# coding=utf-8 # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions and classes related to optimization (weight updates).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import tensorflow as tf from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from horovod.tensorflow.compression import Compression def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, hvd=None, manual_fp16=False, use_fp16=False, num_accumulation_steps=1, optimizer_type="adam", allreduce_post_accumulation=False): """Creates an optimizer training op.""" global_step = tf.train.get_or_create_global_step() # avoid step change in learning rate at end of warmup phase if optimizer_type == "adam": power = 1.0 decayed_learning_rate_at_crossover_point = init_lr * ( (1.0 - float(num_warmup_steps) / float(num_train_steps)) ** power) else: power = 0.5 decayed_learning_rate_at_crossover_point = init_lr adjusted_init_lr = init_lr * (init_lr / decayed_learning_rate_at_crossover_point) print('decayed_learning_rate_at_crossover_point = %e, adjusted_init_lr = %e' % (decayed_learning_rate_at_crossover_point, adjusted_init_lr)) learning_rate = tf.constant(value=adjusted_init_lr, shape=[], dtype=tf.float32) # Implements linear decay of the learning rate. learning_rate = tf.train.polynomial_decay( learning_rate, global_step, num_train_steps, end_learning_rate=0.0, power=power, cycle=False) # Implements linear warmup. I.e., if global_step < num_warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. if num_warmup_steps: global_steps_int = tf.cast(global_step, tf.int32) warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32) global_steps_float = tf.cast(global_steps_int, tf.float32) warmup_steps_float = tf.cast(warmup_steps_int, tf.float32) warmup_percent_done = global_steps_float / warmup_steps_float warmup_learning_rate = init_lr * warmup_percent_done is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32) learning_rate = ( (1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate) if optimizer_type == "lamb": print("Initializing LAMB Optimizer") optimizer = LAMBOptimizer( learning_rate=learning_rate, weight_decay_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) else: print("Initializing ADAM Weight Decay Optimizer") # It is recommended that you use this optimizer for fine tuning, since this # is how the model was trained (note that the Adam m/v variables are NOT # loaded from init_checkpoint.) optimizer = AdamWeightDecayOptimizer( learning_rate=learning_rate, weight_decay_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) if hvd is not None and (num_accumulation_steps == 1 or (not allreduce_post_accumulation)): optimizer = hvd.DistributedOptimizer(optimizer, sparse_as_dense=True, compression=Compression.fp16 if use_fp16 or manual_fp16 else Compression.none) if manual_fp16 or use_fp16: loss_scale_manager = tf.contrib.mixed_precision.ExponentialUpdateLossScaleManager(init_loss_scale=2**32, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, decr_ratio=0.5) optimizer = tf.contrib.mixed_precision.LossScaleOptimizer(optimizer, loss_scale_manager) tvars = tf.trainable_variables() grads_and_vars = optimizer.compute_gradients(loss * 1.0 / num_accumulation_steps, tvars) if num_accumulation_steps > 1: local_step = tf.get_variable(name="local_step", shape=[], dtype=tf.int32, trainable=False, initializer=tf.zeros_initializer) batch_finite = tf.get_variable(name="batch_finite", shape=[], dtype=tf.bool, trainable=False, initializer=tf.ones_initializer) accum_vars = [tf.get_variable( name=tvar.name.split(":")[0] + "/accum", shape=tvar.