Plugins are pieces of code that augment Ansible's core functionality. Ansible ships with a number of handy plugins, and you can easily write your own. This section describes the various types of Ansible plugins and how to implement them.
In general, errors encountered during execution should be returned by raising AnsibleError() or similar class with a message describing the error. When wrapping other exceptions into error messages, you should always use the `to_text` Ansible function to ensure proper string compatiblity across Python versions:
Any strings returned by your plugin that could ever contain non-ASCII characters must be converted into Python's unicode type because the strings will be run through jinja2. To do this, you can use:
Starting with Ansible version 2.4, we are unifying how each plugin type is configured and how they get those settings. Plugins will be able to declare their requirements and have Ansible provide them with a resolved'configuration. Starting with Ansible 2.4 both callback and connection type plugins can use this system.
Plugins that support embedded documentation (see `ansible-doc` for the list) are now required to provide well-formed doc strings to be considered for merge into the Ansible repo.
If you inherit from a plugin, you must document the options it takes, either via a documentation fragment or as a copy.
Callback plugins enable adding new behaviors to Ansible when responding to events. By default, callback plugins control most of the output you see when running the command line programs.
Note that the CALLBACK_VERSION and CALLBACK_NAME definitions are required for properly functioning plugins for Ansible version 2.0 and later. CALLBACK_TYPE is mostly needed to distinguish 'stdout' plugins from the rest, since you can only load one plugin that writes to stdout.
Connection plugins allow Ansible to connect to the target hosts so it can execute tasks on them. Ansible ships with many connection plugins, but only one can be used per host at a time.
By default, Ansible ships with several plugins. The most commonly used are the 'paramiko' SSH, native ssh (just called 'ssh'), and 'local' connection types. All of these can be used in playbooks and with /usr/bin/ansible to decide how you want to talk to remote machines.
The basics of these connection types are covered in the :doc:`../intro_getting_started` section.
Should you want to extend Ansible to support other transports (SNMP, Message bus, etc) it's as simple as copying the format of one of the existing modules and dropping it into the connection plugins directory.
Ansible version 2.1 introduced the 'smart' connection plugin. The 'smart' connection type allows Ansible to automatically select either the 'paramiko' or 'openssh' connection plugin based on system capabilities, or the 'ssh' connection plugin if OpenSSH supports ControlPersist.
For examples on how to implement a connection plug in, see the source code here:
Inventory plugins are invoked via the InventoryManager and are given access to any existing inventory data. They are given an 'inventory source' as supplied to Ansible (via config/options/defaults/etc), which they can either ignore
by returning false from the `verify_file` method, or attempting to parse (with the `parse` method) and return an `AnsibleParserError` on failure.
Inventory sources are strings. They usually correspond to a file path, but they can also be a comma separated list,
a URI, or anything your plugin can use as input.
The 'inventory source' provided can be either a string (`host_list` plugin), a data file (like consumed by the `yaml` and `ini` plugins), a configuration file (see `virtualbox` and `constructed`) or even a script or executable (the `script` uses those).
When using the 'persistent' cache, inventory plugins can also use the configured cache plugin to store and retrieve data to avoid costly external calls.
Lookup plugins are used to pull in data from external data stores. Lookup plugins can be used within playbooks for both looping - playbook language constructs like "with_fileglob" and "with_items" are implemented via lookup plugins - and to return values into a variable or parameter.
Here's a simple lookup plugin implementation - this lookup returns the contents of a text file as a variable:
For more example lookup plugins, check out the source code for the lookup plugins that are included with Ansible here: `lib/ansible/plugins/lookup <https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/lookup>`_.
Vars plugins inject additional variable data into Ansible runs that did not come from an inventory source, playbook, or command line. Playbook constructs like 'host_vars' and 'group_vars' work using vars plugins.
* loader: Ansible's DataLoader. The DataLoader can read files, auto load JSON/YAML and decrypt vaulted data, and cache read files.
* path: this is 'directory data' for every inventory source and the current play's playbook directory, so they can search for data in reference to them. `get_vars` will be called at least once per available path.
* entities: these are host or group names that are pertinent to the variables needed. The plugin will get called once for hosts and again for groups.
Since Ansible version 2.4, vars plugins only execute as needed when preparing to execute a task. This avoids the costly 'always execute' behavior that occurred during inventory construction in older versions of Ansible.
Filter plugins are used for manipulating data. They are a feature of Jinja2 and are also available in Jinja2 templates used by the `template` module. As with all plugins, they can be easily extended, but instead of having a file for each one you can have several per file. Most of the filter plugins shipped with Ansible reside in a `core.py`.
Test plugins are for verifying data. They are a feature of Jinja2 and are also available in Jinja2 templates used by the `template` module. As with all plugins, they can be easily extended, but instead of having a file for each one you can have several per file. Most of the test plugins shipped with Ansible reside in a `core.py`. These are specially useful in conjunction with some filter plugins like `map` and `select`; they are also available for conditional directives like `when:`.