

TypeScript

Language Specification

Version 1.0

April, 2014

Microsoft is making this Specification available under the Open Web Foundation Final Specification

Agreement Version 1.0 (“OWF 1.0”) as of October 1, 2012. The OWF 1.0 is available at

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0.

TypeScript is a trademark of Microsoft Corporation.

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0

i

Table of Contents

1 Introduction ... 1

1.1 Ambient Declarations ... 3

1.2 Function Types .. 3

1.3 Object Types .. 4

1.4 Structural Subtyping ... 6

1.5 Contextual Typing .. 7

1.6 Classes .. 8

1.7 Enum Types ... 10

1.8 Overloading on String Parameters... 11

1.9 Generic Types and Functions ... 12

1.10 Modules .. 13

2 Basic Concepts .. 17

2.1 Grammar Conventions .. 17

2.2 Namespaces and Named Types .. 17

2.3 Declarations ... 18

2.4 Scopes ... 20

3 Types ... 23

3.1 The Any Type .. 24

3.2 Primitive Types ... 24

3.2.1 The Number Type .. 24

3.2.2 The Boolean Type .. 25

3.2.3 The String Type ... 25

3.2.4 The Void Type.. 25

3.2.5 The Null Type ... 26

3.2.6 The Undefined Type .. 26

3.2.7 Enum Types .. 26

3.2.8 String Literal Types .. 26

3.3 Object Types ... 27

3.3.1 Named Type References ... 27

3.3.2 Array Types ... 27

3.3.3 Anonymous Types ... 27

3.3.4 Members ... 27

3.4 Type Parameters .. 28

3.4.1 Type Parameter Lists ... 28

3.4.2 Type Argument Lists ... 29

3.5 Named Types .. 30

3.5.1 Instance Types ... 31

3.6 Specifying Types .. 31

3.6.1 Predefined Types .. 31

ii

3.6.2 Type References ... 32

3.6.3 Type Queries .. 33

3.6.4 Type Literals ... 33

3.7 Object Type Literals .. 35

3.7.1 Property Signatures... 35

3.7.2 Call Signatures... 36

3.7.3 Construct Signatures .. 39

3.7.4 Index Signatures ... 39

3.7.5 Method Signatures .. 40

3.8 Type Relationships .. 41

3.8.1 Apparent Type ... 41

3.8.2 Type and Member Identity ... 42

3.8.3 Subtypes and Supertypes ... 43

3.8.4 Assignment Compatibility .. 44

3.8.5 Contextual Signature Instantiation ... 46

3.8.6 Type Inference ... 46

3.8.7 Recursive Types .. 46

3.9 Widened Types .. 48

3.10 Best Common Type .. 49

4 Expressions ... 51

4.1 Values and References .. 51

4.2 The this Keyword ... 51

4.3 Identifiers.. 52

4.4 Literals ... 52

4.5 Object Literals ... 52

4.6 Array Literals ... 54

4.7 Parentheses ... 54

4.8 The super Keyword ... 54

4.8.1 Super Calls .. 54

4.8.2 Super Property Access ... 54

4.9 Function Expressions ... 55

4.9.1 Standard Function Expressions ... 56

4.9.2 Arrow Function Expressions ... 56

4.9.3 Contextually Typed Function Expressions .. 57

4.10 Property Access ... 58

4.11 The new Operator ... 59

4.12 Function Calls ... 59

4.12.1 Overload Resolution ... 60

4.12.2 Type Argument Inference ... 61

4.12.3 Grammar Ambiguities .. 63

4.13 Type Assertions .. 63

4.14 Unary Operators .. 64

iii

4.14.1 The ++ and -- operators ... 64

4.14.2 The +, –, and ~ operators ... 65

4.14.3 The ! operator .. 65

4.14.4 The delete Operator .. 65

4.14.5 The void Operator ... 65

4.14.6 The typeof Operator ... 65

4.15 Binary Operators ... 66

4.15.1 The *, /, %, –, <<, >>, >>>, &, ^, and | operators .. 66

4.15.2 The + operator .. 66

4.15.3 The <, >, <=, >=, ==, !=, ===, and !== operators ... 67

4.15.4 The instanceof operator .. 67

4.15.5 The in operator ... 67

4.15.6 The && operator .. 67

4.15.7 The || operator ... 68

4.16 The Conditional Operator .. 68

4.17 Assignment Operators .. 69

