This document is for people wanting to contribute specifically to the package collection in Nixpkgs.
See the [CONTRIBUTING.md](../CONTRIBUTING.md) document for more general information.
## Overview
- [`top-level`](./top-level): Entrypoints, package set aggregations
- [`impure.nix`](./top-level/impure.nix), [`default.nix`](./top-level/default.nix), [`config.nix`](./top-level/config.nix): Definitions for the evaluation entry point of `import <nixpkgs>`
- [`stage.nix`](./top-level/stage.nix), [`all-packages.nix`](./top-level/all-packages.nix), [`by-name-overlay.nix`](./top-level/by-name-overlay.nix), [`splice.nix`](./top-level/splice.nix): Definitions for the top-level attribute set made available through `import <nixpkgs> {…}`
-`*-packages.nix`, [`linux-kernels.nix`](./top-level/linux-kernels.nix), [`unixtools.nix`](./top-level/unixtools.nix): Aggregations of nested package sets defined in `development`
- [`aliases.nix`](./top-level/aliases.nix), [`python-aliases.nix`](./top-level/python-aliases.nix): Aliases for package definitions that have been renamed or removed
-`release*.nix`, [`make-tarball.nix`](./top-level/make-tarball.nix), [`packages-config.nix`](./top-level/packages-config.nix), [`metrics.nix`](./top-level/metrics.nix), [`nixpkgs-basic-release-checks.nix`](./top-level/nixpkgs-basic-release-checks.nix): Entry-points and utilities used by Hydra for continuous integration
- [`development`](./development)
-`*-modules`, `*-packages`, `*-pkgs`: Package definitions for nested package sets
We welcome new contributors of new packages to Nixpkgs, arguably the greatest software database known. However, each new package comes with a cost for the maintainers, Continuous Integration, caching servers and users downloading Nixpkgs.
Before adding a new package, please consider the following questions:
* Is the package ready for general use? We don't want to include projects that are too immature or are going to be abandoned immediately. In case of doubt, check with upstream.
* Does the project have a clear license statement? Remember that software is unfree by default (all rights reserved), and merely providing access to the source code does not imply its redistribution. In case of doubt, ask upstream.
* How realistic is it that it will be used by other people? It's good that nixpkgs caters to various niches, but if it's a niche of 5 people it's probably too small.
* Are you willing to maintain the package? You should care enough about the package to be willing to keep it up and running for at least one complete Nixpkgs' release life-cycle.
If any of these questions' answer is no, then you should probably not add the package.
This is section describes a general framework of understanding and exceptions might apply.
Luckily it's pretty easy to maintain your own package set with Nix, which can then be added to the [Nix User Repository](https://github.com/nix-community/nur) project.
---
Now that this is out of the way. To add a package to Nixpkgs:
2. Create a package directory `pkgs/by-name/so/some-package` where `some-package` is the package name and `so` is the lowercased 2-letter prefix of the package name:
For more detailed information, see [here](./by-name/README.md).
3. Create a `package.nix` file in the package directory, containing a Nix expression — a piece of code that describes how to build the package. In this case, it should be a _function_ that is called with the package dependencies as arguments, and returns a build of the package in the Nix store.
If the package is written in a language other than C, you should use [the corresponding language framework](https://nixos.org/manual/nixpkgs/stable/#chap-language-support).
You can have a look at the existing Nix expressions under `pkgs/` to see how it’s done, some of which are also using the [category hierarchy](#category-hierarchy).
- GNU Hello: [`pkgs/by-name/he/hello/package.nix`](./by-name/he/hello/package.nix). Trivial package, which specifies some `meta` attributes which is good practice.
- GNU cpio: [`pkgs/tools/archivers/cpio/default.nix`](tools/archivers/cpio/default.nix). Also a simple package. The generic builder in `stdenv` does everything for you. It has no dependencies beyond `stdenv`.
- GNU Multiple Precision arithmetic library (GMP): [`pkgs/development/libraries/gmp/5.1.x.nix`](development/libraries/gmp/5.1.x.nix). Also done by the generic builder, but has a dependency on `m4`.
- Pan, a GTK-based newsreader: [`pkgs/applications/networking/newsreaders/pan/default.nix`](applications/networking/newsreaders/pan/default.nix). Has an optional dependency on `gtkspell`, which is only built if `spellCheck` is `true`.
