mirror of
https://github.com/go-gitea/gitea
synced 2024-12-24 06:55:04 +01:00
b6a95a8cb3
* Dropped unused codekit config * Integrated dynamic and static bindata for public * Ignore public bindata * Add a general generate make task * Integrated flexible public assets into web command * Updated vendoring, added all missiong govendor deps * Made the linter happy with the bindata and dynamic code * Moved public bindata definition to modules directory * Ignoring the new bindata path now * Updated to the new public modules import path * Updated public bindata command and drop the new prefix
1422 lines
36 KiB
Go
1422 lines
36 KiB
Go
// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
|
|
// Use of this source code is governed by a MIT license found in the LICENSE file.
|
|
|
|
package codec
|
|
|
|
import (
|
|
"encoding"
|
|
"fmt"
|
|
"io"
|
|
"reflect"
|
|
"sort"
|
|
"sync"
|
|
)
|
|
|
|
const (
|
|
defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
|
|
)
|
|
|
|
// AsSymbolFlag defines what should be encoded as symbols.
|
|
type AsSymbolFlag uint8
|
|
|
|
const (
|
|
// AsSymbolDefault is default.
|
|
// Currently, this means only encode struct field names as symbols.
|
|
// The default is subject to change.
|
|
AsSymbolDefault AsSymbolFlag = iota
|
|
|
|
// AsSymbolAll means encode anything which could be a symbol as a symbol.
|
|
AsSymbolAll = 0xfe
|
|
|
|
// AsSymbolNone means do not encode anything as a symbol.
|
|
AsSymbolNone = 1 << iota
|
|
|
|
// AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
|
|
AsSymbolMapStringKeysFlag
|
|
|
|
// AsSymbolStructFieldName means encode struct field names as symbols.
|
|
AsSymbolStructFieldNameFlag
|
|
)
|
|
|
|
// encWriter abstracts writing to a byte array or to an io.Writer.
|
|
type encWriter interface {
|
|
writeb([]byte)
|
|
writestr(string)
|
|
writen1(byte)
|
|
writen2(byte, byte)
|
|
atEndOfEncode()
|
|
}
|
|
|
|
// encDriver abstracts the actual codec (binc vs msgpack, etc)
|
|
type encDriver interface {
|
|
IsBuiltinType(rt uintptr) bool
|
|
EncodeBuiltin(rt uintptr, v interface{})
|
|
EncodeNil()
|
|
EncodeInt(i int64)
|
|
EncodeUint(i uint64)
|
|
EncodeBool(b bool)
|
|
EncodeFloat32(f float32)
|
|
EncodeFloat64(f float64)
|
|
// encodeExtPreamble(xtag byte, length int)
|
|
EncodeRawExt(re *RawExt, e *Encoder)
|
|
EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
|
|
EncodeArrayStart(length int)
|
|
EncodeMapStart(length int)
|
|
EncodeString(c charEncoding, v string)
|
|
EncodeSymbol(v string)
|
|
EncodeStringBytes(c charEncoding, v []byte)
|
|
//TODO
|
|
//encBignum(f *big.Int)
|
|
//encStringRunes(c charEncoding, v []rune)
|
|
|
|
reset()
|
|
}
|
|
|
|
type encDriverAsis interface {
|
|
EncodeAsis(v []byte)
|
|
}
|
|
|
|
type encNoSeparator struct{}
|
|
|
|
func (_ encNoSeparator) EncodeEnd() {}
|
|
|
|
type ioEncWriterWriter interface {
|
|
WriteByte(c byte) error
|
|
WriteString(s string) (n int, err error)
|
|
Write(p []byte) (n int, err error)
|
|
}
|
|
|
|
type ioEncStringWriter interface {
|
|
WriteString(s string) (n int, err error)
|
|
}
|
|
|
|
type EncodeOptions struct {
|
|
// Encode a struct as an array, and not as a map
|
|
StructToArray bool
|
|
|
|
// Canonical representation means that encoding a value will always result in the same
|
|
// sequence of bytes.
|
|
//
|
|
// This only affects maps, as the iteration order for maps is random.
|
|
//
|
|
// The implementation MAY use the natural sort order for the map keys if possible:
|
|
//
|
|
// - If there is a natural sort order (ie for number, bool, string or []byte keys),
|
|
// then the map keys are first sorted in natural order and then written
|
|
// with corresponding map values to the strema.
|
|
// - If there is no natural sort order, then the map keys will first be
|
|
// encoded into []byte, and then sorted,
|
|
// before writing the sorted keys and the corresponding map values to the stream.
|
|
//
|
|
Canonical bool
|
|
|
|
// CheckCircularRef controls whether we check for circular references
|
|
// and error fast during an encode.
|
|
//
|
|
// If enabled, an error is received if a pointer to a struct
|
|
// references itself either directly or through one of its fields (iteratively).
|
|
//
|
|
// This is opt-in, as there may be a performance hit to checking circular references.
|
|
CheckCircularRef bool
|
|
|
|
// AsSymbols defines what should be encoded as symbols.
|
|
//
|
|
// Encoding as symbols can reduce the encoded size significantly.
|
|
//
|
|
// However, during decoding, each string to be encoded as a symbol must
|
|
// be checked to see if it has been seen before. Consequently, encoding time
|
|
// will increase if using symbols, because string comparisons has a clear cost.
