DeepLearningExamples/TensorFlow/Translation/GNMT/variable_mgr/variable_mgr_util.py

535 lines
20 KiB
Python

# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for VariableMgr."""
from __future__ import print_function
import collections as pycoll
import operator
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import gradients_impl
PS_SHADOW_VAR_PREFIX = 'ps_var'
AutoLossScaleParams = pycoll.namedtuple(
'AutoLossScaleParams',
[
# If true, enable automatic loss scaling.
'enable_auto_loss_scale',
# The value to scale the loss before computing gradients.
'loss_scale',
# Number of normal steps with the current `loss_scale`.
'loss_scale_normal_steps',
# Increase loss scale every n steps.
'inc_loss_scale_every_n',
# If true, the current worker is chief. The current implementation
# relies on the chief to update loss_scale value, but in future, we
# might change this to ask the parameter server to update loss_scales
# for better performance.
# TODO(tanmingxing): remove this if loss_scale is updated in ps.
'is_chief',
])
def get_loss_scale_update_op(loss_scale, loss_scale_normal_steps,
inc_loss_scale_every_n):
"""Returns the update op for loss scaling variables.
We maintain the counter `loss_scale_normal_steps` to count the number of steps
we have been using the current `loss_scale`. In most cases, this function
increments `loss_scale_normal_steps`. However, if `loss_scale_normal_steps` is
greater than the threshold `inc_loss_scale_every_n`, we double `loss_scale`
and reset `loss_scale_normal_steps` to zero.
This op is only called if the gradients don't have any infs or nans. Instead,
if infs or nans occur in the gradients, we immeditately halve `loss_scale` and
reset `loss_scale_normal_steps` to zero.
Args:
loss_scale: a tf.Variable represneting the loss_scale value.
loss_scale_normal_steps: a tf.Variable representing the number of training
steps that have run since the loss_scale last changed.
inc_loss_scale_every_n: a Python integer threshold. `loss_scale` is
increased every `inc_loss_scale_every_n` steps, unless the gradients have
infs or nans.
Returns:
An op for updating `loss_scale` and `loss_scale_normal_steps`.
"""
def increment_loss_scale_normal_steps_func():
return tf.group(loss_scale_normal_steps.assign_add(1))
def increase_loss_scale_func():
return tf.group(
tf.assign(loss_scale_normal_steps, 0),
tf.assign(loss_scale, loss_scale * 2))
# true_fn and false_fn must have the same type.
return tf.cond(loss_scale_normal_steps < inc_loss_scale_every_n,
increment_loss_scale_normal_steps_func,
increase_loss_scale_func)
def append_gradients_with_loss_scale(training_ops, get_apply_gradients_ops_func,
loss_scale_params, grad_has_inf_nan):
"""Selectively appends gradients update ops with loss scaling.
Args:
training_ops: a list of training ops to be executed.
get_apply_gradients_ops_func: a function that returns a list of ops for
applying gradients. Here, we must pass a function instead of the actual
list of ops; otherwise, those ops would be executed unconditionally due to
the semantics of tf.cond.
loss_scale_params: An AutoLossScaleParams tuple.
grad_has_inf_nan: Boolean tensor indicating whether the gradients have infs
or nans.
"""
is_chief = loss_scale_params.is_chief
loss_scale = loss_scale_params.loss_scale
loss_scale_normal_steps = loss_scale_params.loss_scale_normal_steps
inc_loss_scale_every_n = loss_scale_params.inc_loss_scale_every_n
enable_auto_loss_scale = loss_scale_params.enable_auto_loss_scale
if loss_scale is None or not enable_auto_loss_scale or not is_chief:
training_ops.extend(get_apply_gradients_ops_func())
else:
# If nans/infs occurred, skip applying gradients and instead update
# loss_scale (halve loss_scale and reset loss_scale_normal_steps to zero).
def update_op_if_nan_or_inf():
"""Update loss_scale and discard gradients if nans/infs occurred."""
return tf.group(
tf.assign(loss_scale, loss_scale / 2.),
tf.assign(loss_scale_normal_steps, 0))
# Otherwise, apply gradients, and update loss_scale and
# loss_scale_normal_steps.
def update_op_if_no_nan_or_inf():
"""Apply gradients, and update loss scaling."""
return tf.group(
get_loss_scale_update_op(loss_scale, loss_scale_normal_steps,
inc_loss_scale_every_n),
*get_apply_gradients_ops_func())
# TODO(tanmingxing): Add support for independent and distributed all_reduce.
assert grad_has_inf_nan is not None
update_op = tf.cond(
grad_has_inf_nan,
update_op_if_nan_or_inf,
update_op_if_no_nan_or_inf,
name='cond_if_grad_has_inf_nan'
)
training_ops.append(update_op)
# To be used with custom_getter on tf.get_variable.
class OverrideCachingDevice(object):
"""Variable getter which caches variables on the least loaded device.
