DeepLearningExamples/PyTorch/Classification/ConvNets/main.py
2021-11-09 13:42:18 -08:00

640 lines
19 KiB
Python

# Copyright (c) 2018-2019, NVIDIA CORPORATION
# Copyright (c) 2017- Facebook, Inc
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import random
from copy import deepcopy
import signal
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.nn.parallel import DistributedDataParallel as DDP
import image_classification.logger as log
from image_classification.smoothing import LabelSmoothing
from image_classification.mixup import NLLMultiLabelSmooth, MixUpWrapper
from image_classification.dataloaders import *
from image_classification.training import *
from image_classification.utils import *
from image_classification.models import (
resnet50,
resnext101_32x4d,
se_resnext101_32x4d,
efficientnet_b0,
efficientnet_b4,
efficientnet_widese_b0,
efficientnet_widese_b4,
)
from image_classification.optimizers import (
get_optimizer,
lr_cosine_policy,
lr_linear_policy,
lr_step_policy,
)
import dllogger
def available_models():
models = {
m.name: m
for m in [
resnet50,
resnext101_32x4d,
se_resnext101_32x4d,
efficientnet_b0,
efficientnet_b4,
efficientnet_widese_b0,
efficientnet_widese_b4,
]
}
return models
def add_parser_arguments(parser, skip_arch=False):
parser.add_argument("data", metavar="DIR", help="path to dataset")
parser.add_argument(
"--data-backend",
metavar="BACKEND",
default="dali-cpu",
choices=DATA_BACKEND_CHOICES,
help="data backend: "
+ " | ".join(DATA_BACKEND_CHOICES)
+ " (default: dali-cpu)",
)
parser.add_argument(
"--interpolation",
metavar="INTERPOLATION",
default="bilinear",
help="interpolation type for resizing images: bilinear, bicubic or triangular(DALI only)",
)
if not skip_arch:
model_names = available_models().keys()
parser.add_argument(
"--arch",
"-a",
metavar="ARCH",
default="resnet50",
choices=model_names,
help="model architecture: "
+ " | ".join(model_names)
+ " (default: resnet50)",
)
parser.add_argument(
"-j",
"--workers",
default=5,
type=int,
metavar="N",
help="number of data loading workers (default: 5)",
)
parser.add_argument(
"--epochs",
default=90,
type=int,
metavar="N",
help="number of total epochs to run",
)
parser.add_argument(
"--run-epochs",
default=-1,
type=int,
metavar="N",
help="run only N epochs, used for checkpointing runs",
)
parser.add_argument(
"--early-stopping-patience",
default=-1,
type=int,
metavar="N",
help="early stopping after N epochs without validation accuracy improving",
)
parser.add_argument(
"--image-size", default=None, type=int, help="resolution of image"
)
parser.add_argument(
"-b",
"--batch-size",
default=256,
type=int,
metavar="N",
help="mini-batch size (default: 256) per gpu",
)
parser.add_argument(
"--optimizer-batch-size",
default=-1,
type=int,
metavar="N",
help="size of a total batch size, for simulating bigger batches using gradient accumulation",
)
parser.add_argument(
"--lr",
"--learning-rate",
default=0.1,
type=float,
metavar="LR",
help="initial learning rate",
)
parser.add_argument(
"--lr-schedule",
default="step",
type=str,
metavar="SCHEDULE",
choices=["step", "linear", "cosine"],
help="Type of LR schedule: {}, {}, {}".format("step", "linear", "cosine"),
)
parser.add_argument("--end-lr", default=0, type=float)
parser.add_argument(
"--warmup", default=0, type=int, metavar="E", help="number of warmup epochs"
)
parser.add_argument(
"--label-smoothing",
default=0.0,
type=float,
metavar="S",
help="label smoothing",
)
parser.add_argument(
"--mixup", default=0.0, type=float, metavar="ALPHA", help="mixup alpha"
)
parser.add_argument(
"--optimizer", default="sgd", type=str, choices=("sgd", "rmsprop")
)
parser.add_argument(
"--momentum", default=0.9, type=float, metavar="M", help="momentum"
)
parser.add_argument(
"--weight-decay",
"--wd",
default=1e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
)
parser.add_argument(
