DeepLearningExamples/PyTorch/SpeechSynthesis/FastPitch/train.py
2020-07-04 02:24:45 +02:00

562 lines
22 KiB
Python

# *****************************************************************************
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import argparse
import copy
import json
import glob
import os
import re
import time
from collections import defaultdict, OrderedDict
from contextlib import contextmanager
import torch
import numpy as np
import torch.distributed as dist
from scipy.io.wavfile import write as write_wav
from torch.autograd import Variable
from torch.nn.parallel import DistributedDataParallel
from torch.nn.parameter import Parameter
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import dllogger as DLLogger
from apex import amp
from apex.optimizers import FusedAdam, FusedLAMB
import common
import data_functions
import loss_functions
import models
from common.log_helper import init_dllogger, TBLogger, unique_dllogger_fpath
def parse_args(parser):
"""
Parse commandline arguments.
"""
parser.add_argument('-o', '--output', type=str, required=True,
help='Directory to save checkpoints')
parser.add_argument('-d', '--dataset-path', type=str, default='./',
help='Path to dataset')
parser.add_argument('--log-file', type=str, default=None,
help='Path to a DLLogger log file')
training = parser.add_argument_group('training setup')
training.add_argument('--epochs', type=int, required=True,
help='Number of total epochs to run')
training.add_argument('--epochs-per-checkpoint', type=int, default=50,
help='Number of epochs per checkpoint')
training.add_argument('--checkpoint-path', type=str, default=None,
help='Checkpoint path to resume training')
training.add_argument('--resume', action='store_true',
help='Resume training from the last available checkpoint')
training.add_argument('--seed', type=int, default=1234,
help='Seed for PyTorch random number generators')
training.add_argument('--amp', action='store_true',
help='Enable AMP')
training.add_argument('--cuda', action='store_true',
help='Run on GPU using CUDA')
training.add_argument('--cudnn-enabled', action='store_true',
help='Enable cudnn')
training.add_argument('--cudnn-benchmark', action='store_true',
help='Run cudnn benchmark')
training.add_argument('--ema-decay', type=float, default=0,
help='Discounting factor for training weights EMA')
training.add_argument('--gradient-accumulation-steps', type=int, default=1,
help='Training steps to accumulate gradients for')
optimization = parser.add_argument_group('optimization setup')
optimization.add_argument('--optimizer', type=str, default='lamb',
help='Optimization algorithm')
optimization.add_argument('-lr', '--learning-rate', type=float, required=True,
help='Learing rate')
optimization.add_argument('--weight-decay', default=1e-6, type=float,
help='Weight decay')
optimization.add_argument('--grad-clip-thresh', default=1000.0, type=float,
help='Clip threshold for gradients')
optimization.add_argument('-bs', '--batch-size', type=int, required=True,
help='Batch size per GPU')
optimization.add_argument('--warmup-steps', type=int, default=1000,
help='Number of steps for lr warmup')
optimization.add_argument('--dur-predictor-loss-scale', type=float,
default=1.0, help='Rescale duration predictor loss')
optimization.add_argument('--pitch-predictor-loss-scale', type=float,
default=1.0, help='Rescale pitch predictor loss')
dataset = parser.add_argument_group('dataset parameters')
dataset.add_argument('--training-files', type=str, required=True,
help='Path to training filelist')
dataset.add_argument('--validation-files', type=str, required=True,
help='Path to validation filelist')
dataset.add_argument('--pitch-mean-std-file', type=str, default=None,
help='Path to pitch stats to be stored in the model')
dataset.add_argument('--text-cleaners', nargs='*',
default=['english_cleaners'], type=str,
help='Type of text cleaners for input text')
distributed = parser.add_argument_group('distributed setup')
distributed.add_argument('--local_rank', type=int, default=os.getenv('LOCAL_RANK', 0),
help='Rank of the process for multiproc. Do not set manually.')
distributed.add_argument('--world_size', type=int, default=os.getenv('WORLD_SIZE', 1),
help='Number of processes for multiproc. Do not set manually.')
return parser
def reduce_tensor(tensor, num_gpus):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= num_gpus
return rt
def init_distributed(args, world_size, rank):
assert torch.cuda.is_available(), "Distributed mode requires CUDA."