|
|
//
|
|
// Sample values:
|
|
// AsSymbolNone
|
|
// AsSymbolAll
|
|
// AsSymbolMapStringKeys
|
|
// AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
|
|
AsSymbols AsSymbolFlag
|
|
}
|
|
|
|
// ---------------------------------------------
|
|
|
|
type simpleIoEncWriterWriter struct {
|
|
w io.Writer
|
|
bw io.ByteWriter
|
|
sw ioEncStringWriter
|
|
bs [1]byte
|
|
}
|
|
|
|
func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
|
|
if o.bw != nil {
|
|
return o.bw.WriteByte(c)
|
|
}
|
|
// _, err = o.w.Write([]byte{c})
|
|
o.bs[0] = c
|
|
_, err = o.w.Write(o.bs[:])
|
|
return
|
|
}
|
|
|
|
func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
|
|
if o.sw != nil {
|
|
return o.sw.WriteString(s)
|
|
}
|
|
// return o.w.Write([]byte(s))
|
|
return o.w.Write(bytesView(s))
|
|
}
|
|
|
|
func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
|
|
return o.w.Write(p)
|
|
}
|
|
|
|
// ----------------------------------------
|
|
|
|
// ioEncWriter implements encWriter and can write to an io.Writer implementation
|
|
type ioEncWriter struct {
|
|
w ioEncWriterWriter
|
|
s simpleIoEncWriterWriter
|
|
// x [8]byte // temp byte array re-used internally for efficiency
|
|
}
|
|
|
|
func (z *ioEncWriter) writeb(bs []byte) {
|
|
if len(bs) == 0 {
|
|
return
|
|
}
|
|
n, err := z.w.Write(bs)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
if n != len(bs) {
|
|
panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n))
|
|
}
|
|
}
|
|
|
|
func (z *ioEncWriter) writestr(s string) {
|
|
n, err := z.w.WriteString(s)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
if n != len(s) {
|
|
panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n))
|
|
}
|
|
}
|
|
|
|
func (z *ioEncWriter) writen1(b byte) {
|
|
if err := z.w.WriteByte(b); err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
|
|
func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
|
|
z.writen1(b1)
|
|
z.writen1(b2)
|
|
}
|
|
|
|
func (z *ioEncWriter) atEndOfEncode() {}
|
|
|
|
// ----------------------------------------
|
|
|
|
// bytesEncWriter implements encWriter and can write to an byte slice.
|
|
// It is used by Marshal function.
|
|
type bytesEncWriter struct {
|
|
b []byte
|
|
c int // cursor
|
|
out *[]byte // write out on atEndOfEncode
|
|
}
|
|
|
|
func (z *bytesEncWriter) writeb(s []byte) {
|
|
if len(s) > 0 {
|
|
c := z.grow(len(s))
|
|
copy(z.b[c:], s)
|
|
}
|
|
}
|
|
|
|
func (z *bytesEncWriter) writestr(s string) {
|
|
if len(s) > 0 {
|
|
c := z.grow(len(s))
|
|
copy(z.b[c:], s)
|
|
}
|
|
}
|
|
|
|
func (z *bytesEncWriter) writen1(b1 byte) {
|
|
c := z.grow(1)
|
|
z.b[c] = b1
|
|
}
|
|
|
|
func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
|
|
c := z.grow(2)
|
|
z.b[c] = b1
|
|
z.b[c+1] = b2
|
|
}
|
|
|
|
func (z *bytesEncWriter) atEndOfEncode() {
|
|
*(z.out) = z.b[:z.c]
|
|
}
|
|
|
|
func (z *bytesEncWriter) grow(n int) (oldcursor int) {
|
|
oldcursor = z.c
|
|
z.c = oldcursor + n
|
|
if z.c > len(z.b) {
|
|
if z.c > cap(z.b) {
|
|
// appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
|
|
// bytes.Buffer model (2*cap + n): much better
|
|
// bs := make([]byte, 2*cap(z.b)+n)
|
|
bs := make([]byte, growCap(cap(z.b), 1, n))
|
|
copy(bs, z.b[:oldcursor])
|
|
z.b = bs
|
|
} else {
|
|
z.b = z.b[:cap(z.b)]
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// ---------------------------------------------
|
|
|
|
type encFnInfo struct {
|
|
e *Encoder
|
|
ti *typeInfo
|
|
xfFn Ext
|
|
xfTag uint64
|
|
seq seqType
|
|
}
|
|
|
|
func (f *encFnInfo) builtin(rv reflect.Value) {
|
|
f.e.e.EncodeBuiltin(f.ti.rtid, rv.Interface())
|
|
}
|
|
|
|
func (f *encFnInfo) rawExt(rv reflect.Value) {
|
|
// rev := rv.Interface().(RawExt)
|
|
// f.e.e.EncodeRawExt(&rev, f.e)
|
|
var re *RawExt
|
|
if rv.CanAddr() {
|
|
re = rv.Addr().Interface().(*RawExt)
|
|
} else {
|
|
rev := rv.Interface().(RawExt)
|
|
re = &rev
|
|
}
|
|
f.e.e.EncodeRawExt(re, f.e)
|
|
}
|
|
|
|
func (f *encFnInfo) ext(rv reflect.Value) {
|
|
// if this is a struct|array and it was addressable, then pass the address directly (not the value)
|
|
if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
|
|
rv = rv.Addr()
|
|
}
|
|
f.e.e.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
|
|
}
|
|
|
|
func (f *encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
|
|
if indir == 0 {
|
|
v = rv.Interface()
|
|
} else if indir == -1 {
|
|
// If a non-pointer was passed to Encode(), then that value is not addressable.
|
|
// Take addr if addresable, else copy value to an addressable value.
