74 lines
No EOL
2.3 KiB
Python
74 lines
No EOL
2.3 KiB
Python
#Import libaries and datasets
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
import pickle
|
|
import random
|
|
import os
|
|
import numpy as np
|
|
from keras.utils import np_utils
|
|
|
|
with open(os.path.join("dataset", "train.p"), mode='rb') as training_data:
|
|
train = pickle.load(training_data)
|
|
with open(os.path.join("dataset", "valid.p"), mode='rb') as validation_data:
|
|
valid = pickle.load(validation_data)
|
|
|
|
X_train, y_train = train['features'], train['labels']
|
|
X_valid, y_valid = valid['features'], valid['labels']
|
|
|
|
from sklearn.utils import shuffle
|
|
X_train, y_train = shuffle(X_train, y_train)
|
|
X_valid, y_valid = shuffle(X_valid, y_valid)
|
|
|
|
# Normalize image to [0, 1]
|
|
X_train_norm = X_train / 255
|
|
X_valid_norm = X_valid / 255
|
|
|
|
#Wähle Klassen 0-19
|
|
mask = np.isin(y_train, range(20))
|
|
X_train_subset = X_train_norm[mask]
|
|
y_train_subset = y_train[mask]
|
|
|
|
mask = np.isin(y_valid, range(20))
|
|
X_valid_subset = X_valid_norm[mask]
|
|
y_valid_subset = y_valid[mask]
|
|
|
|
num_classes = 20 # Anzahl der Straßenschilder-Klassen
|
|
y_train_subset = np_utils.to_categorical(y_train_subset, num_classes)
|
|
y_valid_subset = np_utils.to_categorical(y_valid_subset, num_classes)
|
|
|
|
|
|
|
|
from tensorflow.keras import datasets, layers, models
|
|
model = models.Sequential()
|
|
|
|
# Only in the first layer you have to select the input_shape of the data (image).
|
|
# TODO: Replace the question marks:
|
|
model.add(layers.Conv2D( filters = 2 , kernel_size = ( 3 , 3 ), padding = "same" , activation = 'relu' , input_shape = ( 32 , 32 , 3)))
|
|
|
|
# TODO: Add layers to the model:
|
|
model.add(layers.AveragePooling2D(pool_size=(2, 2),strides=(1, 1), padding='same'))
|
|
model.add(layers.MaxPool2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None))
|
|
model.add(layers.Dropout(.2, input_shape=(2,)))
|
|
model.add(layers.Flatten())
|
|
model.add(layers.Dense(20, activation='softmax'))
|
|
|
|
|
|
# Prints a summary of your network
|
|
model.summary()
|
|
|
|
model.compile(optimizer = 'Adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
|
|
|
|
# TODO: Choose the batch size and the epochs
|
|
history = model.fit(x = X_train_subset,
|
|
y = y_train_subset,
|
|
batch_size = 32,
|
|
epochs = 500,
|
|
verbose = 1,
|
|
validation_data = (X_valid_subset, y_valid_subset))
|
|
|
|
|
|
|
|
model.save('saved_model/ownModel.h5') |