print("Initializing distributed training")
# Set cuda device so everything is done on the right GPU.
torch.cuda.set_device(rank % torch.cuda.device_count())
# Initialize distributed communication
dist.init_process_group(backend=('nccl' if args.cuda else 'gloo'),
init_method='env://')
print("Done initializing distributed training")
def last_checkpoint(output):
def corrupted(fpath):
try:
torch.load(fpath, map_location='cpu')
return False
except:
print(f'WARNING: Cannot load {fpath}')
return True
saved = sorted(
glob.glob(f'{output}/FastPitch_checkpoint_*.pt'),
key=lambda f: int(re.search('_(\d+).pt', f).group(1)))
if len(saved) >= 1 and not corrupted(saved[-1]):
return saved[-1]
elif len(saved) >= 2:
return saved[-2]
else:
return None
def save_checkpoint(local_rank, model, ema_model, optimizer, epoch, total_iter,
config, amp_run, filepath):
if local_rank != 0:
return
print(f"Saving model and optimizer state at epoch {epoch} to {filepath}")
ema_dict = None if ema_model is None else ema_model.state_dict()
checkpoint = {'epoch': epoch,
'iteration': total_iter,
'config': config,
'state_dict': model.state_dict(),
'ema_state_dict': ema_dict,
'optimizer': optimizer.state_dict()}
if amp_run:
checkpoint['amp'] = amp.state_dict()
torch.save(checkpoint, filepath)
def load_checkpoint(local_rank, model, ema_model, optimizer, epoch, total_iter,
config, amp_run, filepath, world_size):
if local_rank == 0:
print(f'Loading model and optimizer state from {filepath}')
checkpoint = torch.load(filepath, map_location='cpu')
epoch[0] = checkpoint['epoch'] + 1
total_iter[0] = checkpoint['iteration']
config = checkpoint['config']
sd = {k.replace('module.', ''): v
for k, v in checkpoint['state_dict'].items()}
getattr(model, 'module', model).load_state_dict(sd)
optimizer.load_state_dict(checkpoint['optimizer'])
if amp_run:
amp.load_state_dict(checkpoint['amp'])
if ema_model is not None:
ema_model.load_state_dict(checkpoint['ema_state_dict'])
def validate(model, criterion, valset, batch_size, world_size, collate_fn,
distributed_run, rank, batch_to_gpu, use_gt_durations=False):
"""Handles all the validation scoring and printing"""
was_training = model.training
model.eval()
with torch.no_grad():
val_sampler = DistributedSampler(valset) if distributed_run else None
val_loader = DataLoader(valset, num_workers=8, shuffle=False,
sampler=val_sampler,
batch_size=batch_size, pin_memory=False,
collate_fn=collate_fn)
val_meta = defaultdict(float)
val_num_frames = 0
for i, batch in enumerate(val_loader):
x, y, num_frames = batch_to_gpu(batch)
y_pred = model(x, use_gt_durations=use_gt_durations)
loss, meta = criterion(y_pred, y, is_training=False, meta_agg='sum')
if distributed_run:
for k,v in meta.items():
val_meta[k] += reduce_tensor(v, 1)
val_num_frames += reduce_tensor(num_frames.data, 1).item()
else:
for k,v in meta.items():
val_meta[k] += v
val_num_frames = num_frames.item()
val_meta = {k: v / len(valset) for k,v in val_meta.items()}
val_loss = val_meta['loss']
if was_training:
model.train()
return val_loss.item(), val_meta, val_num_frames
def adjust_learning_rate(total_iter, opt, learning_rate, warmup_iters=None):
if warmup_iters == 0:
scale = 1.0
elif total_iter > warmup_iters:
scale = 1. / (total_iter ** 0.5)
else:
scale = total_iter / (warmup_iters ** 1.5)
for param_group in opt.param_groups:
param_group['lr'] = learning_rate * scale
def apply_ema_decay(model, ema_model, decay):
if not decay:
return
st = model.state_dict()
add_module = hasattr(model, 'module') and not hasattr(ema_model, 'module')
for k,v in ema_model.state_dict().items():
if add_module and not k.startswith('module.'):
k = 'module.' + k
v.copy_(decay * v + (1 - decay) * st[k])
def main():
parser = argparse.ArgumentParser(description='PyTorch FastPitch Training',
allow_abbrev=False)
parser = parse_args(parser)
args, _ = parser.parse_known_args()
if 'LOCAL_RANK' in os.environ and 'WORLD_SIZE' in os.environ:
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
else:
local_rank = args.rank
world_size = args.world_size