"--bn-weight-decay",
action="store_true",
help="use weight_decay on batch normalization learnable parameters, (default: false)",
)
parser.add_argument(
"--rmsprop-alpha",
default=0.9,
type=float,
help="value of alpha parameter in rmsprop optimizer (default: 0.9)",
)
parser.add_argument(
"--rmsprop-eps",
default=1e-3,
type=float,
help="value of eps parameter in rmsprop optimizer (default: 1e-3)",
)
parser.add_argument(
"--nesterov",
action="store_true",
help="use nesterov momentum, (default: false)",
)
parser.add_argument(
"--print-freq",
"-p",
default=10,
type=int,
metavar="N",
help="print frequency (default: 10)",
)
parser.add_argument(
"--resume",
default=None,
type=str,
metavar="PATH",
help="path to latest checkpoint (default: none)",
)
parser.add_argument(
"--static-loss-scale",
type=float,
default=1,
help="Static loss scale, positive power of 2 values can improve amp convergence.",
)
parser.add_argument(
"--dynamic-loss-scale",
action="store_true",
help="Use dynamic loss scaling. If supplied, this argument supersedes "
+ "--static-loss-scale.",
)
parser.add_argument(
"--prof", type=int, default=-1, metavar="N", help="Run only N iterations"
)
parser.add_argument(
"--amp",
action="store_true",
help="Run model AMP (automatic mixed precision) mode.",
)
parser.add_argument(
"--seed", default=None, type=int, help="random seed used for numpy and pytorch"
)
parser.add_argument(
"--gather-checkpoints",
action="store_true",
help="Gather checkpoints throughout the training, without this flag only best and last checkpoints will be stored",
)
parser.add_argument(
"--raport-file",
default="experiment_raport.json",
type=str,
help="file in which to store JSON experiment raport",
)
parser.add_argument(
"--evaluate", action="store_true", help="evaluate checkpoint/model"
)
parser.add_argument("--training-only", action="store_true", help="do not evaluate")
parser.add_argument(
"--no-checkpoints",
action="store_false",
dest="save_checkpoints",
help="do not store any checkpoints, useful for benchmarking",
)
parser.add_argument(
"--jit",
type=str,
default = "no",
choices=["no", "script"],
help="no -> do not use torch.jit; script -> use torch.jit.script"
)
parser.add_argument("--checkpoint-filename", default="checkpoint.pth.tar", type=str)
parser.add_argument(
"--workspace",
type=str,
default="./",
metavar="DIR",
help="path to directory where checkpoints will be stored",
)
parser.add_argument(
"--memory-format",
type=str,
default="nchw",
choices=["nchw", "nhwc"],
help="memory layout, nchw or nhwc",
)
parser.add_argument("--use-ema", default=None, type=float, help="use EMA")
parser.add_argument(
"--augmentation",
type=str,
default=None,
choices=[None, "autoaugment"],
help="augmentation method",
)
parser.add_argument(
"--num-classes",
type=int,
default=None,
required=False,
help="number of classes",
)
def prepare_for_training(args, model_args, model_arch):
args.distributed = False
if "WORLD_SIZE" in os.environ:
args.distributed = int(os.environ["WORLD_SIZE"]) > 1
args.local_rank = int(os.environ["LOCAL_RANK"])
else:
args.local_rank = 0
args.gpu = 0
args.world_size = 1
if args.distributed:
args.gpu = args.local_rank % torch.cuda.device_count()
torch.cuda.set_device(args.gpu)
dist.init_process_group(backend="nccl", init_method="env://")
args.world_size = torch.distributed.get_world_size()
if args.seed is not None:
print("Using seed = {}".format(args.seed))
torch.manual_seed(args.seed + args.local_rank)
torch.cuda.manual_seed(args.seed + args.local_rank)
np.random.seed(seed=args.seed + args.local_rank)
random.seed(args.seed + args.local_rank)
def _worker_init_fn(id):
np.random.seed(seed=args.seed + args.local_rank + id)
random.seed(args.seed + args.local_rank + id)
else:
def _worker_init_fn(id):
pass
if args.static_loss_scale != 1.0:
if not args.amp:
print("Warning: if --amp is not used, static_loss_scale will be ignored.")
