Adds pkgsCross.wasm32 and pkgsCross.wasm64. Use it to build Nixpkgs
with a WebAssembly toolchain.
stdenv/cross: use static overlay on isWasm
isWasm doesn’t make sense dynamically linked.
It is useful to make these dynamic and not bake them into gcc. This
means we don’t have to rebuild gcc to change these values. Instead, we
will pass cflags to gcc based on platform values. This was already
done hackily for android gcc (which is multi-target), but not for our
own gccs which are single target.
To accomplish this, we need to add a few things:
- add ‘arch’ to cpu
- add NIX_CFLAGS_COMPILE_BEFORE flag (goes before args)
- set -march everywhere
- set mcpu, mfpu, mmode, and mtune based on targetPlatform.gcc flags
cc-wrapper: only set -march when it is in the cpu type
Some architectures don’t have a good mapping of -march. For instance
POWER architecture doesn’t support the -march flag at all!
https://gcc.gnu.org/onlinedocs/gcc/RS_002f6000-and-PowerPC-Options.html#RS_002f6000-and-PowerPC-Options
eabihf is an abi that can be used with ARM architectures that support
the “hard float”. It should probably only be used with ARM32 when you
are absolutely sure your binaries will run on ARM systems with a FPU.
Also, add an example "armhf-embedded" to match the preexisting
arm-embedded system. qmk_firmware needs hard float in a few places, so
add them here to get that to work.
Fixes#51184
This has been not touched in 6 years. Let's remove it to cause less
problems when adding new cross-compiling infrastructure.
This also simplify gcc significantly.
binutils expects x86_64-unknown-netbsd<version> (only 3 parts!). Any other combo seems to fail.
Also handle darwin versions similarly.
/cc @Ericson2314
There are two different official variations which differ in their float
support, so such a blanket statement is invalid.
`lib.systems.platforms.*android` already handles each case correctly.
Correcting an error in 827ef09140.
ARM ABIs now have a float field. This is used as a fallback to lessen
our use of `platform.gcc.float`. I didn't know what the MIPs convention
is so I kept using `platform.gcc.float` in that case.
Following legacy packing conventions, `isArm` was defined just for
32-bit ARM instruction set. This is confusing to non packagers though,
because Aarch64 is an ARM instruction set.
The official ARM overview for ARMv8[1] is surprisingly not confusing,
given the overall state of affairs for ARM naming conventions, and
offers us a solution. It divides the nomenclature into three levels:
```
ISA: ARMv8 {-A, -R, -M}
/ \
Mode: Aarch32 Aarch64
| / \
Encoding: A64 A32 T32
```
At the top is the overall v8 instruction set archicture. Second are the
two modes, defined by bitwidth but differing in other semantics too, and
buttom are the encodings, (hopefully?) isomorphic if they encode the
same mode.
The 32 bit encodings are mostly backwards compatible with previous
non-Thumb and Thumb encodings, and if so we can pun the mode names to
instead mean "sets of compatable or isomorphic encodings", and then
voilà we have nice names for 32-bit and 64-bit arm instruction sets
which do not use the word ARM so as to not confused either laymen or
experienced ARM packages.
[1]: https://developer.arm.com/products/architecture/a-profile
(cherry picked from commit ba52ae5048)
Following legacy packing conventions, `isArm` was defined just for
32-bit ARM instruction set. This is confusing to non packagers though,
because Aarch64 is an ARM instruction set.
The official ARM overview for ARMv8[1] is surprisingly not confusing,
given the overall state of affairs for ARM naming conventions, and
offers us a solution. It divides the nomenclature into three levels:
```
ISA: ARMv8 {-A, -R, -M}
/ \
Mode: Aarch32 Aarch64
| / \
Encoding: A64 A32 T32
```
At the top is the overall v8 instruction set archicture. Second are the
two modes, defined by bitwidth but differing in other semantics too, and
buttom are the encodings, (hopefully?) isomorphic if they encode the
same mode.
The 32 bit encodings are mostly backwards compatible with previous
non-Thumb and Thumb encodings, and if so we can pun the mode names to
instead mean "sets of compatable or isomorphic encodings", and then
voilà we have nice names for 32-bit and 64-bit arm instruction sets
which do not use the word ARM so as to not confused either laymen or
experienced ARM packages.
[1]: https://developer.arm.com/products/architecture/a-profile
- `localSystem` is added, it strictly supercedes system
- `crossSystem`'s description mentions `localSystem` (and vice versa).
- No more weird special casing I don't even understand
TEMP
I noticed LLVM accepts `ios` as its own OS in platform triples; a
recent change as far as I know. I see it also accepts `macos*` for macOS
(formerly OS X). If it's now customary to distinguish iOS like so
(rather than guessing from the aarch, lets add both so our OSes are
still disjoint, and make Darwin a family instead.
But changing the config everywhere would probably be a mass rebuild, and
I'm not sure how well other software supports OSes besides "darwin", so
I'm keeping that the default name for macOS for now.
Existing "mips64el" should be "mipsel".
This is just the barest minimum so that nixpkgs can recognize them as
systems - although required for building individual derivations onto
MIPS boards, it is not sufficient if you want to actually build nixos on
those targets
Note this doesn't actually provide musl support yet,
just improves our "system" code to understand
musl-based triples and non-glibc linux configurations.
I need some module system types here so I can next fix meta-checks for
derivations. I'd like to use a "proper" record type here, but submodule
types seem overkill so holding off with ad-hoc stuff for now. In
practice, all I need for the next step are the `.check` functions so
this is good, especially as the submodule check function is shallow,
saving full inductive type-checking for a later step.