- Apache HTTPD: [`pkgs/servers/http/apache-httpd/2.4.nix`](servers/http/apache-httpd/2.4.nix). A bunch of optional features, variable substitutions in the configure flags, a post-install hook, and miscellaneous hackery.
- buildMozillaMach: [`pkgs/applications/networking/browser/firefox/common.nix`](applications/networking/browsers/firefox/common.nix). A reusable build function for Firefox, Thunderbird and Librewolf.
- JDiskReport, a Java utility: [`pkgs/tools/misc/jdiskreport/default.nix`](tools/misc/jdiskreport/default.nix). Nixpkgs doesn’t have a decent `stdenv` for Java yet so this is pretty ad-hoc.
- XML::Simple, a Perl module: [`pkgs/top-level/perl-packages.nix`](top-level/perl-packages.nix) (search for the `XMLSimple` attribute). Most Perl modules are so simple to build that they are defined directly in `perl-packages.nix`; no need to make a separate file for them.
- Adobe Reader: [`pkgs/applications/misc/adobe-reader/default.nix`](applications/misc/adobe-reader/default.nix). Shows how binary-only packages can be supported. In particular the [builder](applications/misc/adobe-reader/builder.sh) uses `patchelf` to set the RUNPATH and ELF interpreter of the executables so that the right libraries are found at runtime.
- All other [`meta`](https://nixos.org/manual/nixpkgs/stable/#chap-meta) attributes are optional, but it’s still a good idea to provide at least the `description`, `homepage` and [`license`](https://nixos.org/manual/nixpkgs/stable/#sec-meta-license).
- The exact syntax and semantics of the Nix expression language, including the built-in functions, are [Nix language reference](https://nixos.org/manual/nix/stable/language/).
where `some-package` should be the package name. You may want to add the flag `-K` to keep the temporary build directory in case something fails. If the build succeeds, a symlink `./result` to the package in the Nix store is created.
6. If you want to install the package into your profile (optional), do
```ShellSession
$ nix-env -f . -iA libfoo
```
7. Optionally commit the new package and open a pull request [to nixpkgs](https://github.com/NixOS/nixpkgs/pulls), or use [the Patches category](https://discourse.nixos.org/t/about-the-patches-category/477) on Discourse for sending a patch without a GitHub account.
Most top-level packages are organised in a loosely-categorised directory hierarchy in this directory.
See the [overview](#overview) for which directories are part of this.
This category hierarchy is partially deprecated and will be migrated away over time.
The new `pkgs/by-name` directory ([docs](./by-name/README.md)) should be preferred instead.
The category hierarchy may still be used for packages that should be imported using an alternate `callPackage`, such as `python3Packages.callPackage` or `libsForQt5.callPackage`.
The key words _must_, _must not_, _required_, _shall_, _shall not_, _should_, _should not_, _recommended_, _may_, and _optional_ in this section are to be interpreted as described in [RFC 2119](https://tools.ietf.org/html/rfc2119). Only _emphasized_ words are to be interpreted in this way.
- The attribute name used for the package in the [`pkgs/by-name` structure](./pkgs/by-name/README.md) or in [`all-packages.nix`](./pkgs/top-level/all-packages.nix), and when passing it as a dependency in recipes.
Most of the time, these are the same. For instance, the package `e2fsprogs` has a `pname` attribute `"e2fsprogs"`, is bound to the attribute name `e2fsprogs` in `all-packages.nix`, and the Nix expression is in `pkgs/os-specific/linux/e2fsprogs/default.nix`.
- If the `pname` starts with a digit, the attribute name _should_ be prefixed with an underscore. Otherwise the attribute name _should not_ be prefixed with an underline.
Example: The corresponding attribute name for `0ad` should be `_0ad`.
- New attribute names _should_ be the same as the value in `pname`.
Hyphenated names _should not_ be converted to [snake case](https://en.wikipedia.org/wiki/Snake_case) or [camel case](https://en.wikipedia.org/wiki/Camel_case).
This was done historically, but is not necessary any more.
