DeepLearningExamples/TensorFlow2/Segmentation/MaskRCNN/mask_rcnn/dataloader.py
2020-06-27 11:52:08 +02:00

467 lines
15 KiB
Python
Executable file

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data loader and processing.
Defines input_fn of Mask-RCNN for TF Estimator. The input_fn includes training
data for category classification, bounding box regression, and number of
positive examples to normalize the loss during training.
"""
import functools
import math
import multiprocessing
import tensorflow as tf
from mask_rcnn.utils.logging_formatter import logging
from mask_rcnn.utils.distributed_utils import MPI_is_distributed
from mask_rcnn.utils.distributed_utils import MPI_rank_and_size
from mask_rcnn.utils.distributed_utils import MPI_rank
from mask_rcnn.utils.distributed_utils import MPI_size
# common functions
from mask_rcnn.dataloader_utils import dataset_parser
from distutils.version import LooseVersion
class InputReader(object):
"""Input reader for dataset."""
def __init__(
self,
file_pattern,
mode=tf.estimator.ModeKeys.TRAIN,
num_examples=0,
use_fake_data=False,
use_instance_mask=False,
seed=None
):
self._mode = mode
self._file_pattern = file_pattern
self._num_examples = num_examples
self._use_fake_data = use_fake_data
self._use_instance_mask = use_instance_mask
self._seed = seed
def _create_dataset_parser_fn(self, params):
"""Create parser for parsing input data (dictionary)."""
return functools.partial(
dataset_parser,
mode=self._mode,
params=params,
use_instance_mask=self._use_instance_mask,
seed=self._seed
)
def __call__(self, params, input_context=None):
batch_size = params['batch_size'] if 'batch_size' in params else 1
try:
seed = params['seed'] if not MPI_is_distributed() else params['seed'] * MPI_rank()
except (KeyError, TypeError):
seed = None
if MPI_is_distributed():
n_gpus = MPI_size()
elif input_context is not None:
n_gpus = input_context.num_input_pipelines
else:
n_gpus = 1
##################################################
dataset = tf.data.Dataset.list_files(
self._file_pattern,
shuffle=False
)
if self._mode == tf.estimator.ModeKeys.TRAIN:
if input_context is not None:
logging.info("Using Dataset Sharding with TF Distributed")
_num_shards = input_context.num_input_pipelines
_shard_idx = input_context.input_pipeline_id
elif MPI_is_distributed():
logging.info("Using Dataset Sharding with Horovod")
_shard_idx, _num_shards = MPI_rank_and_size()
try:
dataset = dataset.shard(
num_shards=_num_shards,
index=_shard_idx
)
dataset = dataset.shuffle(math.ceil(256 / _num_shards))
except NameError: # Not a distributed training setup
pass
def _prefetch_dataset(filename):
return tf.data.TFRecordDataset(filename).prefetch(1)
dataset = dataset.interleave(
map_func=_prefetch_dataset,
cycle_length=32,
block_length=64,
num_parallel_calls=tf.data.experimental.AUTOTUNE,
)
if self._num_examples is not None and self._num_examples > 0:
logging.info("[*] Limiting the amount of sample to: %d" % self._num_examples)
dataset = dataset.take(self._num_examples)
dataset = dataset.cache()
if self._mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.shuffle(
buffer_size=4096,
reshuffle_each_iteration=True,
seed=seed
)
dataset = dataset.repeat()
# Parse the fetched records to input tensors for model function.
dataset = dataset.map(
map_func=self._create_dataset_parser_fn(params),
num_parallel_calls=tf.data.experimental.AUTOTUNE,
)
dataset = dataset.batch(
batch_size=batch_size,
drop_remainder=True
)
if self._use_fake_data:
# Turn this dataset into a semi-fake dataset which always loop at the
# first batch. This reduces variance in performance and is useful in
# testing.
logging.info("Using Fake Dataset Loop...")
