mirror of
https://github.com/go-gitea/gitea
synced 2024-12-23 22:54:28 +01:00
b6a95a8cb3
* Dropped unused codekit config * Integrated dynamic and static bindata for public * Ignore public bindata * Add a general generate make task * Integrated flexible public assets into web command * Updated vendoring, added all missiong govendor deps * Made the linter happy with the bindata and dynamic code * Moved public bindata definition to modules directory * Ignoring the new bindata path now * Updated to the new public modules import path * Updated public bindata command and drop the new prefix
755 lines
20 KiB
Go
755 lines
20 KiB
Go
// The MIT License (MIT)
|
|
|
|
// Copyright (c) 2015 Spring, Inc.
|
|
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
|
|
// - Based on https://github.com/oguzbilgic/fpd, which has the following license:
|
|
// """
|
|
// The MIT License (MIT)
|
|
|
|
// Copyright (c) 2013 Oguz Bilgic
|
|
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
// this software and associated documentation files (the "Software"), to deal in
|
|
// the Software without restriction, including without limitation the rights to
|
|
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
// the Software, and to permit persons to whom the Software is furnished to do so,
|
|
// subject to the following conditions:
|
|
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
// """
|
|
|
|
// Copyright 2015 PingCAP, Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package mysql
|
|
|
|
// Decimal implements an arbitrary precision fixed-point decimal.
|
|
//
|
|
// To use as part of a struct:
|
|
//
|
|
// type Struct struct {
|
|
// Number Decimal
|
|
// }
|
|
//
|
|
// The zero-value of a Decimal is 0, as you would expect.
|
|
//
|
|
// The best way to create a new Decimal is to use decimal.NewFromString, ex:
|
|
//
|
|
// n, err := decimal.NewFromString("-123.4567")
|
|
// n.String() // output: "-123.4567"
|
|
//
|
|
// NOTE: this can "only" represent numbers with a maximum of 2^31 digits
|
|
// after the decimal point.
|
|
|
|
import (
|
|
"database/sql/driver"
|
|
"fmt"
|
|
"math"
|
|
"math/big"
|
|
"strconv"
|
|
"strings"
|
|
)
|
|
|
|
// DivisionPrecision is the number of decimal places in the result when it
|
|
// doesn't divide exactly.
|
|
//
|
|
// Example:
|
|
//
|
|
// d1 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3)
|
|
// d1.String() // output: "0.6667"
|
|
// d2 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(30000)
|
|
// d2.String() // output: "0.0001"
|
|
// d3 := decimal.NewFromFloat(20000).Div(decimal.NewFromFloat(3)
|
|
// d3.String() // output: "6666.6666666666666667"
|
|
// decimal.DivisionPrecision = 3
|
|
// d4 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3)
|
|
// d4.String() // output: "0.6667"
|
|
//
|
|
const (
|
|
MaxFractionDigits = 30
|
|
DivIncreasePrecision = 4
|
|
)
|
|
|
|
// ZeroDecimal is zero constant, to make computations faster.
|
|
var ZeroDecimal = NewDecimalFromInt(0, 1)
|
|
|
|
var zeroInt = big.NewInt(0)
|
|
var oneInt = big.NewInt(1)
|
|
var fiveInt = big.NewInt(5)
|
|
var tenInt = big.NewInt(10)
|
|
|
|
// Decimal represents a fixed-point decimal. It is immutable.
|
|
// number = value * 10 ^ exp
|
|
type Decimal struct {
|
|
value *big.Int
|
|
|
|
// this must be an int32, because we cast it to float64 during
|
|
// calculations. If exp is 64 bit, we might lose precision.
|
|
// If we cared about being able to represent every possible decimal, we
|
|
// could make exp a *big.Int but it would hurt performance and numbers
|
|
// like that are unrealistic.
|
|
exp int32
|
|
fracDigits int32 // Number of fractional digits for string result.
|
|
}
|
|
|
|
// ConvertToDecimal converts interface to decimal.
