ansible/lib/ansible/parsing/splitter.py
Brian Coca b3b1dde648
various fixes to command (#74212)
* various fixes to command

  - Updated splitter to allow for all expected args in ad-hoc
  - Ensure we always return the returns we promissed to always return (i.e stderr/stdout)
  - Updated docs to clarify creates/removes precdence in checking
  - Removed abspath from chdir to allow reporting to handle symlinks correctly
  - Corrected tests to new output messages

Co-authored-by: Felix Fontein <felix@fontein.de>
2021-04-13 12:52:29 -04:00

287 lines
11 KiB
Python

# (c) 2014 James Cammarata, <jcammarata@ansible.com>
#
# This file is part of Ansible
#
# Ansible is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Ansible is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Ansible. If not, see <http://www.gnu.org/licenses/>.
# Make coding more python3-ish
from __future__ import (absolute_import, division, print_function)
__metaclass__ = type
import codecs
import re
from ansible.errors import AnsibleParserError
from ansible.module_utils._text import to_text
from ansible.parsing.quoting import unquote
# Decode escapes adapted from rspeer's answer here:
# http://stackoverflow.com/questions/4020539/process-escape-sequences-in-a-string-in-python
_HEXCHAR = '[a-fA-F0-9]'
_ESCAPE_SEQUENCE_RE = re.compile(r'''
( \\U{0} # 8-digit hex escapes
| \\u{1} # 4-digit hex escapes
| \\x{2} # 2-digit hex escapes
| \\N\{{[^}}]+\}} # Unicode characters by name
| \\[\\'"abfnrtv] # Single-character escapes
)'''.format(_HEXCHAR * 8, _HEXCHAR * 4, _HEXCHAR * 2), re.UNICODE | re.VERBOSE)
def _decode_escapes(s):
def decode_match(match):
return codecs.decode(match.group(0), 'unicode-escape')
return _ESCAPE_SEQUENCE_RE.sub(decode_match, s)
def parse_kv(args, check_raw=False):
'''
Convert a string of key/value items to a dict. If any free-form params
are found and the check_raw option is set to True, they will be added
to a new parameter called '_raw_params'. If check_raw is not enabled,
they will simply be ignored.
'''
args = to_text(args, nonstring='passthru')
options = {}
if args is not None:
try:
vargs = split_args(args)
except IndexError as e:
raise AnsibleParserError("Unable to parse argument string", orig_exc=e)
except ValueError as ve:
if 'no closing quotation' in str(ve).lower():
raise AnsibleParserError("error parsing argument string, try quoting the entire line.", orig_exc=ve)
else:
raise
raw_params = []
for orig_x in vargs:
x = _decode_escapes(orig_x)
if "=" in x:
pos = 0
try:
while True:
pos = x.index('=', pos + 1)
if pos > 0 and x[pos - 1] != '\\':
break
except ValueError:
# ran out of string, but we must have some escaped equals,
# so replace those and append this to the list of raw params
raw_params.append(x.replace('\\=', '='))
continue
k = x[:pos]
v = x[pos + 1:]
# FIXME: make the retrieval of this list of shell/command options a function, so the list is centralized
if check_raw and k not in ('creates', 'removes', 'chdir', 'executable', 'warn', 'stdin', 'stdin_add_newline', 'strip_empty_ends'):
raw_params.append(orig_x)
else:
options[k.strip()] = unquote(v.strip())
else:
raw_params.append(orig_x)
# recombine the free-form params, if any were found, and assign
# them to a special option for use later by the shell/command module
if len(raw_params) > 0:
options[u'_raw_params'] = join_args(raw_params)
return options
def _get_quote_state(token, quote_char):
'''
the goal of this block is to determine if the quoted string
is unterminated in which case it needs to be put back together
'''
# the char before the current one, used to see if
# the current character is escaped
prev_char = None
for idx, cur_char in enumerate(token):
if idx > 0:
prev_char = token[idx - 1]
if cur_char in '"\'' and prev_char != '\\':
if quote_char:
if cur_char == quote_char:
quote_char = None
else:
quote_char = cur_char
return quote_char
def _count_jinja2_blocks(token, cur_depth, open_token, close_token):
'''
this function counts the number of opening/closing blocks for a
given opening/closing type and adjusts the current depth for that
block based on the difference
'''
num_open = token.count(open_token)
num_close = token.count(close_token)
if num_open != num_close:
cur_depth += (num_open - num_close)
if cur_depth < 0:
cur_depth = 0
return cur_depth
def join_args(s):
'''
Join the original cmd based on manipulations by split_args().
This retains the original newlines and whitespaces.
'''
result = ''
for p in s:
if len(result) == 0 or result.endswith('\n'):
result += p
else:
result += ' ' + p
return result
def split_args(args):
'''
Splits args on whitespace, but intelligently reassembles
those that may have been split over a jinja2 block or quotes.
