#Import libaries and datasets import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import pandas as pd import seaborn as sns import pickle import random import os import numpy as np from keras.utils import np_utils with open(os.path.join("dataset", "train.p"), mode='rb') as training_data: train = pickle.load(training_data) with open(os.path.join("dataset", "valid.p"), mode='rb') as validation_data: valid = pickle.load(validation_data) X_train, y_train = train['features'], train['labels'] X_valid, y_valid = valid['features'], valid['labels'] from sklearn.utils import shuffle X_train, y_train = shuffle(X_train, y_train) X_valid, y_valid = shuffle(X_valid, y_valid) # Normalize image to [0, 1] X_train_norm = X_train / 255 X_valid_norm = X_valid / 255 #Wähle Klassen 0-19 mask = np.isin(y_train, range(20)) X_train_subset = X_train_norm[mask] y_train_subset = y_train[mask] mask = np.isin(y_valid, range(20)) X_valid_subset = X_valid_norm[mask] y_valid_subset = y_valid[mask] num_classes = 20 # Anzahl der Straßenschilder-Klassen y_train_subset = np_utils.to_categorical(y_train_subset, num_classes) y_valid_subset = np_utils.to_categorical(y_valid_subset, num_classes) from tensorflow.keras import datasets, layers, models model = models.Sequential() # TODO: Add layers to the model: model.add(layers.Flatten(input_shape=(32, 32, 3))) # Eingabeschicht, Bildgröße: 32x32, 3 Kanäle (RGB) model.add(layers.Dense(128, activation='relu')) # Versteckte Schicht mit 128 Neuronen und ReLU-Aktivierung model.add(layers.Dense(20, activation='softmax')) # Ausgabeschicht mit Anzahl der Klassen und Softmax-Aktivierung # Prints a summary of your network model.summary() model.compile(optimizer = 'rmsprop', loss = 'categorical_crossentropy', metrics = ['accuracy']) # TODO: Choose the batch size and the epochs history = model.fit(x = X_train_subset, y = y_train_subset, batch_size = 32, epochs = 5, verbose = 1, validation_data = (X_valid_subset, y_valid_subset)) model.save('saved_model/fullyConnectedNeuralNetwork.h5')