|
|
func ConvertToDecimal(value interface{}) (Decimal, error) {
|
|
switch v := value.(type) {
|
|
case int8:
|
|
return NewDecimalFromInt(int64(v), 0), nil
|
|
case int16:
|
|
return NewDecimalFromInt(int64(v), 0), nil
|
|
case int32:
|
|
return NewDecimalFromInt(int64(v), 0), nil
|
|
case int64:
|
|
return NewDecimalFromInt(int64(v), 0), nil
|
|
case int:
|
|
return NewDecimalFromInt(int64(v), 0), nil
|
|
case uint8:
|
|
return NewDecimalFromUint(uint64(v), 0), nil
|
|
case uint16:
|
|
return NewDecimalFromUint(uint64(v), 0), nil
|
|
case uint32:
|
|
return NewDecimalFromUint(uint64(v), 0), nil
|
|
case uint64:
|
|
return NewDecimalFromUint(uint64(v), 0), nil
|
|
case uint:
|
|
return NewDecimalFromUint(uint64(v), 0), nil
|
|
case float32:
|
|
return NewDecimalFromFloat(float64(v)), nil
|
|
case float64:
|
|
return NewDecimalFromFloat(float64(v)), nil
|
|
case string:
|
|
return ParseDecimal(v)
|
|
case Decimal:
|
|
return v, nil
|
|
case Hex:
|
|
return NewDecimalFromInt(int64(v.Value), 0), nil
|
|
case Bit:
|
|
return NewDecimalFromUint(uint64(v.Value), 0), nil
|
|
case Enum:
|
|
return NewDecimalFromUint(uint64(v.Value), 0), nil
|
|
case Set:
|
|
return NewDecimalFromUint(uint64(v.Value), 0), nil
|
|
default:
|
|
return Decimal{}, fmt.Errorf("can't convert %v to decimal", value)
|
|
}
|
|
}
|
|
|
|
// NewDecimalFromInt returns a new fixed-point decimal, value * 10 ^ exp.
|
|
func NewDecimalFromInt(value int64, exp int32) Decimal {
|
|
return Decimal{
|
|
value: big.NewInt(value),
|
|
exp: exp,
|
|
fracDigits: fracDigitsDefault(exp),
|
|
}
|
|
}
|
|
|
|
// NewDecimalFromUint returns a new fixed-point decimal, value * 10 ^ exp.
|
|
func NewDecimalFromUint(value uint64, exp int32) Decimal {
|
|
return Decimal{
|
|
value: big.NewInt(0).SetUint64(value),
|
|
exp: exp,
|
|
fracDigits: fracDigitsDefault(exp),
|
|
}
|
|
}
|
|
|
|
// ParseDecimal returns a new Decimal from a string representation.
|
|
//
|
|
// Example:
|
|
//
|
|
// d, err := ParseDecimal("-123.45")
|
|
// d2, err := ParseDecimal(".0001")
|
|
//
|
|
func ParseDecimal(value string) (Decimal, error) {
|
|
var intString string
|
|
var exp = int32(0)
|
|
|
|
n := strings.IndexAny(value, "eE")
|
|
if n > 0 {
|
|
// It is scientific notation, like 3.14e10
|
|
expInt, err := strconv.Atoi(value[n+1:])
|
|
if err != nil {
|
|
return Decimal{}, fmt.Errorf("can't convert %s to decimal, incorrect exponent", value)
|
|
}
|
|
value = value[0:n]
|
|
exp = int32(expInt)
|
|
}
|
|
|
|
parts := strings.Split(value, ".")
|
|
if len(parts) == 1 {
|
|
// There is no decimal point, we can just parse the original string as
|
|
// an int.