|
|
if rv.CanAddr() {
|
|
v = rv.Addr().Interface()
|
|
} else {
|
|
rv2 := reflect.New(rv.Type())
|
|
rv2.Elem().Set(rv)
|
|
v = rv2.Interface()
|
|
// fmt.Printf("rv.Type: %v, rv2.Type: %v, v: %v\n", rv.Type(), rv2.Type(), v)
|
|
}
|
|
} else {
|
|
for j := int8(0); j < indir; j++ {
|
|
if rv.IsNil() {
|
|
f.e.e.EncodeNil()
|
|
return
|
|
}
|
|
rv = rv.Elem()
|
|
}
|
|
v = rv.Interface()
|
|
}
|
|
return v, true
|
|
}
|
|
|
|
func (f *encFnInfo) selferMarshal(rv reflect.Value) {
|
|
if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
|
|
v.(Selfer).CodecEncodeSelf(f.e)
|
|
}
|
|
}
|
|
|
|
func (f *encFnInfo) binaryMarshal(rv reflect.Value) {
|
|
if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
|
|
bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
|
|
f.e.marshal(bs, fnerr, false, c_RAW)
|
|
}
|
|
}
|
|
|
|
func (f *encFnInfo) textMarshal(rv reflect.Value) {
|
|
if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
|
|
// debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
|
|
bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
|
|
f.e.marshal(bs, fnerr, false, c_UTF8)
|
|
}
|
|
}
|
|
|
|
func (f *encFnInfo) jsonMarshal(rv reflect.Value) {
|
|
if v, proceed := f.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
|
|
bs, fnerr := v.(jsonMarshaler).MarshalJSON()
|
|
f.e.marshal(bs, fnerr, true, c_UTF8)
|
|
}
|
|
}
|
|
|
|
func (f *encFnInfo) kBool(rv reflect.Value) {
|
|
f.e.e.EncodeBool(rv.Bool())
|
|
}
|
|
|
|
func (f *encFnInfo) kString(rv reflect.Value) {
|
|
f.e.e.EncodeString(c_UTF8, rv.String())
|
|
}
|
|
|
|
func (f *encFnInfo) kFloat64(rv reflect.Value) {
|
|
f.e.e.EncodeFloat64(rv.Float())
|
|
}
|
|
|
|
func (f *encFnInfo) kFloat32(rv reflect.Value) {
|
|
f.e.e.EncodeFloat32(float32(rv.Float()))
|
|
}
|
|
|
|
func (f *encFnInfo) kInt(rv reflect.Value) {
|
|
f.e.e.EncodeInt(rv.Int())
|
|
}
|
|
|
|
func (f *encFnInfo) kUint(rv reflect.Value) {
|
|
f.e.e.EncodeUint(rv.Uint())
|
|
}
|
|
|
|
func (f *encFnInfo) kInvalid(rv reflect.Value) {
|
|
f.e.e.EncodeNil()
|
|
}
|
|
|
|
func (f *encFnInfo) kErr(rv reflect.Value) {
|
|
f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
|
|
}
|
|
|
|
func (f *encFnInfo) kSlice(rv reflect.Value) {
|
|
ti := f.ti
|
|
// array may be non-addressable, so we have to manage with care
|
|
// (don't call rv.Bytes, rv.Slice, etc).
|
|
// E.g. type struct S{B [2]byte};
|
|
// Encode(S{}) will bomb on "panic: slice of unaddressable array".
|
|
e := f.e
|
|
if f.seq != seqTypeArray {
|
|
if rv.IsNil() {
|
|
e.e.EncodeNil()
|
|
return
|
|
}
|
|
// If in this method, then there was no extension function defined.
|
|
// So it's okay to treat as []byte.
|
|
if ti.rtid == uint8SliceTypId {
|
|
e.e.EncodeStringBytes(c_RAW, rv.Bytes())
|
|
return
|
|
}
|
|
}
|
|
cr := e.cr
|
|
rtelem := ti.rt.Elem()
|
|
l := rv.Len()
|
|
if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
|
|
switch f.seq {
|
|
case seqTypeArray:
|
|
// if l == 0 { e.e.encodeStringBytes(c_RAW, nil) } else
|
|
if rv.CanAddr() {
|
|
e.e.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
|
|
} else {
|
|
var bs []byte
|
|
if l <= cap(e.b) {
|
|
bs = e.b[:l]
|
|
} else {
|
|
bs = make([]byte, l)
|
|
}
|
|
reflect.Copy(reflect.ValueOf(bs), rv)
|
|
// TODO: Test that reflect.Copy works instead of manual one-by-one
|
|
// for i := 0; i < l; i++ {
|
|
// bs[i] = byte(rv.Index(i).Uint())
|
|
// }
|
|
e.e.EncodeStringBytes(c_RAW, bs)
|
|
}
|
|
case seqTypeSlice:
|
|
e.e.EncodeStringBytes(c_RAW, rv.Bytes())
|
|
case seqTypeChan:
|
|
bs := e.b[:0]
|
|
// do not use range, so that the number of elements encoded
|
|
// does not change, and encoding does not hang waiting on someone to close chan.
|
|
// for b := range rv.Interface().(<-chan byte) {
|
|
// bs = append(bs, b)
|
|
// }
|
|
ch := rv.Interface().(<-chan byte)
|
|
for i := 0; i < l; i++ {
|
|
bs = append(bs, <-ch)
|
|
}
|
|
e.e.EncodeStringBytes(c_RAW, bs)
|
|
}
|
|
return
|
|
}
|
|
|
|
if ti.mbs {
|
|
if l%2 == 1 {
|
|
e.errorf("mapBySlice requires even slice length, but got %v", l)
|
|
return
|
|
}
|
|
e.e.EncodeMapStart(l / 2)
|
|
} else {
|
|
e.e.EncodeArrayStart(l)
|
|
}
|
|
|
|
if l > 0 {
|
|
for rtelem.Kind() == reflect.Ptr {
|
|
rtelem = rtelem.Elem()
|
|
}
|
|
// if kind is reflect.Interface, do not pre-determine the
|
|
// encoding type, because preEncodeValue may break it down to
|
|
// a concrete type and kInterface will bomb.
|
|
var fn *encFn
|
|
if rtelem.Kind() != reflect.Interface {
|
|
rtelemid := reflect.ValueOf(rtelem).Pointer()
|
|
fn = e.getEncFn(rtelemid, rtelem, true, true)
|
|
}
|
|
// TODO: Consider perf implication of encoding odd index values as symbols if type is string
|
|
for j := 0; j < l; j++ {
|
|
if cr != nil {
|
|
if ti.mbs {
|
|
if j%2 == 0 {
|
|
cr.sendContainerState(containerMapKey)
|
|
} else {
|
|
cr.sendContainerState(containerMapValue)
|
|
}
|
|
} else {
|
|
cr.sendContainerState(containerArrayElem)
|
|
}
|
|
}
|
|
if f.seq == seqTypeChan {
|
|
if rv2, ok2 := rv.Recv(); ok2 {
|
|
e.encodeValue(rv2, fn)
|
|
} else {
|
|
e.encode(nil) // WE HAVE TO DO SOMETHING, so nil if nothing received.
|
|
}
|
|
} else {
|
|
e.encodeValue(rv.Index(j), fn)
|
|
}
|
|
}
|
|
}
|
|
|
|
if cr != nil {
|
|
if ti.mbs {
|
|
cr.sendContainerState(containerMapEnd)
|
|
} else {
|
|
cr.sendContainerState(containerArrayEnd)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (f *encFnInfo) kStruct(rv reflect.Value) {
|
|
fti := f.ti
|
|
e := f.e
|
|
cr := e.cr
|
|
tisfi := fti.sfip
|
|
toMap := !(fti.toArray || e.h.StructToArray)
|
|
newlen := len(fti.sfi)
|
|
|
|
// Use sync.Pool to reduce allocating slices unnecessarily.