distributed_run = world_size > 1
torch.manual_seed(args.seed + local_rank)
np.random.seed(args.seed + local_rank)
if local_rank == 0:
if not os.path.exists(args.output):
os.makedirs(args.output)
log_fpath = args.log_file or os.path.join(args.output, 'nvlog.json')
log_fpath = unique_dllogger_fpath(log_fpath)
init_dllogger(log_fpath)
else:
init_dllogger(dummy=True)
[DLLogger.log("PARAMETER", {k:v}) for k,v in vars(args).items()]
parser = models.parse_model_args('FastPitch', parser)
args, unk_args = parser.parse_known_args()
if len(unk_args) > 0:
raise ValueError(f'Invalid options {unk_args}')
torch.backends.cudnn.enabled = args.cudnn_enabled
torch.backends.cudnn.benchmark = args.cudnn_benchmark
if distributed_run:
init_distributed(args, world_size, local_rank)
device = torch.device('cuda' if args.cuda else 'cpu')
model_config = models.get_model_config('FastPitch', args)
model = models.get_model('FastPitch', model_config, device)
# Store pitch mean/std as params to translate from Hz during inference
fpath = common.utils.stats_filename(
args.dataset_path, args.training_files, 'pitch_char')
with open(args.pitch_mean_std_file, 'r') as f:
stats = json.load(f)
model.pitch_mean[0] = stats['mean']
model.pitch_std[0] = stats['std']
kw = dict(lr=args.learning_rate, betas=(0.9, 0.98), eps=1e-9,
weight_decay=args.weight_decay)
if args.optimizer == 'adam':
optimizer = FusedAdam(model.parameters(), **kw)
elif args.optimizer == 'lamb':
optimizer = FusedLAMB(model.parameters(), **kw)
else:
raise ValueError
if args.amp:
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
if args.ema_decay > 0:
ema_model = copy.deepcopy(model)
else:
ema_model = None
if distributed_run:
model = DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank,
find_unused_parameters=True)
start_epoch = [1]
start_iter = [0]
assert args.checkpoint_path is None or args.resume is False, (
"Specify a single checkpoint source")
if args.checkpoint_path is not None:
ch_fpath = args.checkpoint_path
elif args.resume:
ch_fpath = last_checkpoint(args.output)
else:
ch_fpath = None
if ch_fpath is not None:
load_checkpoint(local_rank, model, ema_model, optimizer, start_epoch,
start_iter, model_config, args.amp, ch_fpath,
world_size)
start_epoch = start_epoch[0]
total_iter = start_iter[0]
criterion = loss_functions.get_loss_function('FastPitch',
dur_predictor_loss_scale=args.dur_predictor_loss_scale,
pitch_predictor_loss_scale=args.pitch_predictor_loss_scale)
collate_fn = data_functions.get_collate_function('FastPitch')
trainset = data_functions.get_data_loader('FastPitch', args.dataset_path,
args.training_files, args)
valset = data_functions.get_data_loader('FastPitch', args.dataset_path,
args.validation_files, args)
if distributed_run:
train_sampler, shuffle = DistributedSampler(trainset), False
else:
train_sampler, shuffle = None, True
train_loader = DataLoader(trainset, num_workers=16, shuffle=shuffle,
sampler=train_sampler, batch_size=args.batch_size,
pin_memory=False, drop_last=True,
collate_fn=collate_fn)
batch_to_gpu = data_functions.get_batch_to_gpu('FastPitch')
model.train()
train_tblogger = TBLogger(local_rank, args.output, 'train')
val_tblogger = TBLogger(local_rank, args.output, 'val', dummies=True)
if args.ema_decay > 0:
val_ema_tblogger = TBLogger(local_rank, args.output, 'val_ema')
val_loss = 0.0
torch.cuda.synchronize()
for epoch in range(start_epoch, args.epochs + 1):
epoch_start_time = time.time()
epoch_loss = 0.0
epoch_mel_loss = 0.0
epoch_num_frames = 0
epoch_frames_per_sec = 0.0
if distributed_run:
train_loader.sampler.set_epoch(epoch)
accumulated_steps = 0
iter_loss = 0
iter_num_frames = 0
iter_meta = {}
epoch_iter = 0
num_iters = len(train_loader) // args.gradient_accumulation_steps
for batch in train_loader:
if accumulated_steps == 0:
if epoch_iter == num_iters:
break
total_iter += 1
epoch_iter += 1
iter_start_time = time.time()
start = time.perf_counter()
old_lr = optimizer.param_groups[0]['lr']
adjust_learning_rate(total_iter, optimizer, args.learning_rate,