|
|
intString = value
|
|
} else if len(parts) == 2 {
|
|
intString = parts[0] + parts[1]
|
|
expInt := -len(parts[1])
|
|
exp += int32(expInt)
|
|
} else {
|
|
return Decimal{}, fmt.Errorf("can't convert %s to decimal: too many .s", value)
|
|
}
|
|
|
|
dValue := new(big.Int)
|
|
_, ok := dValue.SetString(intString, 10)
|
|
if !ok {
|
|
return Decimal{}, fmt.Errorf("can't convert %s to decimal", value)
|
|
}
|
|
|
|
val := Decimal{
|
|
value: dValue,
|
|
exp: exp,
|
|
fracDigits: fracDigitsDefault(exp),
|
|
}
|
|
if exp < -MaxFractionDigits {
|
|
val = val.rescale(-MaxFractionDigits)
|
|
}
|
|
return val, nil
|
|
}
|
|
|
|
// NewDecimalFromFloat converts a float64 to Decimal.
|
|
//
|
|
// Example:
|
|
//
|
|
// NewDecimalFromFloat(123.45678901234567).String() // output: "123.4567890123456"
|
|
// NewDecimalFromFloat(.00000000000000001).String() // output: "0.00000000000000001"
|
|
//
|
|
// NOTE: this will panic on NaN, +/-inf.
|
|
func NewDecimalFromFloat(value float64) Decimal {
|
|
floor := math.Floor(value)
|
|
|
|
// fast path, where float is an int.
|
|
if floor == value && !math.IsInf(value, 0) {
|
|
return NewDecimalFromInt(int64(value), 0)
|
|
}
|
|
|
|
str := strconv.FormatFloat(value, 'f', -1, 64)
|
|
dec, err := ParseDecimal(str)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return dec
|
|
}
|
|
|
|
// NewDecimalFromFloatWithExponent converts a float64 to Decimal, with an arbitrary
|
|
// number of fractional digits.
|
|
//
|
|
// Example:
|
|
//
|
|
// NewDecimalFromFloatWithExponent(123.456, -2).String() // output: "123.46"
|
|
//
|
|
func NewDecimalFromFloatWithExponent(value float64, exp int32) Decimal {
|
|
mul := math.Pow(10, -float64(exp))
|
|
floatValue := value * mul
|
|
if math.IsNaN(floatValue) || math.IsInf(floatValue, 0) {
|
|
panic(fmt.Sprintf("Cannot create a Decimal from %v", floatValue))
|
|
}
|
|
dValue := big.NewInt(round(floatValue))
|
|
|
|
return Decimal{
|
|
value: dValue,
|
|
exp: exp,
|
|
fracDigits: fracDigitsDefault(exp),
|
|
}
|
|
}
|
|
|
|
// rescale returns a rescaled version of the decimal. Returned
|
|
// decimal may be less precise if the given exponent is bigger
|
|
// than the initial exponent of the Decimal.
|
|
// NOTE: this will truncate, NOT round
|
|
//
|
|
// Example:
|
|
//
|
|
// d := New(12345, -4)
|
|
// d2 := d.rescale(-1)
|
|
// d3 := d2.rescale(-4)
|
|
// println(d1)
|
|
// println(d2)
|
|
// println(d3)
|
|
//
|
|
// Output:
|
|
//
|
|
// 1.2345
|
|
// 1.2
|
|
// 1.2000
|
|
//
|
|
func (d Decimal) rescale(exp int32) Decimal {
|
|
d.ensureInitialized()
|
|
if exp < -MaxFractionDigits-1 {
|
|
// Limit the number of digits but we can not call Round here because it is called by Round.
|
|
// Limit it to MaxFractionDigits + 1 to make sure the final result is correct.
|
|
exp = -MaxFractionDigits - 1
|
|
}
|
|
// Must convert exps to float64 before - to prevent overflow.
|
|
diff := math.Abs(float64(exp) - float64(d.exp))
|
|
value := new(big.Int).Set(d.value)
|
|
|
|
expScale := new(big.Int).Exp(tenInt, big.NewInt(int64(diff)), nil)
|
|
if exp > d.exp {
|
|
value = value.Quo(value, expScale)
|
|
} else if exp < d.exp {
|
|
value = value.Mul(value, expScale)
|
|
}
|
|
return Decimal{
|
|
value: value,
|
|
exp: exp,
|
|
fracDigits: d.fracDigits,
|
|
}
|
|
}
|
|
|
|
// Abs returns the absolute value of the decimal.