4.18 The Comma Operator ... 69

4.19 Contextually Typed Expressions .. 69

5 Statements .. 73

5.1 Variable Statements ... 73

5.2 If, Do, and While Statements .. 74

5.3 For Statements ... 74

5.4 For-In Statements ... 74

5.5 Continue Statements ... 74

5.6 Break Statements .. 75

5.7 Return Statements .. 75

5.8 With Statements .. 75

5.9 Switch Statements .. 75

5.10 Throw Statements ... 76

5.11 Try Statements ... 76

6 Functions ... 77

6.1 Function Declarations .. 77

6.2 Function Overloads .. 77

6.3 Function Implementations .. 78

6.4 Generic Functions ... 80

6.5 Code Generation ... 80

7 Interfaces ... 83

7.1 Interface Declarations ... 83

7.2 Declaration Merging .. 85

7.3 Interfaces Extending Classes ... 86

7.4 Dynamic Type Checks ... 87

iv

8 Classes .. 89

8.1 Class Declarations ... 89

8.1.1 Class Heritage Specification .. 90

8.1.2 Class Body ... 91

8.2 Members... 92

8.2.1 Instance and Static Members .. 92

8.2.2 Accessibility .. 92

8.2.3 Inheritance and Overriding .. 92

8.2.4 Class Types ... 93

8.2.5 Constructor Function Types ... 94

8.3 Constructor Declarations ... 95

8.3.1 Constructor Parameters ... 96

8.3.2 Super Calls .. 97

8.3.3 Automatic Constructors .. 97

8.4 Property Member Declarations ... 98

8.4.1 Member Variable Declarations ... 99

8.4.2 Member Function Declarations .. 100

8.4.3 Member Accessor Declarations .. 102

8.5 Index Member Declarations .. 102

8.6 Code Generation ... 103

8.6.1 Classes Without Extends Clauses ... 103

8.6.2 Classes With Extends Clauses .. 105

9 Enums ... 109

9.1 Enum Declarations .. 109

9.2 Enum Members .. 109

9.3 Declaration Merging .. 111

9.4 Code Generation ... 111

10 Internal Modules .. 113

10.1 Module Declarations.. 113

10.2 Module Body .. 114

10.3 Import Declarations ... 115

10.4 Export Declarations .. 116

10.5 Declaration Merging .. 117

10.6 Code Generation ... 119

11 Source Files and External Modules ... 121

11.1 Source Files .. 121

11.1.1 Source Files Dependencies... 122

11.2 External Modules ... 123

11.2.1 External Module Names .. 124

11.2.2 External Import Declarations ... 125

11.2.3 Export Declarations ... 125

v

11.2.4 Export Assignments .. 125

11.2.5 CommonJS Modules ... 126

11.2.6 AMD Modules ... 127

12 Ambients.. 129

12.1 Ambient Declarations .. 129

12.1.1 Ambient Variable Declarations ... 129

12.1.2 Ambient Function Declarations .. 129

12.1.3 Ambient Class Declarations ... 130

12.1.4 Ambient Enum Declarations .. 130

12.1.5 Ambient Module Declarations .. 131

12.1.6 Ambient External Module Declarations .. 131

A Grammar .. 133

A.1 Types .. 133

A.2 Expressions .. 136

A.3 Statements ... 137

A.4 Functions .. 137

A.5 Interfaces .. 137

A.6 Classes ... 138

A.7 Enums .. 139

A.8 Internal Modules ... 140

A.9 Programs and External Modules ... 141

A.10 Ambients .. 142

1

1 Introduction

JavaScript applications such as web e-mail, maps, document editing, and collaboration tools are

becoming an increasingly important part of the everyday computing. We designed TypeScript to meet the

needs of the JavaScript programming teams that build and maintain large JavaScript programs. TypeScript

helps programming teams to define interfaces between software components and to gain insight into the

behavior of existing JavaScript libraries. TypeScript also enables teams to reduce naming conflicts by

organizing their code into dynamically-loadable modules. TypeScript’s optional type system enables

