DeepLearningExamples/PyTorch/Classification/ConvNets/main.py
Krzysztof Kudrynski f0ef8493eb ConvNets update
2019-12-20 14:54:58 +01:00

476 lines
18 KiB
Python

# Copyright (c) 2018-2019, NVIDIA CORPORATION
# Copyright (c) 2017- Facebook, Inc
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import os
import shutil
import time
import random
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
try:
from apex.parallel import DistributedDataParallel as DDP
from apex.fp16_utils import *
from apex import amp
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to run this example."
)
import image_classification.resnet as models
import image_classification.logger as log
from image_classification.smoothing import LabelSmoothing
from image_classification.mixup import NLLMultiLabelSmooth, MixUpWrapper
from image_classification.dataloaders import *
from image_classification.training import *
from image_classification.utils import *
import dllogger
def add_parser_arguments(parser):
model_names = models.resnet_versions.keys()
model_configs = models.resnet_configs.keys()
parser.add_argument('data', metavar='DIR', help='path to dataset')
parser.add_argument('--data-backend',
metavar='BACKEND',
default='dali-cpu',
choices=DATA_BACKEND_CHOICES,
help='data backend: ' +
' | '.join(DATA_BACKEND_CHOICES) +
' (default: dali-cpu)')
parser.add_argument('--arch',
'-a',
metavar='ARCH',
default='resnet50',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('--model-config',
'-c',
metavar='CONF',
default='classic',
choices=model_configs,
help='model configs: ' + ' | '.join(model_configs) +
'(default: classic)')
parser.add_argument('-j',
'--workers',
default=5,
type=int,
metavar='N',
help='number of data loading workers (default: 5)')
parser.add_argument('--epochs',
default=90,
type=int,
metavar='N',
help='number of total epochs to run')
parser.add_argument('-b',
'--batch-size',
default=256,
type=int,
metavar='N',
help='mini-batch size (default: 256) per gpu')
parser.add_argument(
'--optimizer-batch-size',
default=-1,
type=int,
metavar='N',
help=
'size of a total batch size, for simulating bigger batches using gradient accumulation'
)
parser.add_argument('--lr',
'--learning-rate',
default=0.1,
type=float,
metavar='LR',
help='initial learning rate')
parser.add_argument('--lr-schedule',
default='step',
type=str,
metavar='SCHEDULE',
choices=['step', 'linear', 'cosine'],
help='Type of LR schedule: {}, {}, {}'.format(
'step', 'linear', 'cosine'))
parser.add_argument('--warmup',
default=0,
type=int,
metavar='E',
help='number of warmup epochs')
parser.add_argument('--label-smoothing',
default=0.0,
type=float,
metavar='S',
help='label smoothing')
parser.add_argument('--mixup',
default=0.0,
type=float,
metavar='ALPHA',
help='mixup alpha')
parser.add_argument('--momentum',
default=0.9,
type=float,
metavar='M',
help='momentum')
parser.add_argument('--weight-decay',
'--wd',
default=1e-4,
type=float,
metavar='W',
help='weight decay (default: 1e-4)')
parser.add_argument(
'--bn-weight-decay',
action='store_true',
help=
'use weight_decay on batch normalization learnable parameters, (default: false)'
)
parser.add_argument('--nesterov',
action='store_true',
help='use nesterov momentum, (default: false)')
parser.add_argument('--print-freq',
'-p',
default=10,
type=int,
metavar='N',
help='print frequency (default: 10)')
parser.add_argument('--resume',
default='',
type=str,
metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained-weights',
default='',
type=str,
metavar='PATH',
help='load weights from here')
parser.add_argument('--fp16',
action='store_true',
help='Run model fp16 mode.')
parser.add_argument(
'--static-loss-scale',
type=float,
default=1,
help=
'Static loss scale, positive power of 2 values can improve fp16 convergence.'
)
parser.add_argument(
'--dynamic-loss-scale',
action='store_true',
help='Use dynamic loss scaling. If supplied, this argument supersedes '
+ '--static-loss-scale.')
parser.add_argument('--prof',
type=int,
default=-1,
metavar='N',
help='Run only N iterations')
parser.add_argument('--amp',
action='store_true',
help='Run model AMP (automatic mixed precision) mode.')
parser.add_argument('--seed',
default=None,
type=int,
help='random seed used for numpy and pytorch')
parser.add_argument(
'--gather-checkpoints',
action='store_true',
help=
'Gather checkpoints throughout the training, without this flag only best and last checkpoints will be stored'
)
parser.add_argument('--raport-file',
default='experiment_raport.json',
type=str,
help='file in which to store JSON experiment raport')
parser.add_argument('--evaluate',
action='store_true',
help='evaluate checkpoint/model')
parser.add_argument('--training-only',
action='store_true',
help='do not evaluate')
parser.add_argument(
'--no-checkpoints',
action='store_false',
dest='save_checkpoints',
help='do not store any checkpoints, useful for benchmarking')
parser.add_argument(
'--workspace',
type=str,
default='./',
metavar='DIR',
help='path to directory where checkpoints will be stored')
def main(args):
exp_start_time = time.time()
global best_prec1
best_prec1 = 0
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
args.local_rank = int(os.environ['LOCAL_RANK'])
args.gpu = 0
args.world_size = 1
if args.distributed:
args.gpu = args.local_rank % torch.cuda.device_count()
torch.cuda.set_device(args.gpu)
dist.init_process_group(backend='nccl', init_method='env://')
args.world_size = torch.distributed.get_world_size()
if args.amp and args.fp16:
print("Please use only one of the --fp16/--amp flags")
exit(1)
if args.seed is not None:
print("Using seed = {}".format(args.seed))
torch.manual_seed(args.seed + args.local_rank)
torch.cuda.manual_seed(args.seed + args.local_rank)
np.random.seed(seed=args.seed + args.local_rank)
random.seed(args.seed + args.local_rank)
def _worker_init_fn(id):
np.random.seed(seed=args.seed + args.local_rank + id)
random.seed(args.seed + args.local_rank + id)
else:
def _worker_init_fn(id):
pass
if args.fp16:
assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."
if args.static_loss_scale != 1.0:
if not args.fp16:
print(
"Warning: if --fp16 is not used, static_loss_scale will be ignored."