|
|
func (d Decimal) Abs() Decimal {
|
|
d.ensureInitialized()
|
|
d2Value := new(big.Int).Abs(d.value)
|
|
return Decimal{
|
|
value: d2Value,
|
|
exp: d.exp,
|
|
fracDigits: d.fracDigits,
|
|
}
|
|
}
|
|
|
|
// Add returns d + d2.
|
|
func (d Decimal) Add(d2 Decimal) Decimal {
|
|
baseExp := min(d.exp, d2.exp)
|
|
rd := d.rescale(baseExp)
|
|
rd2 := d2.rescale(baseExp)
|
|
|
|
d3Value := new(big.Int).Add(rd.value, rd2.value)
|
|
return Decimal{
|
|
value: d3Value,
|
|
exp: baseExp,
|
|
fracDigits: fracDigitsPlus(d.fracDigits, d2.fracDigits),
|
|
}
|
|
}
|
|
|
|
// Sub returns d - d2.
|
|
func (d Decimal) Sub(d2 Decimal) Decimal {
|
|
baseExp := min(d.exp, d2.exp)
|
|
rd := d.rescale(baseExp)
|
|
rd2 := d2.rescale(baseExp)
|
|
|
|
d3Value := new(big.Int).Sub(rd.value, rd2.value)
|
|
return Decimal{
|
|
value: d3Value,
|
|
exp: baseExp,
|
|
fracDigits: fracDigitsPlus(d.fracDigits, d2.fracDigits),
|
|
}
|
|
}
|
|
|
|
// Mul returns d * d2.
|
|
func (d Decimal) Mul(d2 Decimal) Decimal {
|
|
d.ensureInitialized()
|
|
d2.ensureInitialized()
|
|
|
|
expInt64 := int64(d.exp) + int64(d2.exp)
|
|
if expInt64 > math.MaxInt32 || expInt64 < math.MinInt32 {
|
|
// It is better to panic than to give incorrect results, as
|
|
// decimals are usually used for money.
|
|
panic(fmt.Sprintf("exponent %v overflows an int32!", expInt64))
|
|
}
|
|
|
|
d3Value := new(big.Int).Mul(d.value, d2.value)
|
|
val := Decimal{
|
|
value: d3Value,
|
|
exp: int32(expInt64),
|
|
fracDigits: fracDigitsMul(d.fracDigits, d2.fracDigits),
|
|
}
|
|
if val.exp < -(MaxFractionDigits) {
|
|
val = val.Round(MaxFractionDigits)
|
|
}
|
|
return val
|
|
}
|
|
|
|
// Div returns d / d2. If it doesn't divide exactly, the result will have
|
|
// DivisionPrecision digits after the decimal point.
|
|
func (d Decimal) Div(d2 Decimal) Decimal {
|
|
// Division is hard, use Rat to do it.
|
|
ratNum := d.Rat()
|
|
ratDenom := d2.Rat()
|
|
|
|
quoRat := big.NewRat(0, 1).Quo(ratNum, ratDenom)
|
|
|
|
// Converting from Rat to Decimal inefficiently for now.
|
|
ret, err := ParseDecimal(quoRat.FloatString(MaxFractionDigits + 1))
|
|
if err != nil {
|
|
panic(err) // This should never happen.
|
|
}
|
|
// To pass test "2 / 3 * 3 < 2" -> "1".
|
|
ret = ret.Truncate(MaxFractionDigits)
|
|
ret.fracDigits = fracDigitsDiv(d.fracDigits)
|
|
return ret
|
|
}
|
|
|
|
// Cmp compares the numbers represented by d and d2, and returns:
|
|
//
|
|
// -1 if d < d2
|
|
// 0 if d == d2
|
|
// +1 if d > d2
|
|
//
|
|
func (d Decimal) Cmp(d2 Decimal) int {
|
|
baseExp := min(d.exp, d2.exp)
|
|
rd := d.rescale(baseExp)
|
|
rd2 := d2.rescale(baseExp)
|
|
|
|
return rd.value.Cmp(rd2.value)
|
|
}
|
|
|
|
// Equals returns whether the numbers represented by d and d2 are equal.
