DeepLearningExamples/TensorFlow2/LanguageModeling/BERT/optimization.py
2021-04-21 14:16:30 +02:00

263 lines
9.8 KiB
Python

# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions and classes related to optimization (weight updates)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import tensorflow as tf
import tensorflow_addons.optimizers as tfa_optimizers
class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
"""Applys a warmup schedule on a given learning rate decay schedule."""
def __init__(
self,
initial_learning_rate,
decay_schedule_fn,
warmup_steps,
power=1.0,
name=None):
super(WarmUp, self).__init__()
self.initial_learning_rate = initial_learning_rate
self.warmup_steps = warmup_steps
self.power = power
self.decay_schedule_fn = decay_schedule_fn
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or 'WarmUp') as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
global_step_float = tf.cast(step, tf.float32)
warmup_steps_float = tf.cast(self.warmup_steps, tf.float32)
warmup_percent_done = global_step_float / warmup_steps_float
warmup_learning_rate = (
self.initial_learning_rate *
tf.math.pow(warmup_percent_done, self.power))
return tf.cond(global_step_float < warmup_steps_float,
lambda: warmup_learning_rate,
lambda: self.decay_schedule_fn(step),
name=name)
def get_config(self):
return {
'initial_learning_rate': self.initial_learning_rate,
'decay_schedule_fn': self.decay_schedule_fn,
'warmup_steps': self.warmup_steps,
'power': self.power,
'name': self.name
}
def create_optimizer(init_lr, num_train_steps, num_warmup_steps, optimizer_type="adam"):
"""Creates an optimizer with learning rate schedule."""
# Implements linear decay of the learning rate.
if optimizer_type == "adam":
power = 1.0
decayed_learning_rate_at_crossover_point = init_lr * (
(1.0 - float(num_warmup_steps) / float(num_train_steps)) ** power)
else:
power = 0.5
decayed_learning_rate_at_crossover_point = init_lr
init_lr = init_lr * (init_lr / decayed_learning_rate_at_crossover_point)
print('decayed_learning_rate_at_crossover_point = %e, adjusted_init_lr = %e' % (decayed_learning_rate_at_crossover_point, init_lr))
learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=init_lr,
decay_steps=num_train_steps,
end_learning_rate=0.0,
power=power)
if num_warmup_steps:
learning_rate_fn = WarmUp(initial_learning_rate=init_lr,
decay_schedule_fn=learning_rate_fn,
warmup_steps=num_warmup_steps)
if optimizer_type == 'adam':
optimizer = AdamWeightDecay(
learning_rate=learning_rate_fn,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'])
else:
skip_list = ['None'] # to avoid exclude_from_layer_adaptation set to exclude_from_weight_decay if the arg is None
optimizer = tfa_optimizers.LAMB(
learning_rate=learning_rate_fn,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'],
exclude_from_layer_adaptation=skip_list)
return optimizer
class AdamWeightDecay(tf.keras.optimizers.Adam):
"""Adam enables L2 weight decay and clip_by_global_norm on gradients.
Just adding the square of the weights to the loss function is *not* the
correct way of using L2 regularization/weight decay with Adam, since that will
interact with the m and v parameters in strange ways.
Instead we want ot decay the weights in a manner that doesn't interact with
the m/v parameters. This is equivalent to adding the square of the weights to
the loss with plain (non-momentum) SGD.
"""
def __init__(self,
learning_rate=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-7,
amsgrad=False,
weight_decay_rate=0.0,
include_in_weight_decay=None,
exclude_from_weight_decay=None,
name='AdamWeightDecay',
**kwargs):
super(AdamWeightDecay, self).__init__(learning_rate, beta_1, beta_2,
epsilon, amsgrad, name, **kwargs)
self.weight_decay_rate = weight_decay_rate
self._include_in_weight_decay = include_in_weight_decay
self._exclude_from_weight_decay = exclude_from_weight_decay
@classmethod
def from_config(cls, config):
"""Creates an optimizer from its config with WarmUp custom object."""
custom_objects = {'WarmUp': WarmUp}
return super(AdamWeightDecay, cls).from_config(
config, custom_objects=custom_objects)
def _prepare_local(self, var_device, var_dtype, apply_state):
super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype,
apply_state)
apply_state[(var_device, var_dtype)]['weight_decay_rate'] = tf.constant(
self.weight_decay_rate, name='adam_weight_decay_rate')
def _decay_weights_op(self, var, learning_rate, apply_state):
do_decay = self._do_use_weight_decay(var.name)
if do_decay:
return var.assign_sub(
learning_rate * var *
apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'],
use_locking=self._use_locking)
return tf.no_op()
def _get_lr(self, var_device, var_dtype, apply_state):
"""Retrieves the learning rate with the given state."""
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
apply_state = apply_state or {}
coefficients = apply_state.get((var_device, var_dtype))
if coefficients is None:
coefficients = self._fallback_apply_state(var_device, var_dtype)
apply_state[(var_device, var_dtype)] = coefficients
return coefficients['lr_t'], dict(apply_state=apply_state)
def _resource_apply_dense(self, grad, var, apply_state=None):
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
decay = self._decay_weights_op(var, lr_t, apply_state)
with tf.control_dependencies([decay]):
return super(AdamWeightDecay,
self)._resource_apply_dense(grad, var, **kwargs)
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
decay = self._decay_weights_op(var, lr_t, apply_state)
with tf.control_dependencies([decay]):
return super(AdamWeightDecay,
self)._resource_apply_sparse(grad, var, indices, **kwargs)
def get_config(self):
config = super(AdamWeightDecay, self).get_config()
config.update({
'weight_decay_rate': self.weight_decay_rate,
})
return config
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(r, param_name) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
# Inspired from https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/optimizers/utils.py
class GradientAccumulator():
def __init__(self):
self._gradients = []
self._accum_steps = None
def zero(self, dtype):
return tf.Variable(
tf.constant(0, dtype=dtype),
trainable=False,
synchronization=tf.VariableSynchronization.ON_READ,
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA)
@property
def step(self):
if self._accum_steps is None:
self._accum_steps = self.zero(tf.int64)
return self._accum_steps.value()
@property
def gradients(self):
if not self._gradients:
raise ValueError("The accumulator should be called first to initialize the gradients")
return list(gradient.value() if gradient is not None else None for gradient in self._gradients)
def reset(self):
if not self._gradients:
return
self._accum_steps.assign(0)
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros(tf.shape(gradient), dtype=gradient.dtype))
def add_gradients(self, grads):
if not self._gradients:
_ = self.step
self._gradients.extend([
tf.Variable(
tf.zeros_like(g),
trainable=False,
synchronization=tf.VariableSynchronization.ON_READ
) if g is not None else None
for g in grads
])
if len(grads) != len(self._gradients):
raise ValueError("Expected %s gradients, but got %d" % (
len(self._gradients), len(grads)))
for accum_grad, grad in zip(self._gradients, grads):
if accum_grad is not None:
accum_grad.assign_add(grad)
self._accum_steps.assign_add(1)