|
|
// The cost of sync.Pool is less than the cost of new allocation.
|
|
pool, poolv, fkvs := encStructPoolGet(newlen)
|
|
|
|
// if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
|
|
if toMap {
|
|
tisfi = fti.sfi
|
|
}
|
|
newlen = 0
|
|
var kv stringRv
|
|
for _, si := range tisfi {
|
|
kv.r = si.field(rv, false)
|
|
if toMap {
|
|
if si.omitEmpty && isEmptyValue(kv.r) {
|
|
continue
|
|
}
|
|
kv.v = si.encName
|
|
} else {
|
|
// use the zero value.
|
|
// if a reference or struct, set to nil (so you do not output too much)
|
|
if si.omitEmpty && isEmptyValue(kv.r) {
|
|
switch kv.r.Kind() {
|
|
case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array,
|
|
reflect.Map, reflect.Slice:
|
|
kv.r = reflect.Value{} //encode as nil
|
|
}
|
|
}
|
|
}
|
|
fkvs[newlen] = kv
|
|
newlen++
|
|
}
|
|
|
|
// debugf(">>>> kStruct: newlen: %v", newlen)
|
|
// sep := !e.be
|
|
ee := e.e //don't dereference everytime
|
|
|
|
if toMap {
|
|
ee.EncodeMapStart(newlen)
|
|
// asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
|
|
asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
|
|
for j := 0; j < newlen; j++ {
|
|
kv = fkvs[j]
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapKey)
|
|
}
|
|
if asSymbols {
|
|
ee.EncodeSymbol(kv.v)
|
|
} else {
|
|
ee.EncodeString(c_UTF8, kv.v)
|
|
}
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapValue)
|
|
}
|
|
e.encodeValue(kv.r, nil)
|
|
}
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapEnd)
|
|
}
|
|
} else {
|
|
ee.EncodeArrayStart(newlen)
|
|
for j := 0; j < newlen; j++ {
|
|
kv = fkvs[j]
|
|
if cr != nil {
|
|
cr.sendContainerState(containerArrayElem)
|
|
}
|
|
e.encodeValue(kv.r, nil)
|
|
}
|
|
if cr != nil {
|
|
cr.sendContainerState(containerArrayEnd)
|
|
}
|
|
}
|
|
|
|
// do not use defer. Instead, use explicit pool return at end of function.
|
|
// defer has a cost we are trying to avoid.
|
|
// If there is a panic and these slices are not returned, it is ok.
|
|
if pool != nil {
|
|
pool.Put(poolv)
|
|
}
|
|
}
|
|
|
|
// func (f *encFnInfo) kPtr(rv reflect.Value) {
|
|
// debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
|
|
// if rv.IsNil() {
|
|
// f.e.e.encodeNil()
|
|
// return
|
|
// }
|
|
// f.e.encodeValue(rv.Elem())
|
|
// }
|
|
|
|
// func (f *encFnInfo) kInterface(rv reflect.Value) {
|
|
// println("kInterface called")
|
|
// debug.PrintStack()
|
|
// if rv.IsNil() {
|
|
// f.e.e.EncodeNil()
|
|
// return
|
|
// }
|
|
// f.e.encodeValue(rv.Elem(), nil)
|
|
// }
|
|
|
|
func (f *encFnInfo) kMap(rv reflect.Value) {
|
|
ee := f.e.e
|
|
if rv.IsNil() {
|
|
ee.EncodeNil()
|
|
return
|
|
}
|
|
|
|
l := rv.Len()
|
|
ee.EncodeMapStart(l)
|
|
e := f.e
|
|
cr := e.cr
|
|
if l == 0 {
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapEnd)
|
|
}
|
|
return
|
|
}
|
|
var asSymbols bool
|
|
// determine the underlying key and val encFn's for the map.
|
|
// This eliminates some work which is done for each loop iteration i.e.
|
|
// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
|
|
//
|
|
// However, if kind is reflect.Interface, do not pre-determine the
|
|
// encoding type, because preEncodeValue may break it down to
|
|
// a concrete type and kInterface will bomb.
|
|
var keyFn, valFn *encFn
|
|
ti := f.ti
|
|
rtkey := ti.rt.Key()
|
|
rtval := ti.rt.Elem()
|
|
rtkeyid := reflect.ValueOf(rtkey).Pointer()
|
|
// keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
|
|
var keyTypeIsString = rtkeyid == stringTypId
|
|
if keyTypeIsString {
|
|
asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
|
|
} else {
|
|
for rtkey.Kind() == reflect.Ptr {
|
|
rtkey = rtkey.Elem()
|
|
}
|
|
if rtkey.Kind() != reflect.Interface {
|
|
rtkeyid = reflect.ValueOf(rtkey).Pointer()
|
|
keyFn = e.getEncFn(rtkeyid, rtkey, true, true)
|
|
}
|
|
}
|
|
for rtval.Kind() == reflect.Ptr {
|
|
rtval = rtval.Elem()
|
|
}
|
|
if rtval.Kind() != reflect.Interface {
|
|
rtvalid := reflect.ValueOf(rtval).Pointer()
|
|
valFn = e.getEncFn(rtvalid, rtval, true, true)
|
|
}
|
|
mks := rv.MapKeys()
|
|
// for j, lmks := 0, len(mks); j < lmks; j++ {
|
|
|
|
if e.h.Canonical {
|
|
e.kMapCanonical(rtkeyid, rtkey, rv, mks, valFn, asSymbols)
|
|
} else {
|
|
for j := range mks {
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapKey)
|
|
}
|
|
if keyTypeIsString {
|
|
if asSymbols {
|
|
ee.EncodeSymbol(mks[j].String())
|
|
} else {
|
|
ee.EncodeString(c_UTF8, mks[j].String())
|
|
}
|
|
} else {
|
|
e.encodeValue(mks[j], keyFn)
|
|
}
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapValue)
|
|
}
|
|
e.encodeValue(rv.MapIndex(mks[j]), valFn)
|
|
}
|
|
}
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapEnd)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) kMapCanonical(rtkeyid uintptr, rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *encFn, asSymbols bool) {
|
|
ee := e.e
|
|
cr := e.cr
|
|
// we previously did out-of-band if an extension was registered.
