# Copyright (c) 2018-2019, NVIDIA CORPORATION # Copyright (c) 2017- Facebook, Inc # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import time from copy import deepcopy from functools import wraps from typing import Callable, Dict, Optional, Tuple import torch import torch.nn as nn from torch.cuda.amp import autocast from torch.nn.parallel import DistributedDataParallel as DDP from . import logger as log from . import utils from .logger import TrainingMetrics, ValidationMetrics from .models.common import EMA class Executor: def __init__( self, model: nn.Module, loss: Optional[nn.Module], cuda: bool = True, memory_format: torch.memory_format = torch.contiguous_format, amp: bool = False, scaler: Optional[torch.cuda.amp.GradScaler] = None, divide_loss: int = 1, ts_script: bool = False, ): assert not (amp and scaler is None), "Gradient Scaler is needed for AMP" def xform(m: nn.Module) -> nn.Module: if cuda: m = m.cuda() m.to(memory_format=memory_format) return m self.model = xform(model) if ts_script: self.model = torch.jit.script(self.model) self.ts_script = ts_script self.loss = xform(loss) if loss is not None else None self.amp = amp self.scaler = scaler self.is_distributed = False self.divide_loss = divide_loss self._fwd_bwd = None self._forward = None def distributed(self, gpu_id): self.is_distributed = True s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): self.model = DDP(self.model, device_ids=[gpu_id], output_device=gpu_id) torch.cuda.current_stream().wait_stream(s) def _fwd_bwd_fn( self, input: torch.Tensor, target: torch.Tensor, ) -> torch.Tensor: with autocast(enabled=self.amp): loss = self.loss(self.model(input), target) loss /= self.divide_loss self.scaler.scale(loss).backward() return loss def _forward_fn( self, input: torch.Tensor, target: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: with torch.no_grad(), autocast(enabled=self.amp): output = self.model(input) loss = None if self.loss is None else self.loss(output, target) return output if loss is None else loss, output def optimize(self, fn): return fn @property def forward_backward(self): if self._fwd_bwd is None: if self.loss is None: raise NotImplementedError( "Loss must not be None for forward+backward step" ) self._fwd_bwd = self.optimize(self._fwd_bwd_fn) return self._fwd_bwd @property def forward(self): if self._forward is None: self._forward = self.optimize(self._forward_fn) return self._forward class Trainer: def __init__( self, executor: Executor, optimizer: torch.optim.Optimizer, grad_acc_steps: int, ema: Optional[float] = None, ): self.executor = executor self.optimizer = optimizer self.grad_acc_steps = grad_acc_steps self.use_ema = False if ema is not None: self.ema_executor = deepcopy(self.executor) self.ema = EMA(ema, self.ema_executor.model) self.use_ema = True self.optimizer.zero_grad(set_to_none=True) self.steps_since_update = 0 def train(self): self.executor.model.train() def eval(self): self.executor.model.eval() if self.use_ema: self.executor.model.eval() def train_step(self, input, target, step=None): loss = self.executor.forward_backward(input, target) self.steps_since_update += 1 if self.steps_since_update == self.grad_acc_steps: if self.executor.scaler is not None: self.executor.scaler.step(self.optimizer) self.executor.scaler.update() else: self.optimizer.step() self.optimizer.zero_grad() self.steps_since_update = 0 torch.cuda.synchronize() if self.use_ema: self.ema(self.executor.model, step=step) return loss def validation_steps(self) -> Dict[str, Callable]: vsd: Dict[str, Callable] = {"val": self.executor.forward} if self.use_ema: vsd["val_ema"] = self.ema_executor.forward return vsd def state_dict(self) -> dict: res = { "state_dict": self.executor.model.state_dict(), "optimizer": self.optimizer.state_dict(), } if self.use_ema: res["state_dict_ema"] = self.ema_executor.model.state_dict() return res def train( train_step, train_loader, lr_scheduler, log_fn, timeout_handler, prof=-1, step=0, ): interrupted = False end = time.time() data_iter = enumerate(train_loader) for i, (input, target) in data_iter: bs = input.size(0) lr = lr_scheduler(i) data_time = time.time() - end loss = train_step(input, target, step=step + i) it_time = time.time() - end with torch.no_grad(): if torch.distributed.is_initialized(): reduced_loss = utils.reduce_tensor(loss.detach()) else: reduced_loss = loss.detach() log_fn( compute_ips=utils.calc_ips(bs, it_time - data_time), total_ips=utils.calc_ips(bs, it_time), data_time=data_time, compute_time=it_time - data_time, lr=lr, loss=reduced_loss.item(), ) end = time.time() if prof > 0 and (i + 1 >= prof): time.sleep(5) break if ((i + 1) % 20 == 0) and timeout_handler.interrupted: time.sleep(5) interrupted = True break return interrupted def validate(infer_fn, val_loader, log_fn, prof=-1, with_loss=True): top1 = log.AverageMeter() # switch to evaluate mode end = time.time() data_iter = enumerate(val_loader) for i, (input, target) in data_iter: bs = input.size(0) data_time = time.time() - end if with_loss: loss, output = infer_fn(input, target) else: output = infer_fn(input) with torch.no_grad(): prec1, prec5 = utils.accuracy(output.data, target, topk=(1, 5)) if torch.distributed.is_initialized(): if with_loss: reduced_loss = utils.reduce_tensor(loss.detach()) prec1 = utils.reduce_tensor(prec1) prec5 = utils.reduce_tensor(prec5) else: if with_loss: reduced_loss = loss.detach() prec1 = prec1.item() prec5 = prec5.item() infer_result = { "top1": (prec1, bs), "top5": (prec5, bs), } if with_loss: infer_result["loss"] = (reduced_loss.item(), bs) torch.cuda.synchronize() it_time = time.time() - end top1.record(prec1, bs) log_fn( compute_ips=utils.calc_ips(bs, it_time - data_time), total_ips=utils.calc_ips(bs, it_time), data_time=data_time, compute_time=it_time - data_time, **infer_result, ) end = time.time() if (prof > 0) and (i + 1 >= prof): time.sleep(5) break return top1.get_val() # Train loop {{{ def train_loop( trainer: Trainer, lr_scheduler, train_loader, train_loader_len, val_loader, logger, should_backup_checkpoint, best_prec1=0, start_epoch=0, end_epoch=0, early_stopping_patience=-1, prof=-1, skip_training=False, skip_validation=False, save_checkpoints=True, checkpoint_dir="./", checkpoint_filename="checkpoint.pth.tar", ): train_metrics = TrainingMetrics(logger) val_metrics = { k: ValidationMetrics(logger, k) for k in trainer.validation_steps().keys() } training_step = trainer.train_step prec1 = -1 if early_stopping_patience > 0: epochs_since_improvement = 0 backup_prefix = ( checkpoint_filename[: -len("checkpoint.pth.tar")] if checkpoint_filename.endswith("checkpoint.pth.tar") else "" ) print(f"RUNNING EPOCHS FROM {start_epoch} TO {end_epoch}") with utils.TimeoutHandler() as timeout_handler: interrupted = False for epoch in range(start_epoch, end_epoch): if logger is not None: logger.start_epoch() if not skip_training: if logger is not None: data_iter = logger.iteration_generator_wrapper( train_loader, mode="train" ) else: data_iter = train_loader trainer.train() interrupted = train( training_step, data_iter, lambda i: lr_scheduler(trainer.optimizer, i, epoch), train_metrics.log, timeout_handler, prof=prof, step=epoch * train_loader_len, ) if not skip_validation: trainer.eval() for k, infer_fn in trainer.validation_steps().items(): if logger is not None: data_iter = logger.iteration_generator_wrapper( val_loader, mode="val" ) else: data_iter = val_loader step_prec1, _ = validate( infer_fn, data_iter, val_metrics[k].log, prof=prof, ) if k == "val": prec1 = step_prec1 if prec1 > best_prec1: is_best = True best_prec1 = prec1 else: is_best = False else: is_best = False best_prec1 = 0 if logger is not None: logger.end_epoch() if save_checkpoints and ( not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0 ): if should_backup_checkpoint(epoch): backup_filename = "{}checkpoint-{}.pth.tar".format( backup_prefix, epoch + 1 ) else: backup_filename = None checkpoint_state = { "epoch": epoch + 1, "best_prec1": best_prec1, **trainer.state_dict(), } utils.save_checkpoint( checkpoint_state, is_best, checkpoint_dir=checkpoint_dir, backup_filename=backup_filename, filename=checkpoint_filename, ) if early_stopping_patience > 0: if not is_best: epochs_since_improvement += 1 else: epochs_since_improvement = 0 if epochs_since_improvement >= early_stopping_patience: break if interrupted: break # }}}