)
if args.optimizer_batch_size < 0:
batch_size_multiplier = 1
else:
tbs = args.world_size * args.batch_size
if args.optimizer_batch_size % tbs != 0:
print(
"Warning: simulated batch size {} is not divisible by actual batch size {}"
.format(args.optimizer_batch_size, tbs))
batch_size_multiplier = int(args.optimizer_batch_size / tbs)
print("BSM: {}".format(batch_size_multiplier))
pretrained_weights = None
if args.pretrained_weights:
if os.path.isfile(args.pretrained_weights):
print("=> loading pretrained weights from '{}'".format(
args.pretrained_weights))
pretrained_weights = torch.load(args.pretrained_weights)
else:
print("=> no pretrained weights found at '{}'".format(args.resume))
start_epoch = 0
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(
args.resume,
map_location=lambda storage, loc: storage.cuda(args.gpu))
start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model_state = checkpoint['state_dict']
optimizer_state = checkpoint['optimizer']
print("=> loaded checkpoint '{}' (epoch {})".format(
args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
model_state = None
optimizer_state = None
else:
model_state = None
optimizer_state = None
loss = nn.CrossEntropyLoss
if args.mixup > 0.0:
loss = lambda: NLLMultiLabelSmooth(args.label_smoothing)
elif args.label_smoothing > 0.0:
loss = lambda: LabelSmoothing(args.label_smoothing)
model_and_loss = ModelAndLoss((args.arch, args.model_config),
loss,
pretrained_weights=pretrained_weights,
cuda=True,
fp16=args.fp16)
# Create data loaders and optimizers as needed
if args.data_backend == 'pytorch':
get_train_loader = get_pytorch_train_loader
get_val_loader = get_pytorch_val_loader
elif args.data_backend == 'dali-gpu':
get_train_loader = get_dali_train_loader(dali_cpu=False)
get_val_loader = get_dali_val_loader()
elif args.data_backend == 'dali-cpu':
get_train_loader = get_dali_train_loader(dali_cpu=True)
get_val_loader = get_dali_val_loader()
elif args.data_backend == 'syntetic':
get_val_loader = get_syntetic_loader
get_train_loader = get_syntetic_loader
train_loader, train_loader_len = get_train_loader(args.data,
args.batch_size,
1000,
args.mixup > 0.0,
workers=args.workers,
fp16=args.fp16)
if args.mixup != 0.0:
train_loader = MixUpWrapper(args.mixup, 1000, train_loader)
val_loader, val_loader_len = get_val_loader(args.data,
args.batch_size,
1000,
False,
workers=args.workers,
fp16=args.fp16)
if not torch.distributed.is_initialized() or torch.distributed.get_rank(
) == 0:
logger = log.Logger(args.print_freq, [
dllogger.StdOutBackend(dllogger.Verbosity.DEFAULT,
step_format=log.format_step),
dllogger.JSONStreamBackend(
dllogger.Verbosity.VERBOSE,
os.path.join(args.workspace, args.raport_file))
])
else:
logger = log.Logger(args.print_freq, [])
logger.log_parameter(args.__dict__, verbosity=dllogger.Verbosity.DEFAULT)
optimizer = get_optimizer(list(model_and_loss.model.named_parameters()),
args.fp16,
args.lr,
args.momentum,
args.weight_decay,
nesterov=args.nesterov,
bn_weight_decay=args.bn_weight_decay,
state=optimizer_state,
static_loss_scale=args.static_loss_scale,
dynamic_loss_scale=args.dynamic_loss_scale)
if args.lr_schedule == 'step':
lr_policy = lr_step_policy(args.lr, [30, 60, 80],
0.1,
args.warmup,
logger=logger)
elif args.lr_schedule == 'cosine':
lr_policy = lr_cosine_policy(args.lr,
args.warmup,
args.epochs,
logger=logger)
elif args.lr_schedule == 'linear':
lr_policy = lr_linear_policy(args.lr,
args.warmup,
args.epochs,
logger=logger)
if args.amp:
model_and_loss, optimizer = amp.initialize(
model_and_loss,
optimizer,
opt_level="O2",
loss_scale="dynamic"
if args.dynamic_loss_scale else args.static_loss_scale)
if args.distributed:
model_and_loss.distributed()
model_and_loss.load_model_state(model_state)
train_loop(model_and_loss,
optimizer,
lr_policy,
train_loader,
val_loader,
args.epochs,
args.fp16,
logger,
should_backup_checkpoint(args),
use_amp=args.amp,
batch_size_multiplier=batch_size_multiplier,
start_epoch=start_epoch,
best_prec1=best_prec1,
prof=args.prof,
skip_training=args.evaluate,
skip_validation=args.training_only,
save_checkpoints=args.save_checkpoints and not args.evaluate,
checkpoint_dir=args.workspace)
exp_duration = time.time() - exp_start_time
if not torch.distributed.is_initialized() or torch.distributed.get_rank(
) == 0:
logger.end()
print("Experiment ended")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
add_parser_arguments(parser)
args = parser.parse_args()
cudnn.benchmark = True
main(args)