DeepLearningExamples/PyTorch/Detection/SSD/ssd/model.py
2021-11-09 03:16:21 -08:00

198 lines
7.4 KiB
Python

# Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from torchvision.models.resnet import resnet18, resnet34, resnet50, resnet101, resnet152
class ResNet(nn.Module):
def __init__(self, backbone='resnet50', backbone_path=None):
super().__init__()
if backbone == 'resnet18':
backbone = resnet18(pretrained=not backbone_path)
self.out_channels = [256, 512, 512, 256, 256, 128]
elif backbone == 'resnet34':
backbone = resnet34(pretrained=not backbone_path)
self.out_channels = [256, 512, 512, 256, 256, 256]
elif backbone == 'resnet50':
backbone = resnet50(pretrained=not backbone_path)
self.out_channels = [1024, 512, 512, 256, 256, 256]
elif backbone == 'resnet101':
backbone = resnet101(pretrained=not backbone_path)
self.out_channels = [1024, 512, 512, 256, 256, 256]
else: # backbone == 'resnet152':
backbone = resnet152(pretrained=not backbone_path)
self.out_channels = [1024, 512, 512, 256, 256, 256]
if backbone_path:
backbone.load_state_dict(torch.load(backbone_path))
self.feature_extractor = nn.Sequential(*list(backbone.children())[:7])
conv4_block1 = self.feature_extractor[-1][0]
conv4_block1.conv1.stride = (1, 1)
conv4_block1.conv2.stride = (1, 1)
conv4_block1.downsample[0].stride = (1, 1)
def forward(self, x):
x = self.feature_extractor(x)
return x
class SSD300(nn.Module):
def __init__(self, backbone=ResNet('resnet50')):
super().__init__()
self.feature_extractor = backbone
self.label_num = 81 # number of COCO classes
self._build_additional_features(self.feature_extractor.out_channels)
self.num_defaults = [4, 6, 6, 6, 4, 4]
self.loc = []
self.conf = []
for nd, oc in zip(self.num_defaults, self.feature_extractor.out_channels):
self.loc.append(nn.Conv2d(oc, nd * 4, kernel_size=3, padding=1))
self.conf.append(nn.Conv2d(oc, nd * self.label_num, kernel_size=3, padding=1))
self.loc = nn.ModuleList(self.loc)
self.conf = nn.ModuleList(self.conf)
self._init_weights()
def _build_additional_features(self, input_size):
self.additional_blocks = []
for i, (input_size, output_size, channels) in enumerate(zip(input_size[:-1], input_size[1:], [256, 256, 128, 128, 128])):
if i < 3:
layer = nn.Sequential(
nn.Conv2d(input_size, channels, kernel_size=1, bias=False),
nn.BatchNorm2d(channels),
nn.ReLU(inplace=True),
nn.Conv2d(channels, output_size, kernel_size=3, padding=1, stride=2, bias=False),
nn.BatchNorm2d(output_size),
nn.ReLU(inplace=True),
)
else:
layer = nn.Sequential(
nn.Conv2d(input_size, channels, kernel_size=1, bias=False),
nn.BatchNorm2d(channels),
nn.ReLU(inplace=True),
nn.Conv2d(channels, output_size, kernel_size=3, bias=False),
nn.BatchNorm2d(output_size),
nn.ReLU(inplace=True),
)
self.additional_blocks.append(layer)
self.additional_blocks = nn.ModuleList(self.additional_blocks)
def _init_weights(self):
layers = [*self.additional_blocks, *self.loc, *self.conf]
for layer in layers:
for param in layer.parameters():
if param.dim() > 1: nn.init.xavier_uniform_(param)
# Shape the classifier to the view of bboxes
def bbox_view(self, src, loc, conf):
ret = []
for s, l, c in zip(src, loc, conf):
ret.append((l(s).view(s.size(0), 4, -1), c(s).view(s.size(0), self.label_num, -1)))
locs, confs = list(zip(*ret))
locs, confs = torch.cat(locs, 2).contiguous(), torch.cat(confs, 2).contiguous()
return locs, confs
def forward(self, x):
x = self.feature_extractor(x)
detection_feed = [x]
for l in self.additional_blocks:
x = l(x)
detection_feed.append(x)
# Feature Map 38x38x4, 19x19x6, 10x10x6, 5x5x6, 3x3x4, 1x1x4
locs, confs = self.bbox_view(detection_feed, self.loc, self.conf)
# For SSD 300, shall return nbatch x 8732 x {nlabels, nlocs} results
return locs, confs
class Loss(nn.Module):
"""
Implements the loss as the sum of the followings:
1. Confidence Loss: All labels, with hard negative mining
2. Localization Loss: Only on positive labels
Suppose input dboxes has the shape 8732x4
"""
def __init__(self, dboxes):
super(Loss, self).__init__()
self.scale_xy = 1.0/dboxes.scale_xy
self.scale_wh = 1.0/dboxes.scale_wh
self.sl1_loss = nn.SmoothL1Loss(reduction='none')
self.dboxes = nn.Parameter(dboxes(order="xywh").transpose(0, 1).unsqueeze(dim = 0),
requires_grad=False)
# Two factor are from following links
# http://jany.st/post/2017-11-05-single-shot-detector-ssd-from-scratch-in-tensorflow.html
self.con_loss = nn.CrossEntropyLoss(reduction='none')
def _loc_vec(self, loc):
"""
Generate Location Vectors
"""
gxy = self.scale_xy*(loc[:, :2, :] - self.dboxes[:, :2, :])/self.dboxes[:, 2:, ]
gwh = self.scale_wh*(loc[:, 2:, :]/self.dboxes[:, 2:, :]).log()
return torch.cat((gxy, gwh), dim=1).contiguous()
def forward(self, ploc, plabel, gloc, glabel):
"""
ploc, plabel: Nx4x8732, Nxlabel_numx8732
predicted location and labels
gloc, glabel: Nx4x8732, Nx8732
ground truth location and labels
"""
mask = glabel > 0
pos_num = mask.sum(dim=1)
vec_gd = self._loc_vec(gloc)
# sum on four coordinates, and mask
sl1 = self.sl1_loss(ploc, vec_gd).sum(dim=1)
sl1 = (mask.float()*sl1).sum(dim=1)
# hard negative mining
con = self.con_loss(plabel, glabel)
# postive mask will never selected
con_neg = con.clone()
con_neg[mask] = 0
_, con_idx = con_neg.sort(dim=1, descending=True)
_, con_rank = con_idx.sort(dim=1)
# number of negative three times positive
neg_num = torch.clamp(3*pos_num, max=mask.size(1)).unsqueeze(-1)
neg_mask = con_rank < neg_num
#print(con.shape, mask.shape, neg_mask.shape)
closs = (con*((mask + neg_mask).float())).sum(dim=1)
# avoid no object detected
total_loss = sl1 + closs
num_mask = (pos_num > 0).float()
pos_num = pos_num.float().clamp(min=1e-6)
ret = (total_loss*num_mask/pos_num).mean(dim=0)
return ret