|
|
func (d Decimal) Equals(d2 Decimal) bool {
|
|
return d.Cmp(d2) == 0
|
|
}
|
|
|
|
// Exponent returns the exponent, or scale component of the decimal.
|
|
func (d Decimal) Exponent() int32 {
|
|
return d.exp
|
|
}
|
|
|
|
// FracDigits returns the number of fractional digits of the decimal.
|
|
func (d Decimal) FracDigits() int32 {
|
|
return d.fracDigits
|
|
}
|
|
|
|
// IntPart returns the integer component of the decimal.
|
|
func (d Decimal) IntPart() int64 {
|
|
scaledD := d.rescale(0)
|
|
return scaledD.value.Int64()
|
|
}
|
|
|
|
// Rat returns a rational number representation of the decimal.
|
|
func (d Decimal) Rat() *big.Rat {
|
|
d.ensureInitialized()
|
|
if d.exp <= 0 {
|
|
// It must negate after casting to prevent int32 overflow.
|
|
denom := new(big.Int).Exp(tenInt, big.NewInt(-int64(d.exp)), nil)
|
|
return new(big.Rat).SetFrac(d.value, denom)
|
|
}
|
|
|
|
mul := new(big.Int).Exp(tenInt, big.NewInt(int64(d.exp)), nil)
|
|
num := new(big.Int).Mul(d.value, mul)
|
|
return new(big.Rat).SetFrac(num, oneInt)
|
|
}
|
|
|
|
// Float64 returns the nearest float64 value for d and a bool indicating
|
|
// whether f represents d exactly.
|
|
// For more details, see the documentation for big.Rat.Float64.
|
|
func (d Decimal) Float64() (f float64, exact bool) {
|
|
return d.Rat().Float64()
|
|
}
|
|
|
|
// String returns the string representation of the decimal
|
|
// with the fixed point.
|
|
//
|
|
// Example:
|
|
//
|
|
// d := New(-12345, -3)
|
|
// println(d.String())
|
|
//
|
|
// Output:
|
|
//
|
|
// -12.345
|
|
//
|
|
func (d Decimal) String() string {
|
|
return d.StringFixed(d.fracDigits)
|
|
}
|
|
|
|
// StringFixed returns a rounded fixed-point string with places digits after
|
|
// the decimal point.
|
|
//
|
|
// Example:
|
|
//
|
|
// NewFromFloat(0).StringFixed(2) // output: "0.00"
|
|
// NewFromFloat(0).StringFixed(0) // output: "0"
|
|
// NewFromFloat(5.45).StringFixed(0) // output: "5"
|
|
// NewFromFloat(5.45).StringFixed(1) // output: "5.5"
|
|
// NewFromFloat(5.45).StringFixed(2) // output: "5.45"
|
|
// NewFromFloat(5.45).StringFixed(3) // output: "5.450"
|
|
// NewFromFloat(545).StringFixed(-1) // output: "550"
|
|
//
|
|
func (d Decimal) StringFixed(places int32) string {
|
|
rounded := d.Round(places)
|
|
return rounded.string(false)
|
|
}
|
|
|
|
// Round rounds the decimal to places decimal places.
|
|
// If places < 0, it will round the integer part to the nearest 10^(-places).
|
|
//
|
|
// Example:
|
|
//
|
|
// NewFromFloat(5.45).Round(1).String() // output: "5.5"
|
|
// NewFromFloat(545).Round(-1).String() // output: "550"
|
|
//
|
|
func (d Decimal) Round(places int32) Decimal {
|
|
// Truncate to places + 1.
|
|
ret := d.rescale(-places - 1)
|
|
|
|
// Add sign(d) * 0.5.
