# coding=utf-8 # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch optimization for BERT model.""" import math import torch from torch.optim import Optimizer from torch.optim.optimizer import required from torch.nn.utils import clip_grad_norm_ #from fused_adam_local import FusedAdam from apex.optimizers import FusedAdam from apex.multi_tensor_apply import multi_tensor_applier import amp_C multi_tensor_l2norm = amp_C.multi_tensor_l2norm lamb_compute_update = amp_C.multi_tensor_lamb_stage1_cuda lamb_apply_update = amp_C.multi_tensor_lamb_stage2_cuda scale = amp_C.multi_tensor_scale def warmup_cosine(x, warmup=0.002): if x < warmup: return x/warmup return 0.5 * (1.0 + torch.cos(math.pi * x)) def warmup_constant(x, warmup=0.002): if x < warmup: return x/warmup return 1.0 def warmup_linear(x, warmup=0.002): if x < warmup: return x/warmup return max((x - 1. )/ (warmup - 1.), 0.) def warmup_poly(x, warmup=0.002, degree=0.5): if x < warmup: return x/warmup return (1.0 - x)**degree SCHEDULES = { 'warmup_cosine':warmup_cosine, 'warmup_constant':warmup_constant, 'warmup_linear':warmup_linear, 'warmup_poly':warmup_poly, } class BertLAMB(Optimizer): """Implements BERT version of LAMB algorithm. Params: lr: learning rate warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1 t_total: total number of training steps for the learning rate schedule, -1 means constant learning rate. Default: -1 schedule: schedule to use for the warmup (see above). Default: 'warmup_linear' b1: LAMBs b1. Default: 0.9 b2: LAMBs b2. Default: 0.999 e: LAMBs epsilon. Default: 1e-6 weight_decay: Weight decay. Default: 0.01 max_grad_norm: Maximum global norm for the gradients. Default: 1.0 """ def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_poly', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) if schedule not in SCHEDULES: raise ValueError("Invalid schedule parameter: {}".format(schedule)) if not 0.0 <= warmup < 1.0 and not warmup == -1: raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup)) if not 0.0 <= b1 < 1.0: raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1)) if not 0.0 <= b2 < 1.0: raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2)) if not e >= 0.0: raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e)) defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, b1=b1, b2=b2, e=e, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(BertLAMB, self).__init__(params, defaults) self.step_count = 0 self.b1 = b1 self.b2 = b2 self.epsilon = e self.max_global_grad_norm = max_grad_norm self.learning_rate = lr self.schedule = schedule self.warmup = warmup self.max_steps = t_total self.updates_created=False def get_lr(self): lr = [] for group in self.param_groups: for p in group['params']: state = self.state[p] if len(state) == 0: return [0] if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] lr.append(lr_scheduled) return lr def apply_gradients(self, dummy_overflow_buf, lr_scheduled, per_param_decay, grad_list, param_list, momentum, velocity, update): # Compute global gradient norm global_grad_norm = multi_tensor_applier( multi_tensor_l2norm, dummy_overflow_buf, [grad_list], False)[0].item() # Compute per parameter norm param_norms = multi_tensor_applier( multi_tensor_l2norm, dummy_overflow_buf, [param_list], True)[1] # Compute LAMB update multi_tensor_applier( lamb_compute_update, dummy_overflow_buf, [grad_list, param_list, momentum, velocity, update], torch.cuda.FloatTensor(per_param_decay), self.step_count, self.b1, self.b2, self.epsilon, global_grad_norm, self.max_global_grad_norm, ) # Computer per parameter update norm update_norms = multi_tensor_applier( multi_tensor_l2norm, dummy_overflow_buf, [update], True)[1] # Apply LAMB update on parameters multi_tensor_applier( lamb_apply_update, dummy_overflow_buf, [param_list, update], param_norms, update_norms, lr_scheduled, ) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() check = 1#torch.norm(all_grads, 2) grad_list = [] param_list = [] per_param_decay = [] momentum = [] velocity = [] fp16_grad_list = [] fp16_from_fp32_param_list = [] fp32_param_list = [] fp16_per_param_decay = [] fp16_momentum = [] fp16_velocity = [] if not self.updates_created: self.update = [] self.fp16_update = [] for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: # Keep step here for compatibility with earlier resume from checkpoint state['step'] = 0 # Exponential moving average of gradient values state['momentum'] = torch.zeros_like(p.data, dtype=torch.float32) # Exponential moving average of squared gradient values state['velocity'] = torch.zeros_like(p.data, dtype=torch.float32) # fp32 master weights if 'master_param' not in state.keys() and p.type() == 'torch.cuda.HalfTensor': state['master_param'] = p.detach().clone().float() # ensure