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) for tvar in tf.trainable_variables()] reset_step = tf.cast(tf.math.equal(local_step % num_accumulation_steps, 0), dtype=tf.bool) local_step = tf.cond(reset_step, lambda:local_step.assign(tf.ones_like(local_step)), lambda:local_step.assign_add(1)) grads_and_vars_and_accums = [(gv[0],gv[1],accum_vars[i]) for i, gv in enumerate(grads_and_vars) if gv[0] is not None] grads, tvars, accum_vars = list(zip(*grads_and_vars_and_accums)) all_are_finite = tf.reduce_all([tf.reduce_all(tf.is_finite(g)) for g in grads]) if manual_fp16 or use_fp16 else tf.constant(True, dtype=tf.bool) batch_finite = tf.cond(reset_step, lambda: batch_finite.assign(tf.math.logical_and(tf.constant(True, dtype=tf.bool), all_are_finite)), lambda:batch_finite.assign(tf.math.logical_and(batch_finite, all_are_finite))) # This is how the model was pre-trained. # ensure global norm is a finite number # to prevent clip_by_global_norm from having a hizzy fit. (clipped_grads, _) = tf.clip_by_global_norm( grads, clip_norm=1.0, use_norm=tf.cond( all_are_finite, lambda: tf.global_norm(grads), lambda: tf.constant(1.0))) accum_vars = tf.cond(reset_step, lambda: [accum_vars[i].assign(grad) for i, grad in enumerate(clipped_grads)], lambda: [accum_vars[i].assign_add(grad) for i, grad in enumerate(clipped_grads)]) def update(accum_vars): if allreduce_post_accumulation and hvd is not None: accum_vars = [hvd.allreduce(tf.convert_to_tensor(accum_var), compression=Compression.fp16 if use_fp16 or manual_fp16 else Compression.none) if isinstance(accum_var, tf.IndexedSlices) else hvd.allreduce(accum_var, compression=Compression.fp16 if use_fp16 or manual_fp16 else Compression.none) for accum_var in accum_vars] return optimizer.apply_gradients(list(zip(accum_vars, tvars)), global_step=global_step) update_step = tf.identity(tf.cast(tf.math.equal(local_step % num_accumulation_steps, 0), dtype=tf.bool), name="update_step") update_op = tf.cond(update_step, lambda: update(accum_vars), lambda: tf.no_op()) new_global_step = tf.cond(tf.math.logical_and(update_step, tf.cast(hvd.allreduce(tf.cast(batch_finite, tf.int32)), tf.bool)), lambda: global_step+1, lambda: global_step) new_global_step = tf.identity(new_global_step, name='step_update') train_op = tf.group(update_op, [global_step.assign(new_global_step)]) else: grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] grads, tvars = list(zip(*grads_and_vars)) all_are_finite = tf.reduce_all( [tf.reduce_all(tf.is_finite(g)) for g in grads]) if use_fp16 or manual_fp16 else tf.constant(True, dtype=tf.bool) # This is how the model was pre-trained. # ensure global norm is a finite number # to prevent clip_by_global_norm from having a hizzy fit. (clipped_grads, _) = tf.clip_by_global_norm( grads, clip_norm=1.0, use_norm=tf.cond( all_are_finite, lambda: tf.global_norm(grads), lambda: tf.constant(1.0))) train_op = optimizer.apply_gradients( list(zip(clipped_grads, tvars)), global_step=global_step) new_global_step = tf.cond(all_are_finite, lambda: global_step + 1, lambda: global_step) new_global_step = tf.identity(new_global_step, name='step_update') train_op = tf.group(train_op, [global_step.assign(new_global_step)]) return train_op class AdamWeightDecayOptimizer(tf.train.Optimizer): """A basic Adam optimizer that includes "correct" L2 weight decay.""" def __init__(self, learning_rate, weight_decay_rate=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=None, name="AdamWeightDecayOptimizer"): """Constructs a AdamWeightDecayOptimizer.""" super(AdamWeightDecayOptimizer, self).__init__(False, name) self.learning_rate = tf.identity(learning_rate, name='learning_rate') self.weight_decay_rate = weight_decay_rate self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.exclude_from_weight_decay = exclude_from_weight_decay def apply_gradients(self, grads_and_vars, global_step=None, name=None, manual_fp16=False): """See base class.""" assignments = [] for (grad, param) in grads_and_vars: if grad is None or param is None: continue param_name = self._get_variable_name(param.name) has_shadow = manual_fp16 and param.dtype.base_dtype != tf.float32 if has_shadow: # create shadow fp32 weights for fp16 variable param_fp32 = tf.get_variable( name=param_name + "/shadow", dtype=tf.float32, trainable=False, initializer=tf.cast(param.initialized_value(),tf.float32)) else: param_fp32 = param m = tf.get_variable( name=param_name + "/adam_m", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) v = tf.get_variable( name=param_name + "/adam_v", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) # Standard Adam update. next_m = ( tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad)) next_v = ( tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2, tf.square(grad))) update = next_m / (tf.sqrt(next_v) + self.epsilon) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if self._do_use_weight_decay(param_name): update += self.weight_decay_rate * param_fp32 update_with_lr = self.learning_rate * update next_param = param_fp32 - update_with_lr if has_shadow: # cast shadow fp32 weights to fp16 and assign to trainable variable param.assign(tf.cast(next_param, param.dtype.base_dtype)) assignments.extend( [param_fp32.assign(next_param), m.assign(next_m), v.assign(next_v)]) return tf.group(*assignments, name=name) def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if not self.weight_decay_rate: return False if self.exclude_from_weight_decay: for r in self.exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True def _get_variable_name(self, param_name): """Get the variable name from the tensor name.""" m = re.match("^(.*):\\d+$", param_name) if m is not None: param_name = m.group(1) return param_name class LAMBOptimizer(tf.train.Optimizer): """A LAMB optimizer that includes "correct" L2 weight decay.""" def __init__(self, learning_rate, weight_decay_rate=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=None, name="LAMBOptimizer"): """Constructs a LAMBOptimizer.""" super(LAMBOptimizer, self).__init__(False, name) self.learning_rate = tf.identity(learning_rate, name='learning_rate') self.weight_decay_rate = weight_decay_rate self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.exclude_from_weight_decay = exclude_from_weight_decay self.steps = 0 def apply_gradients(self, grads_and_vars, global_step=None, name=None, manual_fp16=False): """See base class.""" assignments = [] for (grad, param) in grads_and_vars: if grad is None or param is None: continue param_name = self._get_variable_name(param.name) has_shadow = manual_fp16 and param.dtype.base_dtype != tf.float32 if has_shadow: # create shadow fp32 weights for fp16 variable param_fp32 = tf.get_variable( name=param_name + "/shadow", dtype=tf.float32, trainable=False, initializer=tf.cast(param.initialized_value(),tf.float32)) else: param_fp32 = param m = tf.get_variable( name=param_name + "/adam_m", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) v = tf.get_variable( name=param_name + "/adam_v", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) # LAMB update next_m = ( tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad)) next_v = ( tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2, tf.square(grad))) self.steps += 1 beta1_correction = (1 - self.beta_1 ** self.steps) beta2_correction = (1 - self.beta_2 ** self.steps) next_m_unbiased = next_m / beta1_correction next_v_unbiased = next_v / beta2_correction update = next_m_unbiased / (tf.sqrt(next_v_unbiased) + self.epsilon) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if self._do_use_weight_decay(param_name): update += self.weight_decay_rate * param_fp32 w_norm = linalg_ops.norm(param, ord=2) g_norm = linalg_ops.norm(update, ord=2) ratio = array_ops.where(math_ops.greater(w_norm, 0), array_ops.where( math_ops.greater(g_norm, 0), (w_norm / g_norm), 1.0), 1.0) update_with_lr = ratio * self.learning_rate * update next_param = param_fp32 - update_with_lr if has_shadow: # cast shadow fp32 weights to fp16 and assign to trainable variable param.assign(tf.cast(next_param, param.dtype.base_dtype)) assignments.extend( [param_fp32.assign(next_param), m.assign(next_m), v.assign(next_v)]) return tf.group(*assignments, name=name) def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if not self.weight_decay_rate: return False if self.exclude_from_weight_decay: for r in self.exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True def _get_variable_name(self, param_name): """Get the variable name from the tensor name.""" m = re.match("^(.*):\\d+$", param_name) if m is not None: param_name = m.group(1) return param_name