NeMo/nemo/core/classes/modelPT.py
Jason 4f2ea4913c
Refactor and Minimize Dependencies (#2643)
* squash

Signed-off-by: Jason <jasoli@nvidia.com>

* add comments

Signed-off-by: Jason <jasoli@nvidia.com>

* style and cleanup

Signed-off-by: Jason <jasoli@nvidia.com>

* cleanup

Signed-off-by: Jason <jasoli@nvidia.com>

* add new test file

Signed-off-by: Jason <jasoli@nvidia.com>

* syntax

Signed-off-by: Jason <jasoli@nvidia.com>

* style

Signed-off-by: Jason <jasoli@nvidia.com>

* typo

Signed-off-by: Jason <jasoli@nvidia.com>

* update

Signed-off-by: Jason <jasoli@nvidia.com>

* update

Signed-off-by: Jason <jasoli@nvidia.com>

* update

Signed-off-by: Jason <jasoli@nvidia.com>

* try again

Signed-off-by: Jason <jasoli@nvidia.com>

* wip

Signed-off-by: Jason <jasoli@nvidia.com>

* style; ci should fail

Signed-off-by: Jason <jasoli@nvidia.com>

* final

Signed-off-by: Jason <jasoli@nvidia.com>
2021-08-17 10:55:43 -04:00

1162 lines
49 KiB
Python

# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import os
import uuid
from abc import abstractmethod
from os import path
from os.path import expanduser
from typing import Callable, Dict, List, Optional, Union
import hydra
import torch
from omegaconf import DictConfig, OmegaConf, open_dict
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.utilities import rank_zero_only
from nemo.core import optim
from nemo.core.classes.common import Model
from nemo.core.connectors.save_restore_connector import SaveRestoreConnector
from nemo.core.optim import prepare_lr_scheduler
from nemo.utils import logging, model_utils
from nemo.utils.app_state import AppState
from nemo.utils.get_rank import is_global_rank_zero
__all__ = ['ModelPT']
class ModelPT(LightningModule, Model):
"""
Interface for Pytorch-lightning based NeMo models
"""
def __init__(self, cfg: DictConfig, trainer: Trainer = None):
"""
Base class from which all NeMo models should inherit
Args:
cfg (DictConfig): configuration object.
The cfg object should have (optionally) the following sub-configs:
* train_ds - to instantiate training dataset
* validation_ds - to instantiate validation dataset
* test_ds - to instantiate testing dataset
* optim - to instantiate optimizer with learning rate scheduler
trainer (Optional): Pytorch Lightning Trainer instance
"""
if trainer is not None and not isinstance(trainer, Trainer):
raise ValueError(
f"trainer constructor argument must be either None or pytroch_lightning.Trainer. But got {type(trainer)} instead."
)
super().__init__()
"""
Internal global flags that determine core functionality of ModelPT.
_MODEL_IS_RESTORED:
This flag determines the context of the model - whether the model is currently being
restored or not.
- When set, it can be assumed that the model's will disable all automatic methods -
setup_training_data(), setup_validation/test_data() and their multi equivalents.
- If a model is being restored from a archive file (tarfile), it can be assumed that
under this context, the cwd is *inside* the tarfile itself.
_MODEL_RESTORE_PATH:
A string path to a a file from which the model is being restored.
This file can either be a PyTorch Lightning Checkpoint, or a archive (tarfile) that contains
artifact objects.
If it is an archive file, during restoration, the cwd will be temporarily moved to inside the
archive itself.
"""
# set global vars in AppState
app_state = AppState()
# Convert config to a DictConfig
cfg = model_utils.convert_model_config_to_dict_config(cfg)
# Convert config to support Hydra 1.0+ instantiation
cfg = model_utils.maybe_update_config_version(cfg)
if 'target' not in cfg:
# This is for Jarvis service.
OmegaConf.set_struct(cfg, False)
cfg.target = "{0}.{1}".format(self.__class__.__module__, self.__class__.__name__)
OmegaConf.set_struct(cfg, True)
self._cfg = cfg
self.save_hyperparameters(self._cfg)
self._train_dl = None
self._validation_dl = None
self._test_dl = None
self._optimizer = None
self._scheduler = None
self.trainer = trainer # reference required for self.*_rank
self._trainer = self.trainer # alias for backward compatibility
self._save_restore_connector = SaveRestoreConnector()
self._set_model_guid()
# Set device_id in AppState
if torch.cuda.is_available() and torch.cuda.current_device() is not None:
app_state.device_id = torch.cuda.current_device()
if self._cfg is not None and not self._is_model_being_restored():
if 'train_ds' in self._cfg and self._cfg.train_ds is not None:
self.setup_training_data(self._cfg.train_ds)
if 'validation_ds' in self._cfg and self._cfg.validation_ds is not None:
self.setup_multiple_validation_data(val_data_config=None)
if 'test_ds' in self._cfg and self._cfg.test_ds is not None:
self.setup_multiple_test_data(test_data_config=None)
else:
if 'train_ds' in self._cfg and self._cfg.train_ds is not None:
logging.warning(
f"If you intend to do training or fine-tuning, please call the ModelPT.setup_training_data() method "