JavaScript programmers to use highly-productive development tools and practices: static checking,

symbol-based navigation, statement completion, and code re-factoring.

TypeScript is a syntactic sugar for JavaScript. TypeScript syntax is a superset of Ecmascript 5 (ES5) syntax.

Every JavaScript program is also a TypeScript program. The TypeScript compiler performs only file-local

transformations on TypeScript programs and does not re-order variables declared in TypeScript. This

leads to JavaScript output that closely matches the TypeScript input. TypeScript does not transform

variable names, making tractable the direct debugging of emitted JavaScript. TypeScript optionally

provides source maps, enabling source-level debugging. TypeScript tools typically emit JavaScript upon

file save, preserving the test, edit, refresh cycle commonly used in JavaScript development.

TypeScript syntax includes several proposed features of Ecmascript 6 (ES6), including classes and modules.

Classes enable programmers to express common object-oriented patterns in a standard way, making

features like inheritance more readable and interoperable. Modules enable programmers to organize their

code into components while avoiding naming conflicts. The TypeScript compiler provides module code

generation options that support either static or dynamic loading of module contents.

TypeScript also provides to JavaScript programmers a system of optional type annotations. These type

annotations are like the JSDoc comments found in the Closure system, but in TypeScript they are

integrated directly into the language syntax. This integration makes the code more readable and reduces

the maintenance cost of synchronizing type annotations with their corresponding variables.

The TypeScript type system enables programmers to express limits on the capabilities of JavaScript

objects, and to use tools that enforce these limits. To minimize the number of annotations needed for

tools to become useful, the TypeScript type system makes extensive use of type inference. For example,

from the following statement, TypeScript will infer that the variable ‘i’ has the type number.

var i = 0;

TypeScript will infer from the following function definition that the function f has return type string.

function f() {

 return "hello";

}

2

To benefit from this inference, a programmer can use the TypeScript language service. For example, a

code editor can incorporate the TypeScript language service and use the service to find the members of a

string object as in the following screen shot.

In this example, the programmer benefits from type inference without providing type annotations. Some

beneficial tools, however, do require the programmer to provide type annotations. In TypeScript, we can

express a parameter requirement as in the following code fragment.

function f(s: string) {

 return s;

}

f({}); // Error

f("hello"); // Ok

This optional type annotation on the parameter ‘s’ lets the TypeScript type checker know that the

programmer expects parameter ‘s’ to be of type ‘string’. Within the body of function ‘f’, tools can assume

‘s’ is of type ‘string’ and provide operator type checking and member completion consistent with this

assumption. Tools can also signal an error on the first call to ‘f’, because ‘f’ expects a string, not an object,

as its parameter. For the function ‘f’, the TypeScript compiler will emit the following JavaScript code:

function f(s) {

 return s;

}

In the JavaScript output, all type annotations have been erased. In general, TypeScript erases all type

information before emiting JavaScript.

3

1.1 Ambient Declarations

An ambient declaration introduces a variable into a TypeScript scope, but has zero impact on the emitted

JavaScript program. Programmers can use ambient declarations to tell the TypeScript compiler that some

other component will supply a variable. For example, by default the TypeScript compiler will print an error

for uses of undefined variables. To add some of the common variables defined by browsers, a TypeScript

programmer can use ambient declarations. The following example declares the ‘document’ object

supplied by browsers. Because the declaration does not specify a type, the type ‘any’ is inferred. The type

‘any’ means that a tool can assume nothing about the shape or behavior of the document object. Some of

the examples below will illustrate how programmers can use types to further characterize the expected

behavior of an object.

declare var document;

document.title = "Hello"; // Ok because document has been declared

In the case of ‘document’, the TypeScript compiler automatically supplies a declaration, because

TypeScript by default includes a file ‘lib.d.ts’ that provides interface declarations for the built-in JavaScript

library as well as the Document Object Model.