Variables smaller than a certain threshold are cached on a single specific
device, as specified in the constructor. All other variables are load balanced
across a pool of devices, by caching each variable on the least loaded device.
Note that variable creation only happen when building the model graph on the
first device (see how it sets the 'reuse' parameter in
VariableMgr.*.create_outer_variable_scope()). That means, for all other
devices, the variable scope will reuse the variables created before, which
requires that we set the caching_device correctly as otherwise it may not be
able to find the previously created variable and will create a new one. This
requires when building the model graph on different devices, variables with
the same name should have same size.
TODO(laigd): consider adding tests or verification logic to enforce this, or
refactor it.
"""
def __init__(self, devices, device_for_small_variables,
small_variable_size_threshold):
self.devices = devices
self.sizes = [0] * len(self.devices)
self.device_for_small_variables = device_for_small_variables
self.small_variable_size_threshold = small_variable_size_threshold
def __call__(self, getter, *args, **kwargs):
size = tf.TensorShape(kwargs['shape']).num_elements()
if size < self.small_variable_size_threshold:
device_name = self.device_for_small_variables
else:
device_index, _ = min(enumerate(self.sizes), key=operator.itemgetter(1))
device_name = self.devices[device_index]
self.sizes[device_index] += size
kwargs['caching_device'] = device_name
var = getter(*args, **kwargs)
return var
# To be used with custom_getter on tf.get_variable. Ensures the created variable
# is in LOCAL_VARIABLES and not GLOBAL_VARIBLES collection.
class OverrideToLocalVariableIfNotPsVar(object):
# args and kwargs come from the custom_getter interface for Tensorflow
# variables, and matches tf.get_variable's signature, with the addition of
# 'getter' at the beginning.
def __call__(self, getter, name, *args, **kwargs):
if name.startswith(PS_SHADOW_VAR_PREFIX):
return getter(*args, **kwargs)
if 'collections' in kwargs:
collections = kwargs['collections']
if not collections:
collections = [tf.GraphKeys.GLOBAL_VARIABLES]
else:
collections = collections[:]
collections.remove(tf.GraphKeys.GLOBAL_VARIABLES)
collections.append(tf.GraphKeys.LOCAL_VARIABLES)
kwargs['collections'] = list(collections)
return getter(name, *args, **kwargs)
class ParamServerDeviceSetter(object):
"""Helper class to assign variables on the least loaded ps-device."""
def __init__(self, worker_device, ps_devices):
"""Initializer for ParamServerDevicSetter.
Args:
worker_device: the device to use for computer ops.
ps_devices: a list of device to use for Variable ops. Each variable is
assigned to the least loaded device.
"""
self.ps_devices = ps_devices
self.worker_device = worker_device
self.ps_sizes = [0] * len(self.ps_devices)
def __call__(self, op):
if op.device:
return op.device
if op.type not in ['Variable', 'VariableV2']:
return self.worker_device
device_index, _ = min(enumerate(self.ps_sizes), key=operator.itemgetter(1))
device_name = self.ps_devices[device_index]
var_size = op.outputs[0].get_shape().num_elements()
self.ps_sizes[device_index] += var_size
return device_name
class StagedModelVariable(object):
"""Staging variable wrapper that decouples reads and updates.
This class represents a variable through a staging buffer. Reads from this
variable directly gets from the staging buffer. Updates are stacked into
another staging buffer, and will be processed later.
"""
def __init__(self, real_var, var_stage_get, variable_mgr):
"""Initializer for the model variables through a staging buffer.
Args:
real_var: the underlying real variable.
var_stage_get: the read op from the staging buffer.
variable_mgr: the parent variable-manager.
"""
self.real_var = real_var
self.var_stage_get = var_stage_get
self.variable_mgr = variable_mgr
def _value(self):
"""The read access of this variable. The content from the staging buffer."""
return self.var_stage_get
def _ref(self):
"""Return the underlying variable ref, required by tf.colocate_with."""
return self.real_var._ref() # pylint: disable=protected-access
def read_value(self):
"""Mimics tf.Variable.read_value()."""
return tf.identity(self.var_stage_get, name='read')
@property
def dtype(self):
"""Return the non-reference dtype."""
return self.var_stage_get.dtype
def assign_sub(self, delta, name=None):
"""Mimic the updates to the variable.