f"and provide a valid configuration file to setup the train data loader.\n"
f"Train config : \n{OmegaConf.to_yaml(self._cfg.train_ds)}"
)
if 'validation_ds' in self._cfg and self._cfg.validation_ds is not None:
logging.warning(
f"If you intend to do validation, please call the ModelPT.setup_validation_data() or ModelPT.setup_multiple_validation_data() method "
f"and provide a valid configuration file to setup the validation data loader(s). \n"
f"Validation config : \n{OmegaConf.to_yaml(self._cfg.validation_ds)}"
)
if 'test_ds' in self._cfg and self._cfg.test_ds is not None:
logging.warning(
f"Please call the ModelPT.setup_test_data() or ModelPT.setup_multiple_test_data() method "
f"and provide a valid configuration file to setup the test data loader(s).\n"
f"Test config : \n{OmegaConf.to_yaml(self._cfg.test_ds)}"
)
# ModelPT wrappers over subclass implementations
self.training_step = model_utils.wrap_training_step(self.training_step)
def __init_subclass__(cls) -> None:
cls._save_restore_connector = SaveRestoreConnector()
def register_artifact(
self, config_path: str, src: str, verify_src_exists: bool = True,
):
""" Register model artifacts with this function. These artifacts (files) will be included inside .nemo file
when model.save_to("mymodel.nemo") is called.
How it works:
1. It always returns existing absolute path which can be used during Model constructor call
EXCEPTION: src is None or "" in which case nothing will be done and src will be returned
2. It will add (config_path, model_utils.ArtifactItem()) pair to self.artifacts
If "src" is local existing path, then it will be returned in absolute path form.
elif "src" starts with "nemo_file:unique_artifact_name":
.nemo will be untarred to a temporary folder location and an actual existing path will be returned
else an error will be raised.
WARNING: use .register_artifact calls in your models' constructors.
The returned path is not guaranteed to exist after you have exited your model's constuctor.
Args:
config_path (str): Artifact key. Usually corresponds to the model config.
src (str): Path to artifact.
verify_src_exists (bool): If set to False, then the artifact is optional and register_artifact will return None even if
src is not found. Defaults to True.
save_restore_connector (SaveRestoreConnector): Can be overrided to add custom save and restore logic.
Returns:
str: If src is not None or empty it always returns absolute path which is guaranteed to exists during model instnce life
"""
app_state = AppState()
if src is None or src == "":
return src
if not hasattr(self, 'artifacts'):
self.artifacts = {}
if self.artifacts is None:
self.artifacts = {}
if config_path in self.artifacts.keys():
logging.warning(
f"You tried to register an artifact under config key={config_path} but an artifact for "
f"it has already been registered."
)
return self._save_restore_connector.register_artifact(self, config_path, src, verify_src_exists)
@rank_zero_only
def save_to(self, save_path: str):
"""
Saves model instance (weights and configuration) into .nemo file
You can use "restore_from" method to fully restore instance from .nemo file.
.nemo file is an archive (tar.gz) with the following:
model_config.yaml - model configuration in .yaml format. You can deserialize this into cfg argument for model's constructor
model_wights.chpt - model checkpoint
Args:
save_path: Path to .nemo file where model instance should be saved
"""
# Add NeMo rank check as well
if not is_global_rank_zero():
return
else:
save_path = os.path.abspath(os.path.expanduser(save_path))
self._save_restore_connector.save_to(self, save_path)
@classmethod
def restore_from(
cls,
restore_path: str,
override_config_path: Optional[Union[OmegaConf, str]] = None,
map_location: Optional[torch.device] = None,
strict: bool = True,
return_config: bool = False,
save_restore_connector: SaveRestoreConnector = None,
):
"""
Restores model instance (weights and configuration) from .nemo file.
Args:
restore_path: path to .nemo file from which model should be instantiated
override_config_path: path to a yaml config that will override the internal
config file or an OmegaConf / DictConfig object representing the model config.
map_location: Optional torch.device() to map the instantiated model to a device.
By default (None), it will select a GPU if available, falling back to CPU otherwise.
strict: Passed to load_state_dict. By default True.
return_config: If set to true, will return just the underlying config of the restored
model as an OmegaConf DictConfig object without instantiating the model.
save_restore_connector (SaveRestoreConnector): Can be overrided to add custom save and restore logic.
Example:
```
model = nemo.collections.asr.models.EncDecCTCModel.restore_from('asr.nemo')
assert isinstance(model, nemo.collections.asr.models.EncDecCTCModel)
```
Returns:
An instance of type cls or its underlying config (if return_config is set).
"""
if save_restore_connector is None:
save_restore_connector = SaveRestoreConnector()
restore_path = os.path.abspath(os.path.expanduser(restore_path))
if not path.exists(restore_path):
raise FileNotFoundError(f"Can't find {restore_path}")
app_state = AppState()
app_state.model_restore_path = restore_path
cls.update_save_restore_connector(save_restore_connector)
instance = cls._save_restore_connector.restore_from(
cls, restore_path, override_config_path, map_location, strict, return_config
)
if isinstance(instance, ModelPT):
instance._save_restore_connector = save_restore_connector
return instance
@classmethod
def load_from_checkpoint(
cls,
checkpoint_path: str,
*args,
map_location: Optional[Union[Dict[str, str], str, torch.device, int, Callable]] = None,
hparams_file: Optional[str] = None,
strict: bool = True,
**kwargs,
):
"""
Loads ModelPT from checkpoint, with some maintenance of restoration.
For documentation, please refer to LightningModule.load_from_checkpoin() documentation.
"""
checkpoint = None
try:
cls._set_model_restore_state(is_being_restored=True)
checkpoint = super().load_from_checkpoint(
checkpoint_path=checkpoint_path,
*args,
map_location=map_location,
hparams_file=hparams_file,
strict=strict,
**kwargs,
)
finally:
cls._set_model_restore_state(is_being_restored=False)
return checkpoint
@abstractmethod
def setup_training_data(self, train_data_config: Union[DictConfig, Dict]):
"""
Setups data loader to be used in training
Args:
train_data_layer_config: training data layer parameters.
Returns:
"""
pass
@abstractmethod
def setup_validation_data(self, val_data_config: Union[DictConfig, Dict]):
"""
Setups data loader to be used in validation
Args:
val_data_layer_config: validation data layer parameters.
Returns:
"""
pass
def setup_test_data(self, test_data_config: Union[DictConfig, Dict]):
"""
(Optionally) Setups data loader to be used in test
Args:
test_data_layer_config: test data layer parameters.
Returns:
"""
raise NotImplementedError()
def setup_multiple_validation_data(self, val_data_config: Union[DictConfig, Dict]):
"""
(Optionally) Setups data loader to be used in validation, with support for multiple data loaders.
Args:
val_data_layer_config: validation data layer parameters.
"""
# Set some placeholder overriden by helper method
self._val_dl_idx = 0
self._validation_names = None
self._validation_dl = None # type: torch.utils.data.DataLoader
# preserve config
self._update_dataset_config(dataset_name='validation', config=val_data_config)
try:
self._multi_dataset_mode = True
model_utils.resolve_validation_dataloaders(model=self)
finally:
self._multi_dataset_mode = False
if self._validation_names is None:
if self._validation_dl is not None and type(self._validation_dl) in [list, tuple]:
self._validation_names = ['val_{}_'.format(idx) for idx in range(len(self._validation_dl))]
def setup_multiple_test_data(self, test_data_config: Union[DictConfig, Dict]):
"""
(Optionally) Setups data loader to be used in test, with support for multiple data loaders.
Args:
test_data_layer_config: test data layer parameters.
"""
# Set some placeholder overriden by helper method
self._test_dl_idx = 0
self._test_names = None
self._test_dl = None # type: torch.utils.data.DataLoader
# preserve config
self._update_dataset_config(dataset_name='test', config=test_data_config)
try:
self._multi_dataset_mode = True
model_utils.resolve_test_dataloaders(model=self)
finally:
self._multi_dataset_mode = False
if self._test_names is None:
if self._test_dl is not None and type(self._test_dl) in [list, tuple]:
self._test_names = ['test_{}_'.format(idx) for idx in range(len(self._test_dl))]
def setup_optimization(self, optim_config: Optional[Union[DictConfig, Dict]] = None):
"""
Prepares an optimizer from a string name and its optional config parameters.
Args:
optim_config: A dictionary containing the following keys:
* "lr": mandatory key for learning rate. Will raise ValueError if not provided.
* "optimizer": string name pointing to one of the available optimizers in the registry. \
If not provided, defaults to "adam".
* "opt_args": Optional list of strings, in the format "arg_name=arg_value". \
The list of "arg_value" will be parsed and a dictionary of optimizer kwargs \
will be built and supplied to instantiate the optimizer.
"""
# If config was not explicitly passed to us
if optim_config is None:
# See if internal config has `optim` namespace
if self._cfg is not None and hasattr(self._cfg, 'optim'):
optim_config = self._cfg.optim
# If config is still None, or internal config has no Optim, return without instantiation
if optim_config is None:
logging.info('No optimizer config provided, therefore no optimizer was created')
return
else:
# Preserve the configuration
if not isinstance(optim_config, DictConfig):
optim_config = OmegaConf.create(optim_config)
# See if internal config has `optim` namespace before preservation
if self._cfg is not None and hasattr(self._cfg, 'optim'):
if self._cfg.optim is None:
self._cfg.optim = copy.deepcopy(optim_config)
else:
with open_dict(self._cfg.optim):
self._cfg.optim = copy.deepcopy(optim_config)
# Setup optimizer and scheduler
if optim_config is not None and isinstance(optim_config, DictConfig):
optim_config = OmegaConf.to_container(optim_config, resolve=True)
if self._trainer is None:
logging.warning(f"Trainer wasn't specified in model constructor. Make sure that you really wanted it.")
if 'sched' in optim_config and self._trainer is not None:
if not isinstance(self._trainer.accumulate_grad_batches, int):
raise ValueError("We do not currently support gradient acculumation that is not an integer.")
if self._trainer.max_steps is None:
# Store information needed to calculate max_steps
optim_config['sched']['t_max_epochs'] = self._trainer.max_epochs
optim_config['sched']['t_accumulate_grad_batches'] = self._trainer.accumulate_grad_batches
optim_config['sched']['t_limit_train_batches'] = self._trainer.limit_train_batches
if self._trainer.distributed_backend is None:
optim_config['sched']['t_num_workers'] = self._trainer.num_gpus or 1
elif self._trainer.distributed_backend == "ddp_cpu":
optim_config['sched']['t_num_workers'] = self._trainer.num_processes * self._trainer.num_nodes
elif self._trainer.distributed_backend == "ddp":
optim_config['sched']['t_num_workers'] = self._trainer.num_gpus * self._trainer.num_nodes
else:
logging.warning(
f"The lightning trainer received accelerator: {self._trainer.distributed_backend}. We "
"recommend to use 'ddp' instead."
)
optim_config['sched']['t_num_workers'] = self._trainer.num_gpus * self._trainer.num_nodes
else:
optim_config['sched']['max_steps'] = self._trainer.max_steps
# Force into DictConfig from nested structure
optim_config = OmegaConf.create(optim_config)
# Get back nested dict so we its mutable
optim_config = OmegaConf.to_container(optim_config, resolve=True)
# Extract scheduler config if inside optimizer config
if 'sched' in optim_config:
scheduler_config = optim_config.pop('sched')
else:
scheduler_config = None
# Check if caller provided optimizer name, default to Adam otherwise
optimizer_cls = optim_config.get('_target_', None)
if optimizer_cls is None:
# Try to get optimizer name for dynamic resolution, defaulting to Adam
optimizer_name = optim_config.get('name', 'adam')
else:
if inspect.isclass(optimizer_cls):
optimizer_name = optimizer_cls.__name__.lower()
else:
# resolve the class name (lowercase) from the class path if not provided
optimizer_name = optimizer_cls.split(".")[-1].lower()
# We are guarenteed to have lr since it is required by the argparser
# But maybe user forgot to pass it to this function
lr = optim_config.get('lr', None)
# Check if caller has optimizer kwargs, default to empty dictionary
if 'args' in optim_config:
optimizer_args = optim_config.pop('args')
optimizer_args = optim.parse_optimizer_args(optimizer_name, optimizer_args)
else:
optimizer_args = copy.deepcopy(optim_config)
# Remove extra parameters from optimizer_args nest
# Assume all other parameters are to be passed into optimizer constructor
optimizer_args.pop('name', None)
optimizer_args.pop('cls', None)
optimizer_args.pop('lr', None)
# Adaptive schedulers don't need `lr`
if lr is not None:
optimizer_args['lr'] = lr
# Actually instantiate the optimizer
if optimizer_cls is not None:
if inspect.isclass(optimizer_cls):
optimizer = optimizer_cls(self.parameters(), **optimizer_args)
logging.info("Optimizer config = %s", str(optimizer))
self._optimizer = optimizer
else:
# Attempt class path resolution
try:
optimizer_cls = OmegaConf.create({'_target_': optimizer_cls})
if lr is not None:
optimizer_config = {'lr': lr}
else:
optimizer_config = {}
optimizer_config.update(optimizer_args)
optimizer_instance = hydra.utils.instantiate(
optimizer_cls, self.parameters(), **optimizer_config
) # type: DictConfig
logging.info("Optimizer config = %s", str(optimizer_instance))
self._optimizer = optimizer_instance
except Exception as e:
logging.error(
"Could not instantiate class path - {} with kwargs {}".format(
optimizer_cls, str(optimizer_config)
)
)
raise e
else:
optimizer = optim.get_optimizer(optimizer_name)
optimizer = optimizer(self.parameters(), **optimizer_args)
logging.info("Optimizer config = %s", str(optimizer))
self._optimizer = optimizer
# Try to instantiate scheduler for optimizer
self._scheduler = prepare_lr_scheduler(
optimizer=self._optimizer, scheduler_config=scheduler_config, train_dataloader=self._train_dl
)
# Return the optimizer with/without scheduler
# This return allows multiple optimizers or schedulers to be created
return self._optimizer, self._scheduler
def configure_optimizers(self):
self.setup_optimization()
if self._scheduler is None:
return self._optimizer
else:
return [self._optimizer], [self._scheduler]
def train_dataloader(self):
if self._train_dl is not None:
return self._train_dl
def val_dataloader(self):
if self._validation_dl is not None:
return self._validation_dl
def test_dataloader(self):
if self._test_dl is not None:
return self._test_dl
def validation_epoch_end(
self, outputs: Union[List[Dict[str, torch.Tensor]], List[List[Dict[str, torch.Tensor]]]]
) -> Optional[Dict[str, Dict[str, torch.Tensor]]]:
"""
Default DataLoader for Validation set which automatically supports multiple data loaders
via `multi_validation_epoch_end`.
If multi dataset support is not required, override this method entirely in base class.
In such a case, there is no need to implement `multi_validation_epoch_end` either.
.. note::
If more than one data loader exists, and they all provide `val_loss`,
only the `val_loss` of the first data loader will be used by default.
This default can be changed by passing the special key `val_dl_idx: int`
inside the `validation_ds` config.
Args:
outputs: Single or nested list of tensor outputs from one or more data loaders.
Returns:
A dictionary containing the union of all items from individual data_loaders,
along with merged logs from all data loaders.
"""
# Case where we dont provide data loaders
if outputs is not None and len(outputs) == 0:
return {}
# Case where we provide exactly 1 data loader
if type(outputs[0]) == dict:
output_dict = self.multi_validation_epoch_end(outputs, dataloader_idx=0)
if output_dict is not None and 'log' in output_dict:
self.log_dict(output_dict.pop('log'), on_epoch=True)
return output_dict
else: # Case where we provide more than 1 data loader
output_dict = {'log': {}}
# The output is a list of list of dicts, outer list corresponds to dataloader idx
for dataloader_idx, val_outputs in enumerate(outputs):
# Get prefix and dispatch call to multi epoch end
dataloader_prefix = self.get_validation_dataloader_prefix(dataloader_idx)
dataloader_logs = self.multi_validation_epoch_end(val_outputs, dataloader_idx=dataloader_idx)
# If result was not provided, generate empty dict
dataloader_logs = dataloader_logs or {}
# Perform `val_loss` resolution first (if provided outside logs)
if 'val_loss' in dataloader_logs:
if 'val_loss' not in output_dict and dataloader_idx == self._val_dl_idx:
output_dict['val_loss'] = dataloader_logs['val_loss']
# For every item in the result dictionary
for k, v in dataloader_logs.items():
# If the key is `log`
if k == 'log':
# Parse every element of the log, and attach the prefix name of the data loader
log_dict = {}
for k_log, v_log in v.items():
# If we are logging the metric, but dont provide it at result level,
# store it twice - once in log and once in result level.
# Also mark log with prefix name to avoid log level clash with other data loaders
if k_log not in output_dict['log'] and dataloader_idx == self._val_dl_idx:
new_k_log = k_log
# Also insert duplicate key with prefix for ease of comparison / avoid name clash
log_dict[dataloader_prefix + k_log] = v_log
else:
# Simply prepend prefix to key and save
new_k_log = dataloader_prefix + k_log
# Store log value
log_dict[new_k_log] = v_log
# Update log storage of individual data loader
output_logs = output_dict['log']
output_logs.update(log_dict)
# Update global log storage
output_dict['log'] = output_logs
else:
# If any values are stored outside 'log', simply prefix name and store
new_k = dataloader_prefix + k
output_dict[new_k] = v
if 'log' in output_dict:
self.log_dict(output_dict.pop('log'), on_epoch=True)
# return everything else
return output_dict
def test_epoch_end(
self, outputs: Union[List[Dict[str, torch.Tensor]], List[List[Dict[str, torch.Tensor]]]]
) -> Optional[Dict[str, Dict[str, torch.Tensor]]]:
"""
Default DataLoader for Test set which automatically supports multiple data loaders
via `multi_test_epoch_end`.
If multi dataset support is not required, override this method entirely in base class.
In such a case, there is no need to implement `multi_test_epoch_end` either.
.. note::
If more than one data loader exists, and they all provide `test_loss`,
only the `test_loss` of the first data loader will be used by default.
This default can be changed by passing the special key `test_dl_idx: int`
inside the `test_ds` config.
Args:
outputs: Single or nested list of tensor outputs from one or more data loaders.
Returns:
A dictionary containing the union of all items from individual data_loaders,
along with merged logs from all data loaders.
"""
# Case where we dont provide data loaders
if outputs is not None and len(outputs) == 0:
return {}
# Case where we provide exactly 1 data loader
if type(outputs[0]) == dict:
output_dict = self.multi_test_epoch_end(outputs, dataloader_idx=0)
if output_dict is not None and 'log' in output_dict:
self.log_dict(output_dict.pop('log'), on_epoch=True)
return output_dict
else: # Case where we provide more than 1 data loader
output_dict = {'log': {}}
# The output is a list of list of dicts, outer list corresponds to dataloader idx
for dataloader_idx, test_outputs in enumerate(outputs):
