DeepLearningExamples/PyTorch/Recommendation/NCF/dataloading.py
Przemek Strzelczyk a644350589 Updating models and adding BERT/PyT
Tacotron2+Waveglow/PyT
* AMP support
* Data preprocessing for Tacotron 2 training
* Fixed dropouts on LSTMCells

SSD/PyT
* script and notebook for inference
* AMP support
* README update
* updates to examples/*

BERT/PyT
* initial release

GNMT/PyT
* Default container updated to NGC PyTorch 19.05-py3
* Mixed precision training implemented using APEX AMP
* Added inference throughput and latency results on NVIDIA Tesla V100 16G
* Added option to run inference on user-provided raw input text from command line

NCF/PyT
* Updated performance tables.
* Default container changed to PyTorch 19.06-py3.
* Caching validation negatives between runs

Transformer/PyT
* new README
* jit support added

UNet Medical/TF
* inference example scripts added
* inference benchmark measuring latency added
* TRT/TF-TRT support added
* README updated

GNMT/TF
* Performance improvements

Small updates (mostly README) for other models.
2019-07-16 21:13:08 +02:00

122 lines
5 KiB
Python

# Copyright (c) 2018, deepakn94, codyaustun, robieta. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# -----------------------------------------------------------------------
#
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import torch
def create_test_data(test_ratings, test_negs, args):
test_users = test_ratings[:,0]
test_pos = test_ratings[:,1].reshape(-1,1)
# create items with real sample at last position
num_valid_negative = test_negs.shape[1]
test_users = test_users.reshape(-1,1).repeat(1, 1 + num_valid_negative)
test_items = torch.cat((test_negs, test_pos), dim=1)
del test_ratings, test_negs
# generate dup mask and real indices for exact same behavior on duplication compare to reference
# here we need a sort that is stable(keep order of duplicates)
sorted_items, indices = torch.sort(test_items) # [1,1,1,2], [3,1,0,2]
sum_item_indices = sorted_items.float()+indices.float()/len(indices[0]) #[1.75,1.25,1.0,2.5]
indices_order = torch.sort(sum_item_indices)[1] #[2,1,0,3]
stable_indices = torch.gather(indices, 1, indices_order) #[0,1,3,2]
# produce -1 mask
dup_mask = (sorted_items[:,0:-1] == sorted_items[:,1:])
dup_mask = torch.cat((torch.zeros_like(test_pos, dtype=torch.uint8), dup_mask),dim=1)
dup_mask = torch.gather(dup_mask,1,stable_indices.sort()[1])
# produce real sample indices to later check in topk
sorted_items, indices = (test_items != test_pos).sort()
sum_item_indices = sorted_items.float()+indices.float()/len(indices[0])
indices_order = torch.sort(sum_item_indices)[1]
stable_indices = torch.gather(indices, 1, indices_order)
real_indices = stable_indices[:,0]
if args.distributed:
test_users = torch.chunk(test_users, args.world_size)[args.local_rank]
test_items = torch.chunk(test_items, args.world_size)[args.local_rank]
dup_mask = torch.chunk(dup_mask, args.world_size)[args.local_rank]
real_indices = torch.chunk(real_indices, args.world_size)[args.local_rank]
test_users = test_users.view(-1).split(args.valid_batch_size)
test_items = test_items.view(-1).split(args.valid_batch_size)
return test_users, test_items, dup_mask, real_indices
def prepare_epoch_train_data(train_ratings, nb_items, args):
# create label
train_label = torch.ones_like(train_ratings[:,0], dtype=torch.float32)
neg_label = torch.zeros_like(train_label, dtype=torch.float32)
neg_label = neg_label.repeat(args.negative_samples)
train_label = torch.cat((train_label,neg_label))
del neg_label
train_users = train_ratings[:,0]
train_items = train_ratings[:,1]
train_users_per_worker = len(train_label) / args.world_size
train_users_begin = int(train_users_per_worker * args.local_rank)
train_users_end = int(train_users_per_worker * (args.local_rank + 1))
# prepare data for epoch
neg_users = train_users.repeat(args.negative_samples)
neg_items = torch.empty_like(neg_users, dtype=torch.int64).random_(0, nb_items)
epoch_users = torch.cat((train_users, neg_users))
epoch_items = torch.cat((train_items, neg_items))
del neg_users, neg_items
# shuffle prepared data and split into batches
epoch_indices = torch.randperm(train_users_end - train_users_begin, device='cuda:{}'.format(args.local_rank))
epoch_indices += train_users_begin
epoch_users = epoch_users[epoch_indices]
epoch_items = epoch_items[epoch_indices]
epoch_label = train_label[epoch_indices]
if args.distributed:
local_batch = args.batch_size // args.world_size
else:
local_batch = args.batch_size
epoch_users = epoch_users.split(local_batch)
epoch_items = epoch_items.split(local_batch)
epoch_label = epoch_label.split(local_batch)
# the last batch will almost certainly be smaller, drop it
epoch_users = epoch_users[:-1]
epoch_items = epoch_items[:-1]
epoch_label = epoch_label[:-1]
return epoch_users, epoch_items, epoch_label