these 3 are float tensors if state['momentum'].type() != 'torch.cuda.FloatTensor': state['momentum'] = state['momentum'].float() if state['velocity'].type() != 'torch.cuda.FloatTensor': state['velocity'] = state['velocity'].float() if 'master_param' in state.keys() and state['master_param'].type() != 'torch.cuda.FloatTensor': state['master_param'] = state['master_param'].float() # Append all params, gradients, decays, velocity, momentum and updates to a list if p.type() == 'torch.cuda.HalfTensor': fp16_grad_list.append(grad) fp32_param_list.append(state['master_param']) fp16_from_fp32_param_list.append(p.data) fp16_per_param_decay.append(group['weight_decay']) fp16_momentum.append(state["momentum"]) fp16_velocity.append(state["velocity"]) if not self.updates_created: #self.fp16_update.append(torch.empty_like(p.data, dtype=torch.float32)) # Use fp16 weights as temporary buffer for update term. # This is safe because fp16 weights are overwritten after apply_gradients self.fp16_update.append(p.data) else: grad_list.append(grad) param_list.append(p.data) per_param_decay.append(group['weight_decay']) momentum.append(state["momentum"]) velocity.append(state["velocity"]) if not self.updates_created: self.update.append(torch.empty_like(p.data)) state['step'] += 1 self.updates_created=True update = self.update fp16_update = self.fp16_update self.step_count = state['step'] # Calculate learning rate from input schedule # if self.max_steps != -1: schedule_fct = SCHEDULES[self.schedule] lr_scheduled = self.learning_rate * schedule_fct(self.step_count / self.max_steps, self.warmup) if torch.distributed.get_rank() == 0: print("Step {} LR {}".format(self.step_count, lr_scheduled)) # else: # lr_scheduled = self.learning_rate overflow_buf = torch.cuda.IntTensor([0]) if len(grad_list) > 0: self.apply_gradients(overflow_buf, lr_scheduled, per_param_decay, grad_list, param_list, momentum, velocity, update) if len(fp16_grad_list) > 0: self.apply_gradients(overflow_buf, lr_scheduled, fp16_per_param_decay, fp16_grad_list, fp32_param_list, fp16_momentum, fp16_velocity, fp16_update) multi_tensor_applier( scale, overflow_buf, [fp32_param_list, fp16_from_fp32_param_list], 1.) return loss class BertAdam(Optimizer): """Implements BERT version of Adam algorithm with weight decay fix. Params: lr: learning rate warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1 t_total: total number of training steps for the learning rate schedule, -1 means constant learning rate. Default: -1 schedule: schedule to use for the warmup (see above). Default: 'warmup_linear' b1: Adams b1. Default: 0.9 b2: Adams b2. Default: 0.999 e: Adams epsilon. Default: 1e-6 weight_decay: Weight decay. Default: 0.01 max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 """ def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) if schedule not in SCHEDULES: raise ValueError("Invalid schedule parameter: {}".format(schedule)) if not 0.0 <= warmup < 1.0 and not warmup == -1: raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup)) if not 0.0 <= b1 < 1.0: raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1)) if not 0.0 <= b2 < 1.0: raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2)) if not e >= 0.0: raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e)) defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, b1=b1, b2=b2, e=e, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(BertAdam, self).__init__(params, defaults) def get_lr(self): lr = [] for group in self.param_groups: for p in group['params']: state = self.state[p] if len(state) == 0: return [0] if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] lr.append(lr_scheduled) return lr def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['next_m'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['next_v'] = torch.zeros_like(p.data) next_m, next_v = state['next_m'], state['next_v'] beta1, beta2 = group['b1'], group['b2'] # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm']) # Decay the first and second moment running average coefficient # In-place operations to update the averages at the same time next_m.mul_(beta1).add_(1 - beta1, grad) next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad) update = next_m / (next_v.sqrt() + group['e']) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if group['weight_decay'] > 0.0: update += group['weight_decay'] * p.data if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] update_with_lr = lr_scheduled * update p.data.add_(-update_with_lr) state['step'] += 1 # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1 # No bias correction # bias_correction1 = 1 - beta1 ** state['step'] # bias_correction2 = 1 - beta2 ** state['step'] return loss