# Get prefix and dispatch call to multi epoch end
dataloader_prefix = self.get_test_dataloader_prefix(dataloader_idx)
dataloader_logs = self.multi_test_epoch_end(test_outputs, dataloader_idx=dataloader_idx)
# If result was not provided, generate empty dict
dataloader_logs = dataloader_logs or {}
# Perform `test_loss` resolution first (if provided outside logs)
if 'test_loss' in dataloader_logs:
if 'test_loss' not in output_dict and dataloader_idx == self._test_dl_idx:
output_dict['test_loss'] = dataloader_logs['test_loss']
# For every item in the result dictionary
for k, v in dataloader_logs.items():
# If the key is `log`
if k == 'log':
# Parse every element of the log, and attach the prefix name of the data loader
log_dict = {}
for k_log, v_log in v.items():
# If we are logging the loss, but dont provide it at result level,
# store it twice - once in log and once in result level.
# Also mark log with prefix name to avoid log level clash with other data loaders
if k_log not in output_dict['log'] and dataloader_idx == self._test_dl_idx:
new_k_log = k_log
# Also insert duplicate key with prefix for ease of comparison / avoid name clash
log_dict[dataloader_prefix + k_log] = v_log
else:
# Simply prepend prefix to key and save
new_k_log = dataloader_prefix + k_log
log_dict[new_k_log] = v_log
# Update log storage of individual data loader
output_logs = output_dict.get('log', {})
output_logs.update(log_dict)
# Update global log storage
output_dict['log'] = output_logs
else:
# If any values are stored outside 'log', simply prefix name and store
new_k = dataloader_prefix + k
output_dict[new_k] = v
if 'log' in output_dict:
self.log_dict(output_dict.pop('log'), on_epoch=True)
# return everything else
return output_dict
def multi_validation_epoch_end(
self, outputs: List[Dict[str, torch.Tensor]], dataloader_idx: int = 0
) -> Optional[Dict[str, Dict[str, torch.Tensor]]]:
"""
Adds support for multiple validation datasets. Should be overriden by subclass,
so as to obtain appropriate logs for each of the dataloaders.
Args:
outputs: Same as that provided by LightningModule.validation_epoch_end()
for a single dataloader.
dataloader_idx: int representing the index of the dataloader.
Returns:
A dictionary of values, optionally containing a sub-dict `log`,
such that the values in the log will be pre-pended by the dataloader prefix.
"""
logging.warning(
"Multi data loader support has been enabled, but "
"`multi_validation_epoch_end(outputs, dataloader_idx) has not been implemented.\n"
"If you require multi data loader support for validation sets, please override this method.\n"
"If you do not require multi data loader support, please instead override "
"`validation_epoch_end(outputs)."
)
def multi_test_epoch_end(
self, outputs: List[Dict[str, torch.Tensor]], dataloader_idx: int = 0
) -> Optional[Dict[str, Dict[str, torch.Tensor]]]:
"""
Adds support for multiple test datasets. Should be overriden by subclass,
so as to obtain appropriate logs for each of the dataloaders.
Args:
outputs: Same as that provided by LightningModule.validation_epoch_end()
for a single dataloader.
dataloader_idx: int representing the index of the dataloader.
Returns:
A dictionary of values, optionally containing a sub-dict `log`,
such that the values in the log will be pre-pended by the dataloader prefix.
"""
logging.warning(
"Multi data loader support has been enabled, but "
"`multi_test_epoch_end(outputs, dataloader_idx) has not been implemented.\n"
"If you require multi data loader support for validation sets, please override this method.\n"
"If you do not require multi data loader support, please instead override "
"`test_epoch_end(outputs)."
)
def get_validation_dataloader_prefix(self, dataloader_idx: int = 0) -> str:
"""
Get the name of one or more data loaders, which will be prepended to all logs.
Args:
dataloader_idx: Index of the data loader.
Returns:
str name of the data loader at index provided.
"""
return self._validation_names[dataloader_idx]
def get_test_dataloader_prefix(self, dataloader_idx: int = 0) -> str:
"""
Get the name of one or more data loaders, which will be prepended to all logs.
Args:
dataloader_idx: Index of the data loader.
Returns:
str name of the data loader at index provided.
"""
return self._test_names[dataloader_idx]
@rank_zero_only
def maybe_init_from_pretrained_checkpoint(self, cfg: OmegaConf, map_location: str = 'cpu'):
"""
Initializes a given model with the parameters obtained via specific config arguments.
The state dict of the provided model will be updated with `strict=False` setting so as to prevent
requirement of exact model parameters matching.
Initializations:
init_from_nemo_model: Str path to a .nemo model, which will be instantiated in order
to extract the state dict.
init_from_pretrained_model: Str name of a pretrained model checkpoint (obtained via cloud).
The model will be downloaded (or a cached copy will be used), instantiated and then
its state dict will be extracted.