dataset = dataset.take(1).cache().repeat()
if self._mode != tf.estimator.ModeKeys.TRAIN:
dataset = dataset.take(int(5000 / batch_size))
dataset = dataset.prefetch(
buffer_size=tf.data.experimental.AUTOTUNE,
)
if self._mode == tf.estimator.ModeKeys.PREDICT or n_gpus > 1:
if not tf.distribute.has_strategy():
dataset = dataset.apply(
tf.data.experimental.prefetch_to_device(
'/gpu:0', # With Horovod the local GPU is always 0
buffer_size=1,
)
)
data_options = tf.data.Options()
data_options.experimental_deterministic = seed is not None
if LooseVersion(tf.__version__) <= LooseVersion("2.0.0"):
data_options.experimental_distribute.auto_shard = False
else:
data_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
# data_options.experimental_distribute.auto_shard = False
data_options.experimental_slack = True
data_options.experimental_threading.max_intra_op_parallelism = 1
# data_options.experimental_threading.private_threadpool_size = int(multiprocessing.cpu_count() / n_gpus) * 2
# ================= experimental_optimization ================= #
data_options.experimental_optimization.apply_default_optimizations = False
# data_options.experimental_optimization.autotune = True
data_options.experimental_optimization.filter_fusion = True
data_options.experimental_optimization.map_and_batch_fusion = True
data_options.experimental_optimization.map_and_filter_fusion = True
data_options.experimental_optimization.map_fusion = True
data_options.experimental_optimization.map_parallelization = True
map_vectorization_options = tf.data.experimental.MapVectorizationOptions()
map_vectorization_options.enabled = True
map_vectorization_options.use_choose_fastest = True
data_options.experimental_optimization.map_vectorization = map_vectorization_options
data_options.experimental_optimization.noop_elimination = True
data_options.experimental_optimization.parallel_batch = True
data_options.experimental_optimization.shuffle_and_repeat_fusion = True
# ========== Stats on TF Data =============
# aggregator = tf.data.experimental.StatsAggregator()
# data_options.experimental_stats.aggregator = aggregator
# data_options.experimental_stats.latency_all_edges = True
dataset = dataset.with_options(data_options)
return dataset
if __name__ == "__main__":
'''
Data Loading Benchmark Usage:
# Real Data - Training
python -m mask_rcnn.dataloader \
--data_dir="/data/" \
--batch_size=2 \
--warmup_steps=200 \
--benchmark_steps=2000 \
--training
# Real Data - Inference
python -m mask_rcnn.dataloader \
--data_dir="/data/" \
--batch_size=8 \
--warmup_steps=200 \
--benchmark_steps=2000
# --------------- #
# Synthetic Data - Training
python -m mask_rcnn.dataloader \
--data_dir="/data/" \
--batch_size=2 \
--warmup_steps=200 \
--benchmark_steps=2000 \
--training \
--use_synthetic_data
# Synthetic Data - Inference
python -m mask_rcnn.dataloader \
--data_dir="/data/" \
--batch_size=8 \
--warmup_steps=200 \
--benchmark_steps=2000 \
--use_synthetic_data
# --------------- #
'''
import os
import time
import argparse
import numpy as np
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
logging.set_verbosity(logging.INFO)
parser = argparse.ArgumentParser(description="MaskRCNN Dataloader Benchmark")
parser.add_argument(
'--data_dir', required=True, type=str, help="Directory path which contains the preprocessed DAGM 2007 dataset"
)
parser.add_argument(
'--batch_size', default=64, type=int, required=True, help="""Batch size used to measure performance."""
)
parser.add_argument(
'--warmup_steps',
default=200,
type=int,
required=True,
help="""Number of steps considered as warmup and not taken into account for performance measurements."""
)
parser.add_argument(
'--benchmark_steps',
default=200,
type=int,
required=True,
help="Number of steps used to benchmark dataloading performance. Only used in training"
)
parser.add_argument(
'--seed',
default=666,
type=int,
required=False,
help="""Reproducibility Seed."""