args.warmup_steps)
new_lr = optimizer.param_groups[0]['lr']
if new_lr != old_lr:
dllog_lrate_change = f'{old_lr:.2E} -> {new_lr:.2E}'
train_tblogger.log_value(total_iter, 'lrate', new_lr)
else:
dllog_lrate_change = None
model.zero_grad()
x, y, num_frames = batch_to_gpu(batch)
y_pred = model(x, use_gt_durations=True)
loss, meta = criterion(y_pred, y)
loss /= args.gradient_accumulation_steps
meta = {k: v / args.gradient_accumulation_steps
for k, v in meta.items()}
if args.amp:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if distributed_run:
reduced_loss = reduce_tensor(loss.data, world_size).item()
reduced_num_frames = reduce_tensor(num_frames.data, 1).item()
meta = {k: reduce_tensor(v, world_size) for k,v in meta.items()}
else:
reduced_loss = loss.item()
reduced_num_frames = num_frames.item()
if np.isnan(reduced_loss):
raise Exception("loss is NaN")
accumulated_steps += 1
iter_loss += reduced_loss
iter_num_frames += reduced_num_frames
iter_meta = {k: iter_meta.get(k, 0) + meta.get(k, 0) for k in meta}
if accumulated_steps % args.gradient_accumulation_steps == 0:
train_tblogger.log_grads(total_iter, model)
if args.amp:
torch.nn.utils.clip_grad_norm_(
amp.master_params(optimizer), args.grad_clip_thresh)
else:
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.grad_clip_thresh)
optimizer.step()
apply_ema_decay(model, ema_model, args.ema_decay)
iter_stop_time = time.time()
iter_time = iter_stop_time - iter_start_time
frames_per_sec = iter_num_frames / iter_time
epoch_frames_per_sec += frames_per_sec
epoch_loss += iter_loss
epoch_num_frames += iter_num_frames
iter_mel_loss = iter_meta['mel_loss'].item()
epoch_mel_loss += iter_mel_loss
DLLogger.log((epoch, epoch_iter, num_iters), OrderedDict([
('train_loss', iter_loss), ('train_mel_loss', iter_mel_loss),
('train_frames/s', frames_per_sec), ('took', iter_time),
('lrate_change', dllog_lrate_change)
]))
train_tblogger.log_meta(total_iter, iter_meta)
accumulated_steps = 0
iter_loss = 0
iter_num_frames = 0
iter_meta = {}
# Finished epoch
epoch_stop_time = time.time()
epoch_time = epoch_stop_time - epoch_start_time
DLLogger.log((epoch,), data=OrderedDict([
('avg_train_loss', epoch_loss / epoch_iter),
('avg_train_mel_loss', epoch_mel_loss / epoch_iter),
('avg_train_frames/s', epoch_num_frames / epoch_time),
('took', epoch_time)
]))
tik = time.time()
val_loss, meta, num_frames = validate(
model, criterion, valset, args.batch_size, world_size, collate_fn,
distributed_run, local_rank, batch_to_gpu, use_gt_durations=True)
tok = time.time()
DLLogger.log((epoch,), data=OrderedDict([
('val_loss', val_loss),
('val_mel_loss', meta['mel_loss'].item()),
('val_frames/s', num_frames / (tok - tik)),
('took', tok - tik),
]))
val_tblogger.log_meta(total_iter, meta)
if args.ema_decay > 0:
tik_e = time.time()
val_loss_e, meta_e, num_frames_e = validate(
ema_model, criterion, valset, args.batch_size, world_size,
collate_fn, distributed_run, local_rank, batch_to_gpu,
use_gt_durations=True)
tok_e = time.time()
DLLogger.log((epoch,), data=OrderedDict([
('val_ema_loss', val_loss_e),
('val_ema_mel_loss', meta_e['mel_loss'].item()),
('val_ema_frames/s', num_frames_e / (tok_e - tik_e)),
('took', tok_e - tik_e),
]))
val_ema_tblogger.log_meta(total_iter, meta)
if (epoch > 0 and args.epochs_per_checkpoint > 0 and
(epoch % args.epochs_per_checkpoint == 0) and local_rank == 0):
checkpoint_path = os.path.join(
args.output, f"FastPitch_checkpoint_{epoch}.pt")
save_checkpoint(local_rank, model, ema_model, optimizer, epoch,
total_iter, model_config, args.amp, checkpoint_path)
if local_rank == 0:
DLLogger.flush()
# Finished training
DLLogger.log((), data=OrderedDict([
('avg_train_loss', epoch_loss / epoch_iter),
('avg_train_mel_loss', epoch_mel_loss / epoch_iter),
('avg_train_frames/s', epoch_num_frames / epoch_time),
]))
DLLogger.log((), data=OrderedDict([
('val_loss', val_loss),
('val_mel_loss', meta['mel_loss'].item()),
('val_frames/s', num_frames / (tok - tik)),
]))
if local_rank == 0:
DLLogger.flush()
if __name__ == '__main__':
main()