Args:
delta: is pushed into a staging buffer and will be pumped later.
name: currently ignored; names of ops and the StagingArea are
computed without using this pass name.
Returns:
The actual updates. The colocation constraint will be reapplied.
"""
# This parameter is ignored: the StagingArea only supports setting
# the shared name, not the names of individual ops it uses.
del name
# colocate_with(None, True) clears the colocation constraints.
# Push the delta into a staging buffer.
with ops.colocate_with(None, True), tf.device(self.var_stage_get.device):
delta_staging_area = tf.contrib.staging.StagingArea(
[self.var_stage_get.dtype], shapes=[self.var_stage_get.shape])
delta_put_op = delta_staging_area.put([delta])
self.variable_mgr.staging_delta_ops.append(delta_put_op)
delta_get_op = delta_staging_area.get()[0]
# Return the actual updates. The colocation constraint will be reapplied.
return self.real_var.assign_sub(delta_get_op)
@staticmethod
# pylint: disable=bad-staticmethod-argument,invalid-name
def _TensorConversionFunction(self, dtype=None, name=None, as_ref=False):
"""Utility function for converting a StagedModelVariable to a Tensor."""
del dtype, name # unused: this function returns the cached ref or value.
if as_ref:
return self._ref()
else:
return self._value()
ops.register_tensor_conversion_function(
StagedModelVariable, StagedModelVariable._TensorConversionFunction) # pylint: disable=protected-access
class StagedVariableGetter(object):
"""A variable getter through staging buffers on devices.
Instead of a caching device, this getter tracks where the variable is used.
And on each device, it goes through a staging buffer.
"""
def __init__(self, device_num, devices, cpu_device, variable_mgr):
"""Initializer for StagedVariableGetter.
Args:
device_num: the current device index.
devices: a list of all the devices to build towers.
cpu_device: a cpu_device for this replica. If None, no cpu-caching is
done.
variable_mgr: the parent variable manager.
"""
self.device_num = device_num
self.devices = devices
self.cpu_device = cpu_device
self.variable_mgr = variable_mgr
def __call__(self, getter, name, *args, **kwargs):
staging_ops = self.variable_mgr.staging_vars_on_devices[self.device_num]
if name in staging_ops:
put_op, get_op = staging_ops[name]
return get_op
real_var = getter(name, *args, **kwargs)
shape = kwargs['shape']
dtype = kwargs['dtype']
trainable = kwargs['trainable']
if self.cpu_device:
with tf.device(self.cpu_device):
# This helps copying the weights from the parameter to this server only
# once.
if name in self.variable_mgr.staged_vars_on_cpu:
cpu_var = self.variable_mgr.staged_vars_on_cpu[name]
else:
cpu_var = tf.identity(real_var)
self.variable_mgr.staged_vars_on_cpu[name] = cpu_var
var_to_stage = cpu_var
else:
var_to_stage = tf.identity(real_var) # de-reference the variable.
with tf.device(self.devices[self.device_num]):
staging_area = tf.contrib.staging.StagingArea([dtype], shapes=[shape])
put_op = staging_area.put([var_to_stage])
get_op = staging_area.get()[0]
staging_ops[name] = (put_op, get_op)
if trainable:
# For trainable variables, they are managed separatedly through
# apply_gradients.
return get_op
else:
# For other shadow variables, the access is decoupled through a wrapper
# class.
return StagedModelVariable(real_var, get_op, self.variable_mgr)
def trainable_variables_on_device(self, rel_device_num, abs_device_num,
writable):
"""Return the set of trainable variables on the specified device.
Args:
rel_device_num: local worker device index.
abs_device_num: global graph device index.
writable: whether the returned variables is writable or read-only.
Returns:
Return the set of trainable variables on the specified device.
"""
del abs_device_num
params_refs = tf.trainable_variables()
if writable:
return params_refs
params = []
for param in params_refs:
var_name = param.name.split(':')[0]
_, var_get_op = self.variable_mgr.staging_vars_on_devices[rel_device_num][
var_name]
params.append(var_get_op)
return params
def aggregate_gradients_using_copy_with_device_selection(
benchmark_cnn, tower_grads, use_mean, check_inf_nan):
"""Aggregate gradients, controlling device for the aggregation.
Args:
benchmark_cnn: benchmark_cnn class.
