mirror of
https://github.com/go-gitea/gitea
synced 2025-01-16 15:48:35 +01:00
1e4be0945b
To help #31813, but do not replace it, since this PR just introduces the new module but misses some work: - New option in settings. `#31813` has done it. - Use the locks in business logic. `#31813` has done it. So I think the most efficient way is to merge this PR first (if it's acceptable) and then finish #31813. ## Design principles ### Use spinlock even in memory implementation In actual use cases, users may cancel requests. `sync.Mutex` will block the goroutine until the lock is acquired even if the request is canceled. And the spinlock is more suitable for this scenario since it's possible to give up the lock acquisition. Although the spinlock consumes more CPU resources, I think it's acceptable in most cases. ### Do not expose the mutex to callers If we expose the mutex to callers, it's possible for callers to reuse the mutex, which causes more complexity. For example: ```go lock := GetLocker(key) lock.Lock() // ... // even if the lock is unlocked, we cannot GC the lock, // since the caller may still use it again. lock.Unlock() lock.Lock() // ... lock.Unlock() // callers have to GC the lock manually. RemoveLocker(key) ``` That's why https://github.com/go-gitea/gitea/pull/31813#discussion_r1721200549 In this PR, we only expose `ReleaseFunc` to callers. So callers just need to call `ReleaseFunc` to release the lock, and do not need to care about the lock's lifecycle. ```go _, release, err := locker.Lock(ctx, key) if err != nil { return err } // ... release() // if callers want to lock again, they have to re-acquire the lock. _, release, err := locker.Lock(ctx, key) // ... ``` In this way, it's also much easier for redis implementation to extend the mutex automatically, so that callers do not need to care about the lock's lifecycle. See also https://github.com/go-gitea/gitea/pull/31813#discussion_r1722659743 ### Use "release" instead of "unlock" For "unlock", it has the meaning of "unlock an acquired lock". So it's not acceptable to call "unlock" when failed to acquire the lock, or call "unlock" multiple times. It causes more complexity for callers to decide whether to call "unlock" or not. So we use "release" instead of "unlock" to make it clear. Whether the lock is acquired or not, callers can always call "release", and it's also safe to call "release" multiple times. But the code DO NOT expect callers to not call "release" after acquiring the lock. If callers forget to call "release", it will cause resource leak. That's why it's always safe to call "release" without extra checks: to avoid callers to forget to call it. ### Acquired locks could be lost Unlike `sync.Mutex` which will be locked forever once acquired until calling `Unlock`, in the new module, the acquired lock could be lost. For example, the caller has acquired the lock, and it holds the lock for a long time since auto-extending is working for redis. However, it lost the connection to the redis server, and it's impossible to extend the lock anymore. If the caller don't stop what it's doing, another instance which can connect to the redis server could acquire the lock, and do the same thing, which could cause data inconsistency. So the caller should know what happened, the solution is to return a new context which will be canceled if the lock is lost or released: ```go ctx, release, err := locker.Lock(ctx, key) if err != nil { return err } defer release() // ... DoSomething(ctx) // the lock is lost now, then ctx has been canceled. // Failed, since ctx has been canceled. DoSomethingElse(ctx) ``` ### Multiple ways to use the lock 1. Regular way ```go ctx, release, err := Lock(ctx, key) if err != nil { return err } defer release() // ... ``` 2. Early release ```go ctx, release, err := Lock(ctx, key) if err != nil { return err } defer release() // ... // release the lock earlier and reset the context back ctx = release() // continue to do something else // ... ``` 3. Functional way ```go if err := LockAndDo(ctx, key, func(ctx context.Context) error { // ... return nil }); err != nil { return err } ```
60 lines
2.8 KiB
Go
60 lines
2.8 KiB
Go
// Copyright 2024 The Gitea Authors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
package globallock
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
)
|
|
|
|
type Locker interface {
|
|
// Lock tries to acquire a lock for the given key, it blocks until the lock is acquired or the context is canceled.
|
|
//
|
|
// Lock returns a new context which should be used in the following code.
|
|
// The new context will be canceled when the lock is released or lost - yes, it's possible to lose a lock.
|
|
// For example, it lost the connection to the redis server while holding the lock.
|
|
// If it fails to acquire the lock, the returned context will be the same as the input context.
|
|
//
|
|
// Lock returns a ReleaseFunc to release the lock, it cannot be nil.
|
|
// It's always safe to call this function even if it fails to acquire the lock, and it will do nothing in that case.
|
|
// And it's also safe to call it multiple times, but it will only release the lock once.
|
|
// That's why it's called ReleaseFunc, not UnlockFunc.
|
|
// But be aware that it's not safe to not call it at all; it could lead to a memory leak.
|
|
// So a recommended pattern is to use defer to call it:
|
|
// ctx, release, err := locker.Lock(ctx, "key")
|
|
// if err != nil {
|
|
// return err
|
|
// }
|
|
// defer release()
|
|
// The ReleaseFunc will return the original context which was used to acquire the lock.
|
|
// It's useful when you want to continue to do something after releasing the lock.
|
|
// At that time, the ctx will be canceled, and you can use the returned context by the ReleaseFunc to continue:
|
|
// ctx, release, err := locker.Lock(ctx, "key")
|
|
// if err != nil {
|
|
// return err
|
|
// }
|
|
// defer release()
|
|
// doSomething(ctx)
|
|
// ctx = release()
|
|
// doSomethingElse(ctx)
|
|
// Please ignore it and use `defer release()` instead if you don't need this, to avoid forgetting to release the lock.
|
|
//
|
|
// Lock returns an error if failed to acquire the lock.
|
|
// Be aware that even the context is not canceled, it's still possible to fail to acquire the lock.
|
|
// For example, redis is down, or it reached the maximum number of tries.
|
|
Lock(ctx context.Context, key string) (context.Context, ReleaseFunc, error)
|
|
|
|
// TryLock tries to acquire a lock for the given key, it returns immediately.
|
|
// It follows the same pattern as Lock, but it doesn't block.
|
|
// And if it fails to acquire the lock because it's already locked, not other reasons like redis is down,
|
|
// it will return false without any error.
|
|
TryLock(ctx context.Context, key string) (bool, context.Context, ReleaseFunc, error)
|
|
}
|
|
|
|
// ReleaseFunc is a function that releases a lock.
|
|
// It returns the original context which was used to acquire the lock.
|
|
type ReleaseFunc func() context.Context
|
|
|
|
// ErrLockReleased is used as context cause when a lock is released
|
|
var ErrLockReleased = fmt.Errorf("lock released")
|