import types import importlib import math import torch def warmup_cosine(x, warmup=0.002): if x < warmup: return x/warmup return 0.5 * (1.0 + torch.cos(math.pi * x)) def warmup_constant(x, warmup=0.002): if x < warmup: return x/warmup return 1.0 def warmup_linear(x, warmup=0.002): if x < warmup: return x/warmup return 1.0 - x SCHEDULES = { 'warmup_cosine':warmup_cosine, 'warmup_constant':warmup_constant, 'warmup_linear':warmup_linear, } class FusedAdamBert(torch.optim.Optimizer): """Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via ``python setup.py install --cuda_ext --cpp_ext``. It has been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in FusedAdam! eps_inside_sqrt (boolean, optional): in the 'update parameters' step, adds eps to the bias-corrected second moment estimate before evaluating square root instead of adding it to the square root of second moment estimate as in the original paper. (default: False) .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ # def __init__(self, params, # lr=1e-3, bias_correction = True, # betas=(0.9, 0.999), eps=1e-8, eps_inside_sqrt = False, # weight_decay=0., max_grad_norm=0., amsgrad=False): def __init__(self, params, lr=1e-3, warmup=-1, t_total=-1, bias_correction=False, betas=(0.9, 0.999), schedule='warmup_linear', eps=1e-6, eps_inside_sqrt = False, weight_decay=0., max_grad_norm=1.0, amsgrad=False): global fused_adam_cuda fused_adam_cuda = importlib.import_module("fused_adam_cuda") if amsgrad: raise RuntimeError('FusedAdam does not support the AMSGrad variant.') defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(FusedAdamBert, self).__init__(params, defaults) print("LOCAL FUSED ADAM") self.eps_mode = 0 if eps_inside_sqrt else 1 self.schedule = schedule self.t_total = t_total self.warmup = warmup def get_lr(self): lr = [] for group in self.param_groups: for p in group['params']: state = self.state[p] if len(state) == 0: return [0] if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] lr.append(lr_scheduled) print("LR {}".format(lr_scheduled)) return lr def step(self, closure=None, grads=None, output_params=None, scale=1., grad_norms=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. grads (list of tensors, optional): weight gradient to use for the optimizer update. If gradients have type torch.half, parameters are expected to be in type torch.float. (default: None) output params (list of tensors, optional): A reduced precision copy of the updated weights written out in addition to the regular updated weights. Have to be of same type as gradients. (default: None) scale (float, optional): factor to divide gradient tensor values by before applying to weights. (default: 1) """ loss = None if closure is not None: loss = closure() if grads is None: grads_group = [None]*len(self.param_groups) # backward compatibility # assuming a list/generator of parameter means single group elif isinstance(grads, types.GeneratorType): grads_group = [grads] elif type(grads[0])!=list: grads_group = [grads] else: grads_group = grads if output_params is None: output_params_group = [None]*len(self.param_groups) elif isinstance(output_params, types.GeneratorType): output_params_group = [output_params] elif type(output_params[0])!=list: output_params_group = [output_params] else: output_params_group = output_params if grad_norms is None: grad_norms = [None]*len(self.param_groups) #Compute global norm global_norm = 0.0 for group, grads_this_group, output_params_this_group, grad_norm in zip(self.param_groups, grads_group, output_params_group, grad_norms): global_norm = (global_norm ** 2 + grad_norm ** 2) ** 0.5 for group, grads_this_group, output_params_this_group, grad_norm in zip(self.param_groups, grads_group, output_params_group, grad_norms): if grads_this_group is None: grads_this_group = [None]*len(group['params']) if output_params_this_group is None: output_params_this_group = [None]*len(group['params']) # compute combined scale factor for this group combined_scale = scale if group['max_grad_norm'] > 0: # norm is in fact norm*scale clip = ((global_norm / scale) + 1e-6) / group['max_grad_norm'] if clip > 1: combined_scale = clip * scale bias_correction = 1 if group['bias_correction'] else 0 for p, grad, output_param in zip(group['params'], grads_this_group, output_params_this_group): #note: p.grad should not ever be set for correct operation of mixed precision optimizer that sometimes sends None gradients if p.grad is None and grad is None: continue if grad is None: grad = p.grad.data if grad.is_sparse: raise RuntimeError('FusedAdam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 out_p = torch.tensor([], dtype = torch.float) if output_param is None else output_param #Changes sharath schedule_fct = SCHEDULES[self.schedule] #schedule_fct(state['step']/self.t_total, self.warmup) #step_lr = group['lr'] * schedule_fct(state['step']/self.t_total, self.warmup) #step_lr = group['lr'] * scale#schedule_fct(state['step']/self.t_total, self.warmup)# schedule_fct(state['step']/group['t_total'], group['warmup']) #print(scale, step_lr) #print(group['lr']) fused_adam_cuda.adam(p.data, out_p, exp_avg, exp_avg_sq, grad, group['lr'], #step_lr,#group['lr'], beta1, beta2, group['eps'], combined_scale, state['step'], self.eps_mode, bias_correction, group['weight_decay']) return loss