|
|
// This is not necessary, as the natural kind is sufficient for ordering.
|
|
|
|
if rtkeyid == uint8SliceTypId {
|
|
mksv := make([]bytesRv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Bytes()
|
|
}
|
|
sort.Sort(bytesRvSlice(mksv))
|
|
for i := range mksv {
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapKey)
|
|
}
|
|
ee.EncodeStringBytes(c_RAW, mksv[i].v)
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapValue)
|
|
}
|
|
e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
|
|
}
|
|
} else {
|
|
switch rtkey.Kind() {
|
|
case reflect.Bool:
|
|
mksv := make([]boolRv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Bool()
|
|
}
|
|
sort.Sort(boolRvSlice(mksv))
|
|
for i := range mksv {
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapKey)
|
|
}
|
|
ee.EncodeBool(mksv[i].v)
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapValue)
|
|
}
|
|
e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
|
|
}
|
|
case reflect.String:
|
|
mksv := make([]stringRv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.String()
|
|
}
|
|
sort.Sort(stringRvSlice(mksv))
|
|
for i := range mksv {
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapKey)
|
|
}
|
|
if asSymbols {
|
|
ee.EncodeSymbol(mksv[i].v)
|
|
} else {
|
|
ee.EncodeString(c_UTF8, mksv[i].v)
|
|
}
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapValue)
|
|
}
|
|
e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
|
|
}
|
|
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
|
|
mksv := make([]uintRv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Uint()
|
|
}
|
|
sort.Sort(uintRvSlice(mksv))
|
|
for i := range mksv {
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapKey)
|
|
}
|
|
ee.EncodeUint(mksv[i].v)
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapValue)
|
|
}
|
|
e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
|
|
}
|
|
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
|
|
mksv := make([]intRv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Int()
|
|
}
|
|
sort.Sort(intRvSlice(mksv))
|
|
for i := range mksv {
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapKey)
|
|
}
|
|
ee.EncodeInt(mksv[i].v)
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapValue)
|
|
}
|
|
e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
|
|
}
|
|
case reflect.Float32:
|
|
mksv := make([]floatRv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Float()
|
|
}
|
|
sort.Sort(floatRvSlice(mksv))
|
|
for i := range mksv {
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapKey)
|
|
}
|
|
ee.EncodeFloat32(float32(mksv[i].v))
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapValue)
|
|
}
|
|
e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
|
|
}
|
|
case reflect.Float64:
|
|
mksv := make([]floatRv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Float()
|
|
}
|
|
sort.Sort(floatRvSlice(mksv))
|
|
for i := range mksv {
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapKey)
|
|
}
|
|
ee.EncodeFloat64(mksv[i].v)
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapValue)
|
|
}
|
|
e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
|
|
}
|
|
default:
|
|
// out-of-band
|
|
// first encode each key to a []byte first, then sort them, then record
|
|
var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
|
|
e2 := NewEncoderBytes(&mksv, e.hh)
|
|
mksbv := make([]bytesRv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksbv[i]
|
|
l := len(mksv)
|
|
e2.MustEncode(k)
|
|
v.r = k
|
|
v.v = mksv[l:]
|
|
// fmt.Printf(">>>>> %s\n", mksv[l:])
|
|
}
|
|
sort.Sort(bytesRvSlice(mksbv))
|
|
for j := range mksbv {
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapKey)
|
|
}
|
|
e.asis(mksbv[j].v)
|
|
if cr != nil {
|
|
cr.sendContainerState(containerMapValue)
|
|
}
|
|
e.encodeValue(rv.MapIndex(mksbv[j].r), valFn)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// --------------------------------------------------
|
|
|
|
// encFn encapsulates the captured variables and the encode function.
|
|
// This way, we only do some calculations one times, and pass to the
|
|
// code block that should be called (encapsulated in a function)
|
|
// instead of executing the checks every time.
|
|
type encFn struct {
|
|
i encFnInfo
|
|
f func(*encFnInfo, reflect.Value)
|
|
}
|
|
|
|
// --------------------------------------------------
|
|
|
|
type encRtidFn struct {
|
|
rtid uintptr
|
|
fn encFn
|
|
}
|
|
|
|
// An Encoder writes an object to an output stream in the codec format.
|
|
type Encoder struct {
|
|
// hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
|
|
e encDriver
|
|
// NOTE: Encoder shouldn't call it's write methods,
|
|
// as the handler MAY need to do some coordination.
|
|
w encWriter
|
|
s []encRtidFn
|
|
ci set
|
|
be bool // is binary encoding
|
|
js bool // is json handle
|
|
|
|
wi ioEncWriter
|
|
wb bytesEncWriter
|
|
|
|
h *BasicHandle
|
|
hh Handle
|
|
|
|
cr containerStateRecv
|
|
as encDriverAsis
|
|
|
|
f map[uintptr]*encFn
|
|
b [scratchByteArrayLen]byte
|
|
}
|
|
|
|
// NewEncoder returns an Encoder for encoding into an io.Writer.
|
|
//
|
|
// For efficiency, Users are encouraged to pass in a memory buffered writer
|
|
// (eg bufio.Writer, bytes.Buffer).
|
|
func NewEncoder(w io.Writer, h Handle) *Encoder {
|
|
e := newEncoder(h)
|
|
e.Reset(w)
|
|
return e
|
|
}
|
|
|
|
// NewEncoderBytes returns an encoder for encoding directly and efficiently
|
|
// into a byte slice, using zero-copying to temporary slices.
|
|
//
|
|
// It will potentially replace the output byte slice pointed to.
|
|
// After encoding, the out parameter contains the encoded contents.