[The Nix language allows dashes in identifiers since 2012](https://github.com/NixOS/nix/commit/95c74eae269b2b9e4bc514581b5caa1d80b54acc).
These are the guidelines the `version` attribute of a package:
- It _must_ start with a digit. This is required for backwards-compatibility with [how `nix-env` parses derivation names](https://nix.dev/manual/nix/latest/command-ref/nix-env#selectors).
Example: `"0.3.1rc2"` or `"0-unstable-1970-01-01"`
- If a package is a commit from a repository without a version assigned, then the `version` attribute _should_ be the latest upstream version preceding that commit, followed by `-unstable-` and the date of the (fetched) commit. The date _must_ be in `"YYYY-MM-DD"` format.
Example: Given a project had its latest releases `2.2` in November 2021 and `3.0` in January 2022, a commit authored on March 15, 2022 for an upcoming bugfix release `2.2.1` would have `version = "2.2-unstable-2022-03-15"`.
- If a project has no suitable preceding releases - e.g., no versions at all, or an incompatible versioning or tagging scheme - then the latest upstream version in the above schema should be `0`.
Example: Given a project that has no tags or released versions at all, or applies versionless tags like `latest` or `YYYY-MM-DD-Build`, a commit authored on March 15, 2022 would have `version = "0-unstable-2022-03-15"`.
Because every version of a package in Nixpkgs creates a potential maintenance burden, old versions of a package should not be kept unless there is a good reason to do so. For instance, Nixpkgs contains several versions of GCC because other packages don’t build with the latest version of GCC. Other examples are having both the latest stable and latest pre-release version of a package, or to keep several major releases of an application that differ significantly in functionality.
If there is only one version of a package, its Nix expression should be named (e.g) `pkgs/by-name/xy/xyz/package.nix`. If there are multiple versions, this should be reflected in the attribute name. If you wish to share code between the Nix expressions of each version, you cannot rely upon `pkgs/by-name`'s automatic attribute creation, and must create the attributes yourself in `all-packages.nix`. See also [`pkgs/by-name/README.md`'s section on this topic](https://github.com/NixOS/nixpkgs/blob/master/pkgs/by-name/README.md#recommendation-for-new-packages-with-multiple-versions).
*`meta.mainProgram` must be set to the name of the executable which facilitates the primary function or purpose of the package, if there is such an executable in `$bin/bin/` (or `$out/bin/`, if there is no `"bin"` output).
* Packages that only have a single executable in the applicable directory above should set `meta.mainProgram`. For example, the package `ripgrep` only has a single executable `rg` under `$out/bin/`, so `ripgrep.meta.mainProgram` is set to `"rg"`.
* Packages like `polkit_gnome` that have no executables in the applicable directory should not set `meta.mainProgram`.
* Packages like `e2fsprogs` that have multiple executables, none of which can be considered the main program, should not set `meta.mainProgram`.
* Packages which are not primarily used for a single executable do not need to set `meta.mainProgram`.
* Always prefer using a hardcoded string (don't use `pname`, for example).
[Import From Derivation](https://nixos.org/manual/nix/unstable/language/import-from-derivation) (IFD) is disallowed in Nixpkgs for performance reasons:
[Hydra](https://github.com/NixOS/hydra) evaluates the entire package set, and sequential builds during evaluation would increase evaluation times to become impractical.
A list of schemes for `mirror://` URLs can be found in [`pkgs/build-support/fetchurl/mirrors.nix`](build-support/fetchurl/mirrors.nix), and is supported by [`fetchurl`](https://nixos.org/manual/nixpkgs/unstable/#fetchurl).
Other fetchers which end up relying on `fetchurl` may also support mirroring.
> When fetching from GitHub, always reference revisions by their full commit hash.
> GitHub shares commit hashes among all forks and returns `404 Not Found` when a short commit hash is ambiguous.
> It already happened in Nixpkgs for short, 6-character commit hashes.
>
> Pushing large amounts of auto generated commits into forks is a practical vector for a denial-of-service attack, and was already [demonstrated against GitHub Actions Beta](https://blog.teddykatz.com/2019/11/12/github-actions-dos.html).
Otherwise, you can add a `.patch` file to the `nixpkgs` repository.