|
|
if ret.value.Sign() < 0 {
|
|
ret.value.Sub(ret.value, fiveInt)
|
|
} else {
|
|
ret.value.Add(ret.value, fiveInt)
|
|
}
|
|
|
|
// Floor for positive numbers, Ceil for negative numbers.
|
|
_, m := ret.value.DivMod(ret.value, tenInt, new(big.Int))
|
|
ret.exp++
|
|
if ret.value.Sign() < 0 && m.Cmp(zeroInt) != 0 {
|
|
ret.value.Add(ret.value, oneInt)
|
|
}
|
|
ret.fracDigits = places
|
|
return ret
|
|
}
|
|
|
|
// Floor returns the nearest integer value less than or equal to d.
|
|
func (d Decimal) Floor() Decimal {
|
|
d.ensureInitialized()
|
|
|
|
exp := big.NewInt(10)
|
|
|
|
// It must negate after casting to prevent int32 overflow.
|
|
exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
|
|
|
|
z := new(big.Int).Div(d.value, exp)
|
|
return Decimal{value: z, exp: 0}
|
|
}
|
|
|
|
// Ceil returns the nearest integer value greater than or equal to d.
|
|
func (d Decimal) Ceil() Decimal {
|
|
d.ensureInitialized()
|
|
|
|
exp := big.NewInt(10)
|
|
|
|
// It must negate after casting to prevent int32 overflow.
|
|
exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
|
|
|
|
z, m := new(big.Int).DivMod(d.value, exp, new(big.Int))
|
|
if m.Cmp(zeroInt) != 0 {
|
|
z.Add(z, oneInt)
|
|
}
|
|
return Decimal{value: z, exp: 0}
|
|
}
|
|
|
|
// Truncate truncates off digits from the number, without rounding.
|
|
//
|
|
// NOTE: precision is the last digit that will not be truncated (must be >= 0).
|
|
//
|
|
// Example:
|
|
//
|
|
// decimal.NewFromString("123.456").Truncate(2).String() // "123.45"
|
|
//
|
|
func (d Decimal) Truncate(precision int32) Decimal {
|
|
d.ensureInitialized()
|
|
if precision >= 0 && -precision > d.exp {
|
|
d = d.rescale(-precision)
|
|
}
|
|
d.fracDigits = precision
|
|
return d
|
|
}
|
|
|
|
// UnmarshalJSON implements the json.Unmarshaler interface.
|
|
func (d *Decimal) UnmarshalJSON(decimalBytes []byte) error {
|
|
str, err := unquoteIfQuoted(decimalBytes)
|
|
if err != nil {
|
|
return fmt.Errorf("Error decoding string '%s': %s", decimalBytes, err)
|
|
}
|
|
|
|
decimal, err := ParseDecimal(str)
|
|
*d = decimal
|
|
if err != nil {
|
|
return fmt.Errorf("Error decoding string '%s': %s", str, err)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// MarshalJSON implements the json.Marshaler interface.
|
|
func (d Decimal) MarshalJSON() ([]byte, error) {
|
|
str := "\"" + d.String() + "\""
|
|
return []byte(str), nil
|
|
}
|
|
|
|
// Scan implements the sql.Scanner interface for database deserialization.
|
|
func (d *Decimal) Scan(value interface{}) error {
|
|
str, err := unquoteIfQuoted(value)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
*d, err = ParseDecimal(str)
|
|
|
|
return err
|
|
}
|
|
|
|
// Value implements the driver.Valuer interface for database serialization.
|
|
func (d Decimal) Value() (driver.Value, error) {
|
|
return d.String(), nil
|
|
}
|
|
|
|
// BigIntValue returns the *bit.Int value member of decimal.
|
|
func (d Decimal) BigIntValue() *big.Int {
|
|
return d.value
|
|
}
|
|
|
|
// UnmarshalText implements the encoding.TextUnmarshaler interface for XML
|
|
// deserialization.