The TypeScript compiler does not include by default an interface for jQuery, so to use jQuery, a

programmer could supply a declaration such as:

declare var $;

Section 1.3 provides a more extensive example of how a programmer can add type information for jQuery

and other libraries.

1.2 Function Types

Function expressions are a powerful feature of JavaScript. They enable function definitions to create

closures: functions that capture information from the lexical scope surrounding the function’s definition.

Closures are currently JavaScript’s only way of enforcing data encapsulation. By capturing and using

environment variables, a closure can retain information that cannot be accessed from outside the closure.

JavaScript programmers often use closures to express event handlers and other asynchronous callbacks,

in which another software component, such as the DOM, will call back into JavaScript through a handler

function.

TypeScript function types make it possible for programmers to express the expected signature of a

function. A function signature is a sequence of parameter types plus a return type. The following example

uses function types to express the callback signature requirements of an asynchronous voting mechanism.

function vote(candidate: string, callback: (result: string) => any) {

 // ...

}

4

vote("BigPig",

 function(result: string) {

 if (result === "BigPig") {

 // ...

 }

 }

);

In this example, the second parameter to ‘vote’ has the function type

(result: string) => any

which means the second parameter is a function returning type ‘any’ that has a single parameter of type

‘string’ named ‘result’.

Section 3.7.2 provides additional information about function types.

1.3 Object Types

TypeScript programmers use object types to declare their expectations of object behavior. The following

code uses an object type literal to specify the return type of the ‘MakePoint’ function.

var MakePoint: () => {

 x: number; y: number;

};

Programmers can give names to object types; we call named object types interfaces. For example, in the

following code, an interface declares one required field (name) and one optional field (favoriteColor).

interface Friend {

 name: string;

 favoriteColor?: string;

}

function add(friend: Friend) {

 var name = friend.name;

}

add({ name: "Fred" }); // Ok

add({ favoriteColor: "blue" }); // Error, name required

add({ name: "Jill", favoriteColor: "green" }); // Ok

TypeScript object types model the diversity of behaviors that a JavaScript object can exhibit. For example,

the jQuery library defines an object, ‘$’, that has methods, such as ‘get’ (which sends an Ajax message),

and fields, such as ‘browser’ (which gives browser vendor information). However, jQuery clients can also

call ‘$’ as a function. The behavior of this function depends on the type of parameters passed to the

function.

5

The following code fragment captures a small subset of jQuery behavior, just enough to use jQuery in a

simple way.

interface JQuery {

 text(content: string);

}

interface JQueryStatic {

 get(url: string, callback: (data: string) => any);

 (query: string): JQuery;

}

declare var $: JQueryStatic;

$.get("http://mysite.org/divContent",

 function (data: string) {

 $("div").text(data);

 }

);

The ‘JQueryStatic’ interface references another interface: ‘JQuery’. This interface represents a collection of

one or more DOM elements. The jQuery library can perform many operations on such a collection, but in

this example the jQuery client only needs to know that it can set the text content of each jQuery element

in a collection by passing a string to the ‘text’ method. The ‘JQueryStatic’ interface also contains a method,

‘get’, that performs an Ajax get operation on the provided URL and arranges to invoke the provided

callback upon receipt of a response.