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over towers. The inner list is over individual gradients.
use_mean: if True, mean is taken, else sum of gradients is taken.
check_inf_nan: If true, check grads for nans and infs.
Returns:
The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
gradient has been averaged across all towers. The variable is chosen from
the first tower. The has_nan_or_inf indicates the grads has nan or inf.
"""
if benchmark_cnn.local_parameter_device_flag == 'gpu':
avail_devices = benchmark_cnn.raw_devices
else:
avail_devices = [benchmark_cnn.param_server_device]
agg_grads = []
has_nan_or_inf_list = []
for i, single_grads in enumerate(zip(*tower_grads)):
with tf.device(avail_devices[i % len(avail_devices)]):
grad_and_var, has_nan_or_inf = aggregate_single_gradient_using_copy(
single_grads, use_mean, check_inf_nan)
agg_grads.append(grad_and_var)
has_nan_or_inf_list.append(has_nan_or_inf)
if check_inf_nan:
return agg_grads, tf.reduce_any(has_nan_or_inf_list)
else:
return agg_grads, None
def aggregate_gradients_using_copy_with_variable_colocation(
tower_grads, use_mean, check_inf_nan):
"""Aggregate gradients, colocating computation with the gradient's variable.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over towers. The inner list is over individual gradients. All variables
of the same gradient across towers must be the same (that is,
tower_grads[x][a][1] == tower_grads[y][a][1] for all indices x, y, and a)
use_mean: if True, mean is taken, else sum of gradients is taken.
check_inf_nan: If true, check grads for nans and infs.
Returns:
The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
gradient has been averaged across all towers. The variable is chosen from
the first tower. The has_nan_or_inf indicates the grads has nan or inf.
"""
agg_grads = []
has_nan_or_inf_list = []
for single_grads in zip(*tower_grads):
# Note that each single_grads looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
var = single_grads[0][1]
for _, v in single_grads:
assert v == var
with tf.device(var.device):
grad_and_var, has_nan_or_inf = aggregate_single_gradient_using_copy(
single_grads, use_mean, check_inf_nan)
agg_grads.append(grad_and_var)
has_nan_or_inf_list.append(has_nan_or_inf)
if check_inf_nan:
return agg_grads, tf.reduce_any(has_nan_or_inf_list)
else:
return agg_grads, None
def aggregate_gradients_using_copy(tower_grads, use_mean, check_inf_nan):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over towers. The inner list is over individual gradients.
use_mean: if True, mean is taken, else sum of gradients is taken.
check_inf_nan: check grads for nans and infs.
Returns:
The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
gradient has been averaged across all towers. The variable is chosen from
the first tower. The has_nan_or_inf indicates the grads has nan or inf.
"""
agg_grads = []
has_nan_or_inf_list = []
for single_grads in zip(*tower_grads):
grad_and_var, has_nan_or_inf = aggregate_single_gradient_using_copy(
single_grads, use_mean, check_inf_nan)
agg_grads.append(grad_and_var)
has_nan_or_inf_list.append(has_nan_or_inf)
if check_inf_nan:
return agg_grads, tf.reduce_any(has_nan_or_inf_list)
else:
return agg_grads, None
def aggregate_single_gradient_using_copy(grad_and_vars, use_mean,
check_inf_nan):
"""Calculate the average gradient for a shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
grad_and_vars: A list or tuple of (gradient, variable) tuples. Each
(gradient, variable) pair within the outer list represents the gradient
of the variable calculated for a single tower, and the number of pairs
equals the number of towers.
use_mean: if True, mean is taken, else sum of gradients is taken.
check_inf_nan: check grads for nans and infs.
Returns:
The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
gradient has been averaged across all towers. The variable is chosen from
the first tower. The has_nan_or_inf indicates the grads has nan or inf.
"""
grads = [g for g, _ in grad_and_vars]
if any(isinstance(g, tf.IndexedSlices) for g in grads):
# TODO(reedwm): All-reduce IndexedSlices more effectively.
grad = gradients_impl._AggregateIndexedSlicesGradients(grads) # pylint: disable=protected-access
else:
grad = tf.add_n(grads)
if use_mean and len(grads) > 1:
grad = tf.scalar_mul(1.0 / len(grads), grad)
v = grad_and_vars[0][1]
if check_inf_nan:
with tf.name_scope('check_for_inf_and_nan'):
has_nan_or_inf = tf.logical_not(tf.reduce_all(tf.is_finite(grads)))
return (grad, v), has_nan_or_inf
else:
return (grad, v), None