|
|
func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
|
|
e := newEncoder(h)
|
|
e.ResetBytes(out)
|
|
return e
|
|
}
|
|
|
|
func newEncoder(h Handle) *Encoder {
|
|
e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
|
|
_, e.js = h.(*JsonHandle)
|
|
e.e = h.newEncDriver(e)
|
|
e.as, _ = e.e.(encDriverAsis)
|
|
e.cr, _ = e.e.(containerStateRecv)
|
|
return e
|
|
}
|
|
|
|
// Reset the Encoder with a new output stream.
|
|
//
|
|
// This accomodates using the state of the Encoder,
|
|
// where it has "cached" information about sub-engines.
|
|
func (e *Encoder) Reset(w io.Writer) {
|
|
ww, ok := w.(ioEncWriterWriter)
|
|
if ok {
|
|
e.wi.w = ww
|
|
} else {
|
|
sww := &e.wi.s
|
|
sww.w = w
|
|
sww.bw, _ = w.(io.ByteWriter)
|
|
sww.sw, _ = w.(ioEncStringWriter)
|
|
e.wi.w = sww
|
|
//ww = bufio.NewWriterSize(w, defEncByteBufSize)
|
|
}
|
|
e.w = &e.wi
|
|
e.e.reset()
|
|
}
|
|
|
|
func (e *Encoder) ResetBytes(out *[]byte) {
|
|
in := *out
|
|
if in == nil {
|
|
in = make([]byte, defEncByteBufSize)
|
|
}
|
|
e.wb.b, e.wb.out, e.wb.c = in, out, 0
|
|
e.w = &e.wb
|
|
e.e.reset()
|
|
}
|
|
|
|
// func (e *Encoder) sendContainerState(c containerState) {
|
|
// if e.cr != nil {
|
|
// e.cr.sendContainerState(c)
|
|
// }
|
|
// }
|
|
|
|
// Encode writes an object into a stream.
|
|
//
|
|
// Encoding can be configured via the struct tag for the fields.
|
|
// The "codec" key in struct field's tag value is the key name,
|
|
// followed by an optional comma and options.
|
|
// Note that the "json" key is used in the absence of the "codec" key.
|
|
//
|
|
// To set an option on all fields (e.g. omitempty on all fields), you
|
|
// can create a field called _struct, and set flags on it.
|
|
//
|
|
// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
|
|
// - the field's tag is "-", OR
|
|
// - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
|
|
//
|
|
// When encoding as a map, the first string in the tag (before the comma)
|
|
// is the map key string to use when encoding.
|
|
//
|
|
// However, struct values may encode as arrays. This happens when:
|
|
// - StructToArray Encode option is set, OR
|
|
// - the tag on the _struct field sets the "toarray" option
|
|
//
|
|
// Values with types that implement MapBySlice are encoded as stream maps.
|
|
//
|
|
// The empty values (for omitempty option) are false, 0, any nil pointer
|
|
// or interface value, and any array, slice, map, or string of length zero.
|
|
//
|
|
// Anonymous fields are encoded inline except:
|
|
// - the struct tag specifies a replacement name (first value)
|
|
// - the field is of an interface type
|
|
//
|
|
// Examples:
|
|
//
|
|
// // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
|
|
// type MyStruct struct {
|
|
// _struct bool `codec:",omitempty"` //set omitempty for every field
|
|
// Field1 string `codec:"-"` //skip this field
|
|
// Field2 int `codec:"myName"` //Use key "myName" in encode stream
|
|
// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
|
|
// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
|
|
// io.Reader //use key "Reader".
|
|
// MyStruct `codec:"my1" //use key "my1".
|
|
// MyStruct //inline it
|
|
// ...
|
|
// }
|
|
//
|
|
// type MyStruct struct {
|
|
// _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
|
|
// //and encode struct as an array
|
|
// }
|
|
//
|
|
// The mode of encoding is based on the type of the value. When a value is seen:
|
|
// - If a Selfer, call its CodecEncodeSelf method
|
|
// - If an extension is registered for it, call that extension function
|
|
// - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
|
|
// - Else encode it based on its reflect.Kind
|
|
//
|
|
// Note that struct field names and keys in map[string]XXX will be treated as symbols.
|
|
// Some formats support symbols (e.g. binc) and will properly encode the string
|
|
// only once in the stream, and use a tag to refer to it thereafter.
|
|
func (e *Encoder) Encode(v interface{}) (err error) {
|
|
defer panicToErr(&err)
|
|
e.encode(v)
|
|
e.w.atEndOfEncode()
|
|
return
|
|
}
|
|
|
|
// MustEncode is like Encode, but panics if unable to Encode.
|
|
// This provides insight to the code location that triggered the error.
|
|
func (e *Encoder) MustEncode(v interface{}) {
|
|
e.encode(v)
|
|
e.w.atEndOfEncode()
|
|
}
|
|
|
|
// comment out these (Must)Write methods. They were only put there to support cbor.
|
|
// However, users already have access to the streams, and can write directly.
|
|
//
|
|
// // Write allows users write to the Encoder stream directly.
|
|
// func (e *Encoder) Write(bs []byte) (err error) {
|
|
// defer panicToErr(&err)
|
|
// e.w.writeb(bs)
|
|
// return
|
|
// }
|
|
// // MustWrite is like write, but panics if unable to Write.