Finally, the ‘JQueryStatic’ interface contains a bare function signature

(query: string): JQuery;

The bare signature indicates that instances of the interface are callable. This example illustrates that

TypeScript function types are just special cases of TypeScript object types. Specifically, function types are

object types that contain one or more call signatures. For this reason we can write any function type as an

object type literal. The following example uses both forms to describe the same type.

var f: { (): string; };

var sameType: () => string = f; // Ok

var nope: () => number = sameType; // Error: type mismatch

We mentioned above that the ‘$’ function behaves differently depending on the type of its parameter. So

far, our jQuery typing only captures one of these behaviors: return an object of type ‘JQuery’ when passed

a string. To specify multiple behaviors, TypeScript supports overloading of function signatures in object

types. For example, we can add an additional call signature to the ‘JQueryStatic’ interface.

(ready: () => any): any;

6

This signature denotes that a function may be passed as the parameter of the ‘$’ function. When a

function is passed to ‘$’, the jQuery library will invoke that function when a DOM document is ready.

Because TypeScript supports overloading, tools can use TypeScript to show all available function

signatures with their documentation tips and to give the correct documentation once a function has been

called with a particular signature.

A typical client would not need to add any additional typing but could just use a community-supplied

typing to discover (through statement completion with documentation tips) and verify (through static

checking) correct use of the library, as in the following screen shot.

Section 3.3 provides additional information about object types.

1.4 Structural Subtyping

Object types are compared structurally. For example, in the code fragment below, class ‘CPoint’ matches

interface ‘Point’ because ‘CPoint’ has all of the required members of ‘Point’. A class may optionally declare

that it implements an interface, so that the compiler will check the declaration for structural compatibility.

The example also illustrates that an object type can match the type inferred from an object literal, as long

as the object literal supplies all of the required members.

interface Point {

 x: number;

 y: number;

}

function getX(p: Point) {

 return p.x;

}

7

class CPoint {

 x: number;

 y: number;

 constructor(x: number, y: number) {

 this.x = x;

 this.y = y;

 }

}

getX(new CPoint(0, 0)); // Ok, fields match

getX({ x: 0, y: 0, color: "red" }); // Extra fields Ok

getX({ x: 0 }); // Error: supplied parameter does not match

See section 3.8 for more information about type comparisons.

1.5 Contextual Typing

Ordinarily, TypeScript type inference proceeds “bottom-up”: from the leaves of an expression tree to its

root. In the following example, TypeScript infers ‘number’ as the return type of the function ‘mul’ by

flowing type information bottom up in the return expression.

function mul(a: number, b: number) {

 return a * b;

}

For variables and parameters without a type annotation or a default value, TypeScript infers type ‘any’,

ensuring that compilers do not need non-local information about a function’s call sites to infer the

function’s return type. Generally, this bottom-up approach provides programmers with a clear intuition

about the flow of type information.

However, in some limited contexts, inference proceeds “top-down” from the context of an expression.

Where this happens, it is called contextual typing. Contextual typing helps tools provide excellent

information when a programmer is using a type but may not know all of the details of the type. For

example, in the jQuery example, above, the programmer supplies a function expression as the second

parameter to the ‘get’ method. During typing of that expression, tools can assume that the type of the

function expression is as given in the ‘get’ signature and can provide a template that includes parameter

names and types.

$.get("http://mysite.org/divContent",

 function (data) {

 $("div").text(data); // TypeScript infers data is a string

 }

);

8

Contextual typing is also useful for writing out object literals. As the programmer types the object literal,

the contextual type provides information that enables tools to provide completion for object member

names.

Section 4.19 provides additional information about contextually typed expressions.

1.6 Classes

JavaScript practice has at least two common design patterns: the module pattern and the class pattern.

Roughly speaking, the module pattern uses closures to hide names and to encapsulate private data, while

the class pattern uses prototype chains to implement many variations on object-oriented inheritance

mechanisms. Libraries such as ‘prototype.js’ are typical of this practice.