)
parser.add_argument("--training", default=False, action="store_true", help="Benchmark in training mode")
parser.add_argument("--use_synthetic_data", default=False, action="store_true", help="Use synthetic dataset")
FLAGS, unknown_args = parser.parse_known_args()
if len(unknown_args) > 0:
for bad_arg in unknown_args:
print("ERROR: Unknown command line arg: %s" % bad_arg)
raise ValueError("Invalid command line arg(s)")
BURNIN_STEPS = FLAGS.warmup_steps
if FLAGS.training:
TOTAL_STEPS = FLAGS.warmup_steps + FLAGS.benchmark_steps
else:
TOTAL_STEPS = int(1e6) # Wait for end of dataset
if FLAGS.training:
input_dataset = InputReader(
file_pattern=os.path.join(FLAGS.data_dir, "train*.tfrecord"),
mode=tf.estimator.ModeKeys.TRAIN,
use_fake_data=FLAGS.use_synthetic_data,
use_instance_mask=True,
seed=FLAGS.seed
)
else:
input_dataset = InputReader(
file_pattern=os.path.join(FLAGS.data_dir, "val*.tfrecord"),
mode=tf.estimator.ModeKeys.PREDICT,
num_examples=5000,
use_fake_data=FLAGS.use_synthetic_data,
use_instance_mask=True,
seed=FLAGS.seed
)
logging.info("[*] Executing Benchmark in %s mode" % ("training" if FLAGS.training else "inference"))
logging.info("[*] Benchmark using %s data" % ("synthetic" if FLAGS.use_synthetic_data else "real"))
time.sleep(1)
# Build the data input
dataset = input_dataset(
params={
"anchor_scale": 8.0,
"aspect_ratios": [[1.0, 1.0], [1.4, 0.7], [0.7, 1.4]],
"batch_size": FLAGS.batch_size,
"gt_mask_size": 112,
"image_size": [1024, 1024],
"include_groundtruth_in_features": False,
"augment_input_data": True,
"max_level": 6,
"min_level": 2,
"num_classes": 91,
"num_scales": 1,
"rpn_batch_size_per_im": 256,
"rpn_fg_fraction": 0.5,
"rpn_min_size": 0.,
"rpn_nms_threshold": 0.7,
"rpn_negative_overlap": 0.3,
"rpn_positive_overlap": 0.7,
"rpn_post_nms_topn": 1000,
"rpn_pre_nms_topn": 2000,
"skip_crowd_during_training": True,
"use_category": True,
"visualize_images_summary": False,
}
)
dataset_iterator = dataset.make_initializable_iterator()
if FLAGS.training:
X, Y = dataset_iterator.get_next()
else:
X = dataset_iterator.get_next()
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
config.log_device_placement = False
with tf.device("gpu:0"):
X_gpu_ops = list()
Y_gpu_ops = list()
if FLAGS.training:
for _, _x in X.items():
X_gpu_ops.append(tf.identity(_x))
for _, _y in Y.items():
Y_gpu_ops.append(tf.identity(_y))
else:
for _, _x in X["features"].items():
X_gpu_ops.append(tf.identity(_x))
with tf.control_dependencies(X_gpu_ops + Y_gpu_ops):
input_op = tf.constant(1.0)
with tf.compat.v1.Session(config=config) as sess:
sess.run(dataset_iterator.initializer)
sess.run(tf.compat.v1.global_variables_initializer())
total_files_processed = 0
img_per_sec_arr = []
processing_time_arr = []
processing_start_time = time.time()
for step in range(TOTAL_STEPS):
try:
start_time = time.time()
sess.run(input_op)
elapsed_time = (time.time() - start_time) * 1000
imgs_per_sec = (FLAGS.batch_size / elapsed_time) * 1000
total_files_processed += FLAGS.batch_size
if (step + 1) > BURNIN_STEPS:
processing_time_arr.append(elapsed_time)
img_per_sec_arr.append(imgs_per_sec)
if (step + 1) % 20 == 0 or (step + 1) == TOTAL_STEPS:
print(
"[STEP %04d] # Batch Size: %03d - Time: %03d msecs - Speed: %6d img/s" %
(step + 1, FLAGS.batch_size, elapsed_time, imgs_per_sec)
)
except tf.errors.OutOfRangeError:
break
processing_time = time.time() - processing_start_time
avg_processing_speed = np.mean(img_per_sec_arr)
print("\n###################################################################")
print("*** Data Loading Performance Metrics ***\n")
print("\t=> Number of Steps: %d" % (step + 1))
print("\t=> Batch Size: %d" % FLAGS.batch_size)
print("\t=> Files Processed: %d" % total_files_processed)
print("\t=> Total Execution Time: %d secs" % processing_time)
print("\t=> Median Time per step: %3d msecs" % np.median(processing_time_arr))
print("\t=> Median Processing Speed: %d images/secs" % np.median(img_per_sec_arr))
print("\t=> Median Processing Time: %.2f msecs/image" % (1 / float(np.median(img_per_sec_arr)) * 1000))