In the interest of keeping our maintenance burden and the size of nixpkgs to a minimum, only do this for patches that are unique to `nixpkgs` or that have been proposed upstream but are not merged yet, cannot be easily fetched or have a high chance to disappear in the future due to unstable or unreliable URLs.
The latter avoids link rot when the upstream abandons, squashes or rebases their change, in which case the commit may get garbage-collected.
If a patch is available online but does not cleanly apply, it can be modified in some fixed ways by using additional optional arguments for `fetchpatch`. Check [the `fetchpatch` reference](https://nixos.org/manual/nixpkgs/unstable/#fetchpatch) for details.
We use jbidwatcher as an example for a discontinued project here.
1. Have Nixpkgs checked out locally and up to date.
1. Create a new branch for your change, e.g. `git checkout -b jbidwatcher`
1. Remove the actual package including its directory, e.g. `git rm -rf pkgs/applications/misc/jbidwatcher`
1. Remove the package from the list of all packages (`pkgs/top-level/all-packages.nix`).
1. Add an alias for the package name in `pkgs/top-level/aliases.nix` (There is also `pkgs/applications/editors/vim/plugins/aliases.nix`. Package sets typically do not have aliases, so we can't add them there.)
- Run [NixOS tests](https://nixos.org/manual/nixos/unstable/#sec-nixos-tests) with `nix-build --attr nixosTests.NAME`, where `NAME` is the name of the test listed in `nixos/tests/all-tests.nix`
- Run [global package tests](https://nixos.org/manual/nixpkgs/unstable/#sec-package-tests) with `nix-build --attr tests.PACKAGE`, where `PACKAGE` is the name of the test listed in `pkgs/test/default.nix`
- See `lib/tests/NAME.nix` for instructions on running specific library tests
Tests are important to ensure quality and make reviews and automatic updates easy.
The following types of tests exists:
* [NixOS **module tests**](https://nixos.org/manual/nixos/stable/#sec-nixos-tests), which spawn one or more NixOS VMs. They exercise both NixOS modules and the packaged programs used within them. For example, a NixOS module test can start a web server VM running the `nginx` module, and a client VM running `curl` or a graphical `firefox`, and test that they can talk to each other and display the correct content.
* Nix **package tests** are a lightweight alternative to NixOS module tests. They should be used to create simple integration tests for packages, but cannot test NixOS services, and some programs with graphical user interfaces may also be difficult to test with them.
* The **`checkPhase` of a package**, which should execute the unit tests that are included in the source code of a package.
Here in the nixpkgs manual we describe mostly _package tests_; for _module tests_ head over to the corresponding [section in the NixOS manual](https://nixos.org/manual/nixos/stable/#sec-nixos-tests).
Any derivaton can be specified as a test, even if it's in a different file.
Such a derivaton that implements a test can depend on the package under test, even in the presence of `overrideAttrs`.
In the following example, `(my-package.overrideAttrs f).passthru.tests` will work as expected, as long as the definition of `tests` does not rely on the original `my-package` or overrides all occurrences of `my-package`:
Like [package tests][larger-package-tests] as shown above, [NixOS module tests](https://nixos.org/manual/nixos/stable/#sec-nixos-tests) can also be linked to a package, so that the tests can be easily run when changing the related package.
Nixpkgs periodically tries to update all packages that have a `passthru.updateScript` attribute.
> [!Note]
> A common pattern is to use the [`nix-update-script`](../pkgs/common-updater/nix-update.nix) attribute provided in Nixpkgs, which runs [`nix-update`](https://github.com/Mic92/nix-update):
>
> ```nix
> { stdenv, nix-update-script }:
> stdenv.mkDerivation {
> # ...
> passthru.updateScript = nix-update-script { };
> }
> ```
>
> For simple packages, this is often enough, and will ensure that the package is updated automatically by [`nixpkgs-update`](https://ryantm.github.io/nixpkgs-update) when a new version is released.
> The [update bot](https://nix-community.org/update-bot) runs periodically to attempt to automatically update packages, and will run `passthru.updateScript` if set.
> While not strictly necessary if the project is listed on [Repology](https://repology.org), using `nix-update-script` allows the package to update via many more sources (e.g. GitHub releases).