When used in a remote module, we won't ever have to be concerned about
jinja2 blocks, however this function is/will be used in the
core portions as well before the args are templated.
example input: a=b c="foo bar"
example output: ['a=b', 'c="foo bar"']
Basically this is a variation shlex that has some more intelligence for
how Ansible needs to use it.
'''
# the list of params parsed out of the arg string
# this is going to be the result value when we are done
params = []
# Initial split on newlines
items = args.split('\n')
# iterate over the tokens, and reassemble any that may have been
# split on a space inside a jinja2 block.
# ex if tokens are "{{", "foo", "}}" these go together
# These variables are used
# to keep track of the state of the parsing, since blocks and quotes
# may be nested within each other.
quote_char = None
inside_quotes = False
print_depth = 0 # used to count nested jinja2 {{ }} blocks
block_depth = 0 # used to count nested jinja2 {% %} blocks
comment_depth = 0 # used to count nested jinja2 {# #} blocks
# now we loop over each split chunk, coalescing tokens if the white space
# split occurred within quotes or a jinja2 block of some kind
for (itemidx, item) in enumerate(items):
# we split on spaces and newlines separately, so that we
# can tell which character we split on for reassembly
# inside quotation characters
tokens = item.split(' ')
line_continuation = False
for (idx, token) in enumerate(tokens):
# Empty entries means we have subsequent spaces
# We want to hold onto them so we can reconstruct them later
if len(token) == 0 and idx != 0:
params[-1] += ' '
continue
# if we hit a line continuation character, but
# we're not inside quotes, ignore it and continue
# on to the next token while setting a flag
if token == '\\' and not inside_quotes:
line_continuation = True
continue
# store the previous quoting state for checking later
was_inside_quotes = inside_quotes
quote_char = _get_quote_state(token, quote_char)
inside_quotes = quote_char is not None
# multiple conditions may append a token to the list of params,
# so we keep track with this flag to make sure it only happens once
# append means add to the end of the list, don't append means concatenate
# it to the end of the last token
appended = False
# if we're inside quotes now, but weren't before, append the token
# to the end of the list, since we'll tack on more to it later
# otherwise, if we're inside any jinja2 block, inside quotes, or we were
# inside quotes (but aren't now) concat this token to the last param
if inside_quotes and not was_inside_quotes and not(print_depth or block_depth or comment_depth):
params.append(token)
appended = True
elif print_depth or block_depth or comment_depth or inside_quotes or was_inside_quotes:
if idx == 0 and was_inside_quotes:
params[-1] = "%s%s" % (params[-1], token)
elif len(tokens) > 1:
spacer = ''
if idx > 0:
spacer = ' '
params[-1] = "%s%s%s" % (params[-1], spacer, token)
else:
params[-1] = "%s\n%s" % (params[-1], token)
appended = True
# if the number of paired block tags is not the same, the depth has changed, so we calculate that here
# and may append the current token to the params (if we haven't previously done so)
prev_print_depth = print_depth
print_depth = _count_jinja2_blocks(token, print_depth, "{{", "}}")
if print_depth != prev_print_depth and not appended:
params.append(token)
appended = True
prev_block_depth = block_depth
block_depth = _count_jinja2_blocks(token, block_depth, "{%", "%}")
if block_depth != prev_block_depth and not appended:
params.append(token)
appended = True
prev_comment_depth = comment_depth
comment_depth = _count_jinja2_blocks(token, comment_depth, "{#", "#}")
if comment_depth != prev_comment_depth and not appended:
params.append(token)
appended = True
# finally, if we're at zero depth for all blocks and not inside quotes, and have not
# yet appended anything to the list of params, we do so now
if not (print_depth or block_depth or comment_depth) and not inside_quotes and not appended and token != '':
params.append(token)
# if this was the last token in the list, and we have more than
# one item (meaning we split on newlines), add a newline back here
# to preserve the original structure
if len(items) > 1 and itemidx != len(items) - 1 and not line_continuation:
params[-1] += '\n'
# always clear the line continuation flag
line_continuation = False
# If we're done and things are not at zero depth or we're still inside quotes,
# raise an error to indicate that the args were unbalanced
if print_depth or block_depth or comment_depth or inside_quotes:
raise AnsibleParserError(u"failed at splitting arguments, either an unbalanced jinja2 block or quotes: {0}".format(args))
return params