init_from_ptl_ckpt: Str name of a Pytorch Lightning checkpoint file. It will be loaded and
the state dict will extracted.
Args:
cfg: The config used to instantiate the model. It need only contain one of the above keys.
map_location: str or torch.device() which represents where the intermediate state dict
(from the pretrained model or checkpoint) will be loaded.
"""
args = ['init_from_nemo_model', 'init_from_pretrained_model', 'init_from_ptl_ckpt']
arg_matches = [(1 if arg in cfg and arg is not None else 0) for arg in args]
if sum(arg_matches) == 0:
# model weights do not need to be restored
return
if sum(arg_matches) > 1:
raise ValueError(
f"Cannot pass more than one model initialization arguments to config!\n"
f"Found : {[args[idx] for idx, arg_present in enumerate(arg_matches) if arg_present]}"
)
if 'init_from_nemo_model' in cfg and cfg.init_from_nemo_model is not None:
with open_dict(cfg):
# Restore model
model_path = cfg.pop('init_from_nemo_model')
restored_model = self.restore_from(model_path, map_location=map_location, strict=True)
# Restore checkpoint into current model
self.load_state_dict(restored_model.state_dict(), strict=False)
logging.info(f'Model checkpoint restored from nemo file with path : `{model_path}`')
del restored_model
if 'init_from_pretrained_model' in cfg and cfg.init_from_pretrained_model is not None:
with open_dict(cfg):
# Restore model
model_name = cfg.pop('init_from_pretrained_model')
# Check if model is being resumed or not - only works if `Trainer` is attached to model
if hasattr(self, 'trainer') and self.trainer is not None:
trainer = self.trainer
if (
hasattr(trainer, 'resume_from_checkpoint')
and trainer.checkpoint_connector.resume_checkpoint_path is not None
):
logging.info(
"Model training is being resumed via Pytorch Lightning.\n"
"Initialization from pretrained model (via cloud) will be skipped."
)
return
restored_model = self.from_pretrained(model_name, map_location=map_location, strict=True)
# Restore checkpoint into current model
self.load_state_dict(restored_model.state_dict(), strict=False)
logging.info(f'Model checkpoint restored from pretrained chackpoint with name : `{model_name}`')
del restored_model
if 'init_from_ptl_ckpt' in cfg and cfg.init_from_ptl_ckpt is not None:
with open_dict(cfg):
# Restore checkpoint
ckpt_path = cfg.pop('init_from_ptl_ckpt')
ckpt = torch.load(ckpt_path, map_location=map_location)
# Restore checkpoint into current model
self.load_state_dict(ckpt['state_dict'], strict=False)
logging.info(f'Model checkpoint restored from pytorch lightning chackpoint with path : `{ckpt_path}`')
del ckpt
def teardown(self, stage: str):
"""
Called at the end of fit and test.
Args:
stage: either 'fit' or 'test'
"""
if stage == 'fit':
# Update env variable to bypass multi gpu issue after training
# This fix affects usage of trainer.test() after trainer.train()
# If trainer.train() was done on multiple GPUs, then trainer.test()
# will try to do ddp, even if its a new Trainer object with just 1 GPU.
# Temporary patch to fix that
if 'PL_TRAINER_GPUS' in os.environ:
os.environ.pop('PL_TRAINER_GPUS')
super().teardown(stage)
@classmethod
def extract_state_dict_from(
cls,
restore_path: str,
save_dir: str,
split_by_module: bool = False,
save_restore_connector: SaveRestoreConnector = None,
):
"""
Extract the state dict(s) from a provided .nemo tarfile and save it to a directory.
Args:
restore_path: path to .nemo file from which state dict(s) should be extracted
save_dir: directory in which the saved state dict(s) should be stored
split_by_module: bool flag, which determins whether the output checkpoint should
be for the entire Model, or the individual module's that comprise the Model
save_restore_connector (SaveRestoreConnector): Can be overrided to add custom save and restore logic.
Example:
To convert the .nemo tarfile into a single Model level PyTorch checkpoint
::
state_dict = nemo.collections.asr.models.EncDecCTCModel.extract_state_dict_from('asr.nemo', './asr_ckpts')
To restore a model from a Model level checkpoint
::
model = nemo.collections.asr.models.EncDecCTCModel(cfg) # or any other method of restoration
model.load_state_dict(torch.load("./asr_ckpts/model_weights.ckpt"))
To convert the .nemo tarfile into multiple Module level PyTorch checkpoints
::
state_dict = nemo.collections.asr.models.EncDecCTCModel.extract_state_dict_from('asr.nemo', './asr_ckpts', split_by_module=True)
To restore a module from a Module level checkpoint
::
model = nemo.collections.asr.models.EncDecCTCModel(cfg) # or any other method of restoration
# load the individual components
model.preprocessor.load_state_dict(torch.load("./asr_ckpts/preprocessor.ckpt"))
model.encoder.load_state_dict(torch.load("./asr_ckpts/encoder.ckpt"))
model.decoder.load_state_dict(torch.load("./asr_ckpts/decoder.ckpt"))
Returns:
The state dict that was loaded from the original .nemo checkpoint
"""
if save_restore_connector is None:
save_restore_connector = SaveRestoreConnector()
if not path.exists(restore_path):
raise FileExistsError(f"Can't find {restore_path}")
cls.update_save_restore_connector(save_restore_connector)
state_dict = cls._save_restore_connector.extract_state_dict_from(restore_path, save_dir, split_by_module)
return state_dict
def prepare_test(self, trainer: 'Trainer') -> bool:
"""
Helper method to check whether the model can safely be tested
on a dataset after training (or loading a checkpoint).
::
trainer = Trainer()
if model.prepare_test(trainer):
trainer.test(model)
Returns:
bool which declares the model safe to test. Provides warnings if it has to
return False to guide the user.
"""
if not hasattr(self._cfg, 'test_ds'):
logging.info("No `test_ds` config found within the manifest.")
return False
# Replace ddp multi-gpu until PTL has a fix
DDP_WARN = """\n\nDuring testing, it is currently advisable to construct a new Trainer "
"with single GPU and no DDP to obtain accurate results.
"Following pattern should be used: "
"gpu = 1 if cfg.trainer.gpus != 0 else 0"
"trainer = Trainer(gpus=gpu)"
"if model.prepare_test(trainer):"
" trainer.test(model)\n\n"""
if trainer is not None:
if trainer.num_gpus > 1:
logging.warning(DDP_WARN)
return False
# Assign trainer to the model
self.set_trainer(trainer)
return True
def set_trainer(self, trainer: Trainer):
"""
Set an instance of Trainer object.
Args:
trainer: PyTorch Lightning Trainer object.
"""
self.trainer = trainer
self._trainer = trainer
self.set_world_size(self._trainer)
def set_world_size(self, trainer: Trainer):
"""
Determines the world size from the PyTorch Lightning Trainer.
And then updates AppState.
Args:
trainer (Trainer): PyTorch Lightning Trainer object
"""
# Update AppState with world information from trainer
if isinstance(trainer, Trainer):
app_state = AppState()
if self._trainer.num_gpus and self._trainer.num_nodes:
app_state.world_size = self._trainer.num_gpus * self._trainer.num_nodes
else:
logging.warning(f'World size can only be set by PyTorch Lightning Trainer.')
def _update_dataset_config(self, dataset_name: str, config: Optional[Union[DictConfig, Dict]]):
"""
Update the config (if not None) of the dataset by given name.
Preserves said config after updating.
Args:
dataset_name: str name of the dataset whose config is being updated.
Can be one of `train`, `validation` and `test`.
config: Optional DictConfig or dict. If None is passed, this method simply returns.
If dict is passed, it is cast into a DictConfig.
The internal config is updated with the passed config.
"""
if hasattr(self, '_multi_dataset_mode') and self._multi_dataset_mode is True:
return
if config is not None:
if not isinstance(config, DictConfig):
config = OmegaConf.create(config)
if dataset_name in ['train', 'validation', 'test']:
OmegaConf.set_struct(self.cfg, False)
key_name = dataset_name + "_ds"
self.cfg[key_name] = config
OmegaConf.set_struct(self.cfg, True)
# Update hyper parameters by calling property setter
self.cfg = self._cfg
else:
raise ValueError("`dataset_name` when updating config must be one of [train, validation, test]")
@property
def num_weights(self):
"""
Utility property that returns the total number of parameters of the Model.
"""
num: int = 0
for p in self.parameters():
if p.requires_grad:
num += p.numel()
return num
@property
def cfg(self):
"""
Property that holds the finalized internal config of the model.
Note:
Changes to this config are not reflected in the state of the model.
Please create a new model using an updated config to properly update the model.
"""
return self._cfg
@cfg.setter
def cfg(self, cfg):
"""
Property that holds the finalized internal config of the model.
Note:
Changes to this config are not reflected in the state of the model.
Please create a new model using an updated config to properly update the model.
"""
self._cfg = cfg
self._set_hparams(self._cfg)
self._hparams_initial = copy.deepcopy(self._hparams)
@staticmethod
def _is_model_being_restored() -> bool:
app_state = AppState()
return app_state.is_model_being_restored
@staticmethod
def _set_model_restore_state(is_being_restored: bool, folder: str = None):
app_state = AppState()
app_state.is_model_being_restored = is_being_restored
app_state.nemo_file_folder = folder
def _set_model_guid(self):
if not hasattr(self, 'model_guid'):
appstate = AppState()
# Generate a unique uuid for the instance
# also determine if the model is being restored or not, and preserve the path
self.model_guid = str(uuid.uuid4())
if self._is_model_being_restored():
restore_path = appstate.model_restore_path
else:
restore_path = None
appstate.register_model_guid(self.model_guid, restoration_path=restore_path)
@classmethod
def update_save_restore_connector(cls, save_restore_connector):
if hasattr(cls, '_save_restore_connector'):
cls._save_restore_connector = save_restore_connector
else:
setattr(cls, '_save_restore_connector', save_restore_connector)