The `passthru.updateScript` attribute can contain one of the following:
A string or list in the [format expected by `passthru.updateScript`][automatic-package-updates]
-`attrPath` (optional)
A string containing the canonical attribute path for the package.
If present, it will be passed to the update script instead of the attribute path on which the package was discovered during Nixpkgs traversal.
-`supportedFeatures` (optional)
A list of the [extra features the script supports][supported-features].
```nix
{ stdenv }:
stdenv.mkDerivation rec {
pname = "my-package";
# ...
passthru.updateScript = {
command = [ ../../update.sh pname ];
attrPath = pname;
supportedFeatures = [ /* ... */ ];
};
}
```
### How are update scripts executed?
Update scripts are to be invoked by the [automatic package update script](../maintainers/scripts/update.nix).
You can run `nix-shell maintainers/scripts/update.nix` in the root of Nixpkgs repository for information on how to use it.
`update.nix` offers several modes for selecting packages to update, and it will execute update scripts for all matched packages that have an `updateScript` attribute.
Each update script will be passed the following environment variables:
- [`UPDATE_NIX_NAME`] – content of the `name` attribute of the updated package
- [`UPDATE_NIX_PNAME`] – content of the `pname` attribute of the updated package
- [`UPDATE_NIX_OLD_VERSION`] – content of the `version` attribute of the updated package
- [`UPDATE_NIX_ATTR_PATH`] – attribute path the `update.nix` discovered the package on (or the package's specified `attrPath` when available). Example: `pantheon.elementary-terminal`
> [!Note]
> An update script will be usually run from the root of the Nixpkgs repository, but you should not rely on that.
> Also note that `update.nix` executes update scripts in parallel by default, so you should avoid running `git commit` or any other commands that cannot handle that.
While update scripts should not create commits themselves, `update.nix` supports automatically creating commits when running it with `--argstr commit true`.
If you need to customize commit message, you can have the update script implement the `commit` feature.
This feature allows update scripts to *ask*`update.nix` to create Git commits.
When support of this feature is declared, whenever the update script exits with `0` return status, it is expected to print a JSON list containing an object described below for each updated attribute to standard output.
A package update is the most trivial and common type of pull request. These pull requests mainly consist of updating the version part of the package name and the source hash.
It can happen that non-trivial updates include patches or more complex changes.
- Ensure that the package maintainers are notified.
- [CODEOWNERS](https://help.github.com/articles/about-codeowners) will make GitHub notify users based on the submitted changes, but it can happen that it misses some of the package maintainers.
- License can change with version updates, so it should be checked to match the upstream license.
- If the package has no maintainer, a maintainer must be set. This can be the update submitter or a community member that accepts to take maintainership of the package.
- Pull requests are often targeted to the master or staging branch, and building the pull request locally when it is submitted can trigger many source builds.
- It is possible to rebase the changes on nixos-unstable or nixpkgs-unstable for easier review by running the following commands from a nixpkgs clone.
```ShellSession
$ git fetch origin nixos-unstable
$ git fetch origin pull/PRNUMBER/head
$ git rebase --onto nixos-unstable BASEBRANCH FETCH_HEAD
```
- The first command fetches the nixos-unstable branch.
- The second command fetches the pull request changes, `PRNUMBER` is the number at the end of the pull request title and `BASEBRANCH` the base branch of the pull request.
- The third command rebases the pull request changes to the nixos-unstable branch.
- The [nixpkgs-review](https://github.com/Mic92/nixpkgs-review) tool can be used to review a pull request content in a single command. `PRNUMBER` should be replaced by the number at the end of the pull request title. You can also provide the full github pull request url.
If a security fix applies to both master and a stable release then, similar to regular changes, they are preferably delivered via master first and cherry-picked to the release branch.
Critical security fixes may by-pass the staging branches and be delivered directly to release branches such as `master` and `release-*`.
**Note**: An issue can be a "false positive" (i.e. automatically opened, but without the package it refers to being actually vulnerable).
If you find such a "false positive", comment on the issue an explanation of why it falls into this category, linking as much information as the necessary to help maintainers double check.
If you are investigating a "true positive":
- Find the earliest patched version or a code patch in the CVE details;
- Is the issue already patched (version up-to-date or patch applied manually) in Nixpkgs's `master` branch?