitmapSurely(acb)
// TODO: check size and optimize the return value
// TODO: is inplace modification really required? If not, elide the copy.
rc2 := newRunContainer16FromBitmapContainer(rcb)
*rc = *rc2
return rc
}
func (rc *runContainer16) iandNotBitmap(bc *bitmapContainer) container {
rcb := rc.toBitmapContainer()
rcb.iandNotBitmapSurely(bc)
// TODO: check size and optimize the return value
// TODO: is inplace modification really required? If not, elide the copy.
rc2 := newRunContainer16FromBitmapContainer(rcb)
*rc = *rc2
return rc
}
func (rc *runContainer16) xorRunContainer16(x2 *runContainer16) container {
rcb := rc.toBitmapContainer()
x2b := x2.toBitmapContainer()
return rcb.xorBitmap(x2b)
}
func (rc *runContainer16) xorArray(ac *arrayContainer) container {
rcb := rc.toBitmapContainer()
acb := ac.toBitmapContainer()
return rcb.xorBitmap(acb)
}
func (rc *runContainer16) xorBitmap(bc *bitmapContainer) container {
rcb := rc.toBitmapContainer()
return rcb.xorBitmap(bc)
}
// convert to bitmap or array *if needed*
func (rc *runContainer16) toEfficientContainer() container {
// runContainer16SerializedSizeInBytes(numRuns)
sizeAsRunContainer := rc.getSizeInBytes()
sizeAsBitmapContainer := bitmapContainerSizeInBytes()
card := int(rc.cardinality())
sizeAsArrayContainer := arrayContainerSizeInBytes(card)
if sizeAsRunContainer <= minOfInt(sizeAsBitmapContainer, sizeAsArrayContainer) {
return rc
}
if card <= arrayDefaultMaxSize {
return rc.toArrayContainer()
}
bc := newBitmapContainerFromRun(rc)
return bc
}
func (rc *runContainer16) toArrayContainer() *arrayContainer {
ac := newArrayContainer()
for i := range rc.iv {
ac.iaddRange(int(rc.iv[i].start), int(rc.iv[i].last())+1)
}
return ac
}
func newRunContainer16FromContainer(c container) *runContainer16 {
switch x := c.(type) {
case *runContainer16:
return x.Clone()
case *arrayContainer:
return newRunContainer16FromArray(x)
case *bitmapContainer:
return newRunContainer16FromBitmapContainer(x)
}
panic("unsupported container type")
}