|
|
// func (e *Encoder) MustWrite(bs []byte) {
|
|
// e.w.writeb(bs)
|
|
// }
|
|
|
|
func (e *Encoder) encode(iv interface{}) {
|
|
// if ics, ok := iv.(Selfer); ok {
|
|
// ics.CodecEncodeSelf(e)
|
|
// return
|
|
// }
|
|
|
|
switch v := iv.(type) {
|
|
case nil:
|
|
e.e.EncodeNil()
|
|
case Selfer:
|
|
v.CodecEncodeSelf(e)
|
|
|
|
case reflect.Value:
|
|
e.encodeValue(v, nil)
|
|
|
|
case string:
|
|
e.e.EncodeString(c_UTF8, v)
|
|
case bool:
|
|
e.e.EncodeBool(v)
|
|
case int:
|
|
e.e.EncodeInt(int64(v))
|
|
case int8:
|
|
e.e.EncodeInt(int64(v))
|
|
case int16:
|
|
e.e.EncodeInt(int64(v))
|
|
case int32:
|
|
e.e.EncodeInt(int64(v))
|
|
case int64:
|
|
e.e.EncodeInt(v)
|
|
case uint:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint8:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint16:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint32:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint64:
|
|
e.e.EncodeUint(v)
|
|
case float32:
|
|
e.e.EncodeFloat32(v)
|
|
case float64:
|
|
e.e.EncodeFloat64(v)
|
|
|
|
case []uint8:
|
|
e.e.EncodeStringBytes(c_RAW, v)
|
|
|
|
case *string:
|
|
e.e.EncodeString(c_UTF8, *v)
|
|
case *bool:
|
|
e.e.EncodeBool(*v)
|
|
case *int:
|
|
e.e.EncodeInt(int64(*v))
|
|
case *int8:
|
|
e.e.EncodeInt(int64(*v))
|
|
case *int16:
|
|
e.e.EncodeInt(int64(*v))
|
|
case *int32:
|
|
e.e.EncodeInt(int64(*v))
|
|
case *int64:
|
|
e.e.EncodeInt(*v)
|
|
case *uint:
|
|
e.e.EncodeUint(uint64(*v))
|
|
case *uint8:
|
|
e.e.EncodeUint(uint64(*v))
|
|
case *uint16:
|
|
e.e.EncodeUint(uint64(*v))
|
|
case *uint32:
|
|
e.e.EncodeUint(uint64(*v))
|
|
case *uint64:
|
|
e.e.EncodeUint(*v)
|
|
case *float32:
|
|
e.e.EncodeFloat32(*v)
|
|
case *float64:
|
|
e.e.EncodeFloat64(*v)
|
|
|
|
case *[]uint8:
|
|
e.e.EncodeStringBytes(c_RAW, *v)
|
|
|
|
default:
|
|
const checkCodecSelfer1 = true // in case T is passed, where *T is a Selfer, still checkCodecSelfer
|
|
if !fastpathEncodeTypeSwitch(iv, e) {
|
|
e.encodeI(iv, false, checkCodecSelfer1)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, sptr uintptr, proceed bool) {
|
|
// use a goto statement instead of a recursive function for ptr/interface.
|
|
TOP:
|
|
switch rv.Kind() {
|
|
case reflect.Ptr:
|
|
if rv.IsNil() {
|
|
e.e.EncodeNil()
|
|
return
|
|
}
|
|
rv = rv.Elem()
|
|
if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
|
|
// TODO: Movable pointers will be an issue here. Future problem.
|
|
sptr = rv.UnsafeAddr()
|
|
break TOP
|
|
}
|
|
goto TOP
|
|
case reflect.Interface:
|
|
if rv.IsNil() {
|
|
e.e.EncodeNil()
|
|
return
|
|
}
|
|
rv = rv.Elem()
|
|
goto TOP
|
|
case reflect.Slice, reflect.Map:
|
|
if rv.IsNil() {
|
|
e.e.EncodeNil()
|
|
return
|
|
}
|
|
case reflect.Invalid, reflect.Func:
|
|
e.e.EncodeNil()
|
|
return
|
|
}
|
|
|
|
proceed = true
|
|
rv2 = rv
|
|
return
|
|
}
|
|
|
|
func (e *Encoder) doEncodeValue(rv reflect.Value, fn *encFn, sptr uintptr,
|
|
checkFastpath, checkCodecSelfer bool) {
|
|
if sptr != 0 {
|
|
if (&e.ci).add(sptr) {
|
|
e.errorf("circular reference found: # %d", sptr)
|
|
}
|
|
}
|
|
if fn == nil {
|
|
rt := rv.Type()
|
|
rtid := reflect.ValueOf(rt).Pointer()
|
|
// fn = e.getEncFn(rtid, rt, true, true)
|
|
fn = e.getEncFn(rtid, rt, checkFastpath, checkCodecSelfer)
|
|
}
|
|
fn.f(&fn.i, rv)
|
|
if sptr != 0 {
|
|
(&e.ci).remove(sptr)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer bool) {
|
|
if rv, sptr, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
|
|
e.doEncodeValue(rv, nil, sptr, checkFastpath, checkCodecSelfer)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) encodeValue(rv reflect.Value, fn *encFn) {
|
|
// if a valid fn is passed, it MUST BE for the dereferenced type of rv
|
|
if rv, sptr, proceed := e.preEncodeValue(rv); proceed {
|
|
e.doEncodeValue(rv, fn, sptr, true, true)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *encFn) {
|
|
// rtid := reflect.ValueOf(rt).Pointer()
|
|
var ok bool
|
|
if useMapForCodecCache {
|
|
fn, ok = e.f[rtid]
|
|
} else {
|
|
for i := range e.s {
|
|
v := &(e.s[i])
|
|
if v.rtid == rtid {
|
|
fn, ok = &(v.fn), true
|
|
break
|
|
}
|
|
}
|
|
}
|
|
if ok {
|
|
return
|
|
}
|
|
|
|
if useMapForCodecCache {
|
|
if e.f == nil {
|
|
e.f = make(map[uintptr]*encFn, initCollectionCap)
|
|
}
|
|
fn = new(encFn)
|
|
e.f[rtid] = fn
|
|
} else {
|
|
if e.s == nil {
|
|
e.s = make([]encRtidFn, 0, initCollectionCap)
|
|
}
|
|
e.s = append(e.s, encRtidFn{rtid: rtid})
|
|
fn = &(e.s[len(e.s)-1]).fn
|
|
}
|
|
|
|
ti := e.h.getTypeInfo(rtid, rt)
|
|
fi := &(fn.i)
|
|
fi.e = e
|
|
fi.ti = ti
|
|
|
|
if checkCodecSelfer && ti.cs {
|
|
fn.f = (*encFnInfo).selferMarshal
|
|
} else if rtid == rawExtTypId {
|
|
fn.f = (*encFnInfo).rawExt
|
|
} else if e.e.IsBuiltinType(rtid) {
|
|
fn.f = (*encFnInfo).builtin
|
|
} else if xfFn := e.h.getExt(rtid); xfFn != nil {
|
|
fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
|
|
fn.f = (*encFnInfo).ext