if args.optimizer_batch_size < 0:
batch_size_multiplier = 1
else:
tbs = args.world_size * args.batch_size
if args.optimizer_batch_size % tbs != 0:
print(
"Warning: simulated batch size {} is not divisible by actual batch size {}".format(
args.optimizer_batch_size, tbs
)
)
batch_size_multiplier = int(args.optimizer_batch_size / tbs)
print("BSM: {}".format(batch_size_multiplier))
start_epoch = 0
# optionally resume from a checkpoint
if args.resume is not None:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(
args.resume, map_location=lambda storage, loc: storage.cuda(args.gpu)
)
start_epoch = checkpoint["epoch"]
best_prec1 = checkpoint["best_prec1"]
model_state = checkpoint["state_dict"]
optimizer_state = checkpoint["optimizer"]
if "state_dict_ema" in checkpoint:
model_state_ema = checkpoint["state_dict_ema"]
print(
"=> loaded checkpoint '{}' (epoch {})".format(
args.resume, checkpoint["epoch"]
)
)
if start_epoch >= args.epochs:
print(
f"Launched training for {args.epochs}, checkpoint already run {start_epoch}"
)
exit(1)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
model_state = None
model_state_ema = None
optimizer_state = None
else:
model_state = None
model_state_ema = None
optimizer_state = None
loss = nn.CrossEntropyLoss
if args.mixup > 0.0:
loss = lambda: NLLMultiLabelSmooth(args.label_smoothing)
elif args.label_smoothing > 0.0:
loss = lambda: LabelSmoothing(args.label_smoothing)
memory_format = (
torch.channels_last if args.memory_format == "nhwc" else torch.contiguous_format
)
model = model_arch(
**{
k: v
if k != "pretrained"
else v and (not args.distributed or dist.get_rank() == 0)
for k, v in model_args.__dict__.items()
}
)
image_size = (
args.image_size
if args.image_size is not None
else model.arch.default_image_size
)
scaler = torch.cuda.amp.GradScaler(
init_scale=args.static_loss_scale,
growth_factor=2,
backoff_factor=0.5,
growth_interval=100 if args.dynamic_loss_scale else 1000000000,
enabled=args.amp,
)
executor = Executor(
model,
loss(),
cuda=True,
memory_format=memory_format,
amp=args.amp,
scaler=scaler,
divide_loss=batch_size_multiplier,
ts_script = args.jit == "script",
)
# Create data loaders and optimizers as needed
if args.data_backend == "pytorch":
get_train_loader = get_pytorch_train_loader
get_val_loader = get_pytorch_val_loader
elif args.data_backend == "dali-gpu":
get_train_loader = get_dali_train_loader(dali_cpu=False)
get_val_loader = get_dali_val_loader()
elif args.data_backend == "dali-cpu":
get_train_loader = get_dali_train_loader(dali_cpu=True)
get_val_loader = get_dali_val_loader()
elif args.data_backend == "syntetic":
get_val_loader = get_syntetic_loader
get_train_loader = get_syntetic_loader
else:
print("Bad databackend picked")
exit(1)
train_loader, train_loader_len = get_train_loader(
args.data,
image_size,
args.batch_size,
model_args.num_classes,
args.mixup > 0.0,
interpolation=args.interpolation,
augmentation=args.augmentation,
start_epoch=start_epoch,
workers=args.workers,
memory_format=memory_format,
)
if args.mixup != 0.0:
train_loader = MixUpWrapper(args.mixup, train_loader)
val_loader, val_loader_len = get_val_loader(
args.data,
image_size,
args.batch_size,
model_args.num_classes,
False,