|
|
func (d *Decimal) UnmarshalText(text []byte) error {
|
|
str := string(text)
|
|
|
|
dec, err := ParseDecimal(str)
|
|
*d = dec
|
|
if err != nil {
|
|
return fmt.Errorf("Error decoding string '%s': %s", str, err)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// MarshalText implements the encoding.TextMarshaler interface for XML
|
|
// serialization.
|
|
func (d Decimal) MarshalText() (text []byte, err error) {
|
|
return []byte(d.String()), nil
|
|
}
|
|
|
|
// StringScaled first scales the decimal then calls .String() on it.
|
|
// NOTE: buggy, unintuitive, and DEPRECATED! Use StringFixed instead.
|
|
func (d Decimal) StringScaled(exp int32) string {
|
|
return d.rescale(exp).String()
|
|
}
|
|
|
|
func (d Decimal) string(trimTrailingZeros bool) string {
|
|
if d.exp >= 0 {
|
|
return d.rescale(0).value.String()
|
|
}
|
|
|
|
abs := new(big.Int).Abs(d.value)
|
|
str := abs.String()
|
|
|
|
var intPart, fractionalPart string
|
|
|
|
// this cast to int will cause bugs if d.exp == INT_MIN
|
|
// and you are on a 32-bit machine. Won't fix this super-edge case.
|
|
dExpInt := int(d.exp)
|
|
if len(str) > -dExpInt {
|
|
intPart = str[:len(str)+dExpInt]
|
|
fractionalPart = str[len(str)+dExpInt:]
|
|
} else {
|
|
intPart = "0"
|
|
|
|
num0s := -dExpInt - len(str)
|
|
fractionalPart = strings.Repeat("0", num0s) + str
|
|
}
|
|
|
|
if trimTrailingZeros {
|
|
i := len(fractionalPart) - 1
|
|
for ; i >= 0; i-- {
|
|
if fractionalPart[i] != '0' {
|
|
break
|
|
}
|
|
}
|
|
fractionalPart = fractionalPart[:i+1]
|
|
}
|
|
|
|
number := intPart
|
|
if len(fractionalPart) > 0 {
|
|
number += "." + fractionalPart
|
|
}
|
|
|
|
if d.value.Sign() < 0 {
|
|
return "-" + number
|
|
}
|
|
|
|
return number
|
|
}
|
|
|
|
func (d *Decimal) ensureInitialized() {
|
|
if d.value == nil {
|
|
d.value = new(big.Int)
|
|
}
|
|
}
|
|
|
|
func min(x, y int32) int32 {
|
|
if x >= y {
|
|
return y
|
|
}
|
|
return x
|
|
}
|
|
|
|
func max(x, y int32) int32 {
|
|
if x >= y {
|
|
return x
|
|
}
|
|
return y
|
|
}
|
|
|
|
func round(n float64) int64 {
|
|
if n < 0 {
|
|
return int64(n - 0.5)
|
|
}
|
|
return int64(n + 0.5)
|
|
}
|
|
|
|
func unquoteIfQuoted(value interface{}) (string, error) {
|
|
bytes, ok := value.([]byte)
|
|
if !ok {
|
|
return "", fmt.Errorf("Could not convert value '%+v' to byte array",
|
|
value)
|
|
}
|
|
|
|
// If the amount is quoted, strip the quotes.
|
|
if len(bytes) > 2 && bytes[0] == '"' && bytes[len(bytes)-1] == '"' {
|
|
bytes = bytes[1 : len(bytes)-1]
|
|
}
|
|
return string(bytes), nil
|
|
}
|
|
|
|
func fracDigitsDefault(exp int32) int32 {
|
|
if exp < 0 {
|
|
return min(MaxFractionDigits, -exp)
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
func fracDigitsPlus(x, y int32) int32 {
|
|
return max(x, y)
|
|
}
|
|
|
|
func fracDigitsDiv(x int32) int32 {
|
|
return min(x+DivIncreasePrecision, MaxFractionDigits)
|
|
}
|
|
|
|
func fracDigitsMul(a, b int32) int32 {
|
|
return min(MaxFractionDigits, a+b)
|
|
}
|