0
0
Fork 0
mirror of https://github.com/go-gitea/gitea synced 2024-12-23 23:24:30 +01:00
gitea/vendor/github.com/issue9/identicon/polygon.go
6543 57b6f83191
Update github.com/issue9/identicon from untagged to v1.0.1 (#11359)
Co-authored-by: zeripath <art27@cantab.net>
2020-05-10 06:23:17 -04:00

69 lines
2.1 KiB
Go
Vendored
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2015 by caixw, All rights reserved.
// Use of this source code is governed by a MIT
// license that can be found in the LICENSE file.
package identicon
var (
// 4个元素分别表示 cos(0),cos(90),cos(180),cos(270)
cos = []float64{1, 0, -1, 0}
// 4个元素分别表示 sin(0),sin(90),sin(180),sin(270)
sin = []float64{0, 1, 0, -1}
)
// 将 points 中的所有点,以 x,y 为原点旋转 angle 个角度。
// angle 取值只能是 [0,1,2,3],分别表示 [090180270]
func rotate(points []float64, x, y float64, angle int) {
if angle < 0 || angle > 3 {
panic("rotate:参数angle必须0,1,2,3三值之一")
}
for i := 0; i < len(points); i += 2 {
px := points[i] - x
py := points[i+1] - y
points[i] = px*cos[angle] - py*sin[angle] + x
points[i+1] = px*sin[angle] + py*cos[angle] + y
}
}
// 判断某个点是否在多边形之内,不包含构成多边形的线和点
// x,y 需要判断的点坐标
// points 组成多边形的所顶点,每两个元素表示一点顶点,其中最后一个顶点必须与第一个顶点相同。
func pointInPolygon(x float64, y float64, points []float64) bool {
if len(points) < 8 { // 只有2个以上的点才能组成闭合多边形
return false
}
// 大致算法如下:
// 把整个平面以给定的测试点为原点分两部分:
// - y>0包含(x>0 && y==0)
// - y<0包含(x<0 && y==0)
// 依次扫描每一个点,当该点与前一个点处于不同部分时(即一个在 y>0 区,一个在 y<0 区),
// 则判断从前一点到当前点是顺时针还是逆时针(以给定的测试点为原点),如果是顺时针 r++,否则 r--。
// 结果为2==abs(r)。
r := 0
x1, y1 := points[0], points[1]
prev := (y1 > y) || ((x1 > x) && (y1 == y))
for i := 2; i < len(points); i += 2 {
x2, y2 := points[i], points[i+1]
curr := (y2 > y) || ((x2 > x) && (y2 == y))
if curr == prev {
x1, y1 = x2, y2
continue
}
mul := (x1-x)*(y2-y) - (x2-x)*(y1-y)
if mul > 0 {
r++
} else if mul < 0 {
r--
}
x1, y1 = x2, y2
prev = curr
}
return r == 2 || r == -2
}