|
|
} else if supportMarshalInterfaces && e.be && ti.bm {
|
|
fn.f = (*encFnInfo).binaryMarshal
|
|
} else if supportMarshalInterfaces && !e.be && e.js && ti.jm {
|
|
//If JSON, we should check JSONMarshal before textMarshal
|
|
fn.f = (*encFnInfo).jsonMarshal
|
|
} else if supportMarshalInterfaces && !e.be && ti.tm {
|
|
fn.f = (*encFnInfo).textMarshal
|
|
} else {
|
|
rk := rt.Kind()
|
|
if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
|
|
if rt.PkgPath() == "" { // un-named slice or map
|
|
if idx := fastpathAV.index(rtid); idx != -1 {
|
|
fn.f = fastpathAV[idx].encfn
|
|
}
|
|
} else {
|
|
ok = false
|
|
// use mapping for underlying type if there
|
|
var rtu reflect.Type
|
|
if rk == reflect.Map {
|
|
rtu = reflect.MapOf(rt.Key(), rt.Elem())
|
|
} else {
|
|
rtu = reflect.SliceOf(rt.Elem())
|
|
}
|
|
rtuid := reflect.ValueOf(rtu).Pointer()
|
|
if idx := fastpathAV.index(rtuid); idx != -1 {
|
|
xfnf := fastpathAV[idx].encfn
|
|
xrt := fastpathAV[idx].rt
|
|
fn.f = func(xf *encFnInfo, xrv reflect.Value) {
|
|
xfnf(xf, xrv.Convert(xrt))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if fn.f == nil {
|
|
switch rk {
|
|
case reflect.Bool:
|
|
fn.f = (*encFnInfo).kBool
|
|
case reflect.String:
|
|
fn.f = (*encFnInfo).kString
|
|
case reflect.Float64:
|
|
fn.f = (*encFnInfo).kFloat64
|
|
case reflect.Float32:
|
|
fn.f = (*encFnInfo).kFloat32
|
|
case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
|
|
fn.f = (*encFnInfo).kInt
|
|
case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16, reflect.Uintptr:
|
|
fn.f = (*encFnInfo).kUint
|
|
case reflect.Invalid:
|
|
fn.f = (*encFnInfo).kInvalid
|
|
case reflect.Chan:
|
|
fi.seq = seqTypeChan
|
|
fn.f = (*encFnInfo).kSlice
|
|
case reflect.Slice:
|
|
fi.seq = seqTypeSlice
|
|
fn.f = (*encFnInfo).kSlice
|
|
case reflect.Array:
|
|
fi.seq = seqTypeArray
|
|
fn.f = (*encFnInfo).kSlice
|
|
case reflect.Struct:
|
|
fn.f = (*encFnInfo).kStruct
|
|
// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
|
|
// case reflect.Ptr:
|
|
// fn.f = (*encFnInfo).kPtr
|
|
// case reflect.Interface:
|
|
// fn.f = (*encFnInfo).kInterface
|
|
case reflect.Map:
|
|
fn.f = (*encFnInfo).kMap
|
|
default:
|
|
fn.f = (*encFnInfo).kErr
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
|
|
if fnerr != nil {
|
|
panic(fnerr)
|
|
}
|
|
if bs == nil {
|
|
e.e.EncodeNil()
|
|
} else if asis {
|
|
e.asis(bs)
|
|
} else {
|
|
e.e.EncodeStringBytes(c, bs)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) asis(v []byte) {
|
|
if e.as == nil {
|
|
e.w.writeb(v)
|
|
} else {
|
|
e.as.EncodeAsis(v)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) errorf(format string, params ...interface{}) {
|
|
err := fmt.Errorf(format, params...)
|
|
panic(err)
|
|
}
|
|
|
|
// ----------------------------------------
|
|
|
|
const encStructPoolLen = 5
|
|
|
|
// encStructPool is an array of sync.Pool.
|
|
// Each element of the array pools one of encStructPool(8|16|32|64).
|
|
// It allows the re-use of slices up to 64 in length.
|
|
// A performance cost of encoding structs was collecting
|
|
// which values were empty and should be omitted.
|
|
// We needed slices of reflect.Value and string to collect them.
|
|
// This shared pool reduces the amount of unnecessary creation we do.
|
|
// The cost is that of locking sometimes, but sync.Pool is efficient
|
|
// enough to reduce thread contention.
|
|
var encStructPool [encStructPoolLen]sync.Pool
|
|
|
|
func init() {
|
|
encStructPool[0].New = func() interface{} { return new([8]stringRv) }
|
|
encStructPool[1].New = func() interface{} { return new([16]stringRv) }
|
|
encStructPool[2].New = func() interface{} { return new([32]stringRv) }
|
|
encStructPool[3].New = func() interface{} { return new([64]stringRv) }
|
|
encStructPool[4].New = func() interface{} { return new([128]stringRv) }
|
|
}
|
|
|
|
func encStructPoolGet(newlen int) (p *sync.Pool, v interface{}, s []stringRv) {
|
|
// if encStructPoolLen != 5 { // constant chec, so removed at build time.
|
|
// panic(errors.New("encStructPoolLen must be equal to 4")) // defensive, in case it is changed
|
|
// }
|
|
// idxpool := newlen / 8
|
|
if newlen <= 8 {
|
|
p = &encStructPool[0]
|
|
v = p.Get()
|
|
s = v.(*[8]stringRv)[:newlen]
|
|
} else if newlen <= 16 {
|
|
p = &encStructPool[1]
|
|
v = p.Get()
|
|
s = v.(*[16]stringRv)[:newlen]
|
|
} else if newlen <= 32 {
|
|
p = &encStructPool[2]
|
|
v = p.Get()
|
|
s = v.(*[32]stringRv)[:newlen]
|
|
} else if newlen <= 64 {
|
|
p = &encStructPool[3]
|
|
v = p.Get()
|
|
s = v.(*[64]stringRv)[:newlen]
|
|
} else if newlen <= 128 {
|
|
p = &encStructPool[4]
|
|
v = p.Get()
|
|
s = v.(*[128]stringRv)[:newlen]
|
|
} else {
|
|
s = make([]stringRv, newlen)
|
|
}
|
|
return
|
|
}
|
|
|
|
// ----------------------------------------
|
|
|
|
// func encErr(format string, params ...interface{}) {
|
|
// doPanic(msgTagEnc, format, params...)
|
|
// }
|