interpolation=args.interpolation,
workers=args.workers,
memory_format=memory_format,
)
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
logger = log.Logger(
args.print_freq,
[
dllogger.StdOutBackend(
dllogger.Verbosity.DEFAULT, step_format=log.format_step
),
dllogger.JSONStreamBackend(
dllogger.Verbosity.VERBOSE,
os.path.join(args.workspace, args.raport_file),
),
],
start_epoch=start_epoch - 1,
)
else:
logger = log.Logger(args.print_freq, [], start_epoch=start_epoch - 1)
logger.log_parameter(args.__dict__, verbosity=dllogger.Verbosity.DEFAULT)
logger.log_parameter(
{f"model.{k}": v for k, v in model_args.__dict__.items()},
verbosity=dllogger.Verbosity.DEFAULT,
)
optimizer = get_optimizer(
list(executor.model.named_parameters()),
args.lr,
args=args,
state=optimizer_state,
)
if args.lr_schedule == "step":
lr_policy = lr_step_policy(args.lr, [30, 60, 80], 0.1, args.warmup)
elif args.lr_schedule == "cosine":
lr_policy = lr_cosine_policy(
args.lr, args.warmup, args.epochs, end_lr=args.end_lr
)
elif args.lr_schedule == "linear":
lr_policy = lr_linear_policy(args.lr, args.warmup, args.epochs)
if args.distributed:
executor.distributed(args.gpu)
if model_state is not None:
executor.model.load_state_dict(model_state)
trainer = Trainer(
executor,
optimizer,
grad_acc_steps=batch_size_multiplier,
ema=args.use_ema,
)
if (args.use_ema is not None) and (model_state_ema is not None):
trainer.ema_executor.model.load_state_dict(model_state_ema)
return (trainer, lr_policy, train_loader, train_loader_len, val_loader, logger, start_epoch)
def main(args, model_args, model_arch):
exp_start_time = time.time()
global best_prec1
best_prec1 = 0
(
trainer,
lr_policy,
train_loader,
train_loader_len,
val_loader,
logger,
start_epoch,
) = prepare_for_training(args, model_args, model_arch)
train_loop(
trainer,
lr_policy,
train_loader,
train_loader_len,
val_loader,
logger,
should_backup_checkpoint(args),
start_epoch=start_epoch,
end_epoch=min((start_epoch + args.run_epochs), args.epochs)
if args.run_epochs != -1
else args.epochs,
early_stopping_patience=args.early_stopping_patience,
best_prec1=best_prec1,
prof=args.prof,
skip_training=args.evaluate,
skip_validation=args.training_only,
save_checkpoints=args.save_checkpoints and not args.evaluate,
checkpoint_dir=args.workspace,
checkpoint_filename=args.checkpoint_filename,
)
exp_duration = time.time() - exp_start_time
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
logger.end()
print("Experiment ended")
if __name__ == "__main__":
epilog = [
"Based on the architecture picked by --arch flag, you may use the following options:\n"
]
for model, ep in available_models().items():
model_help = "\n".join(ep.parser().format_help().split("\n")[2:])
epilog.append(model_help)
parser = argparse.ArgumentParser(
description="PyTorch ImageNet Training",
epilog="\n".join(epilog),
formatter_class=argparse.RawDescriptionHelpFormatter,
)
add_parser_arguments(parser)
args, rest = parser.parse_known_args()
model_arch = available_models()[args.arch]
model_args, rest = model_arch.parser().parse_known_args(rest)
print(model_args)
assert len(rest) == 0, f"Unknown args passed: {rest}"
cudnn.benchmark = True
main(args, model_args, model_arch)