This section and the module section below will show how TypeScript emits consistent, idiomatic JavaScript

code to implement classes and modules that are closely aligned with the current ES6 proposal. The goal

of TypeScript’s translation is to emit exactly what a programmer would type when implementing a class or

module unaided by a tool. This section will also describe how TypeScript infers a type for each class

declaration. We’ll start with a simple BankAccount class.

class BankAccount {

 balance = 0;

 deposit(credit: number) {

 this.balance += credit;

 return this.balance;

 }

}

This class generates the following JavaScript code.

var BankAccount = (function () {

 function BankAccount() {

 this.balance = 0;

 }

 BankAccount.prototype.deposit = function(credit) {

 this.balance += credit;

 return this.balance;

 };

 return BankAccount;

})();

This TypeScript class declaration creates a variable named ‘BankAccount’ whose value is the constructor

function for ‘BankAccount’ instances. This declaration also creates an instance type of the same name. If

we were to write this type as an interface it would look like the following.

9

interface BankAccount {

 balance: number;

 deposit(credit: number): number;

}

If we were to write out the function type declaration for the ‘BankAccount’ constructor variable, it would

have the following form.

var BankAccount: new() => BankAccount;

The function signature is prefixed with the keyword ‘new’ indicating that the ‘BankAccount’ function must

be called as a constructor. It is possible for a function’s type to have both call and constructor signatures.

For example, the type of the built-in JavaScript Date object includes both kinds of signatures.

If we want to start our bank account with an initial balance, we can add to the ‘BankAccount’ class a

constructor declaration.

class BankAccount {

 balance: number;

 constructor(initially: number) {

 this.balance = initially;

 }

 deposit(credit: number) {

 this.balance += credit;

 return this.balance;

 }

}

This version of the ‘BankAccount’ class requires us to introduce a constructor parameter and then assign it

to the ‘balance’ field. To simplify this common case, TypeScript accepts the following shorthand syntax.

class BankAccount {

 constructor(public balance: number) {

 }

 deposit(credit: number) {

 this.balance += credit;

 return this.balance;

 }

}

The ‘public’ keyword denotes that the constructor parameter is to be retained as a field. Public is the

default visibility for class members, but a programmer can also specify private visibility for a class

member. Private visibility is a design-time construct; it is enforced during static type checking but does

not imply any runtime enforcement.

TypeScript classes also support inheritance, as in the following example.

10

class CheckingAccount extends BankAccount {

 constructor(balance: number) {

 super(balance);

 }

 writeCheck(debit: number) {

 this.balance -= debit;

 }

}

In this example, the class ‘CheckingAccount’ derives from class ‘BankAccount’. The constructor for

‘CheckingAccount’ calls the constructor for class ‘BankAccount’ using the ‘super’ keyword. In the emitted

JavaScript code, the prototype of ‘CheckingAccount’ will chain to the prototype of ‘BankingAccount’.

TypeScript classes may also specify static members. Static class members become properties of the class

constructor.

Section 8 provides additional information about classes.

1.7 Enum Types

TypeScript enables programmers to summarize a set of numeric constants as an enum type. The example

below creates an enum type to represent operators in a calculator application.

enum Operator {

 ADD,

 DIV,

 MUL,

 SUB

}

function compute(op: Operator, a: number, b: number) {

 console.log("the operator is" + Operator[op]);

 // ...

}

In this example, the compute function logs the operator ‘op’ using a feature of enum types: reverse

mapping from the enum value (‘op’) to the string corresponding to that value. For example, the

declaration of ‘Operator’ automatically assigns integers, starting from zero, to the listed enum members.

Section 9 describes how programmers can also explicitly assign integers to enum members, and can use

any string to name an enum member.

If all enum members have explicitly assigned literal integers, or if an enum has all members automatically

assigned, the TypeScript compiler will emit for an enum member a JavaScript constant corresponding to

that member’s assigned value (annotated with a comment). This improves performance on many

JavaScript engines.

For example, the ‘compute’ function could contain a switch statement like the following.

11

 switch (op) {

 case Operator.ADD:

 // execute add

 break;

 case Operator.DIV:

 // execute div

 break;

 // ...

 }

For this switch statement, the compiler will generate the following code.

 switch (op) {

 case 0 /* Operator.ADD */ :

 // execute add

 break;

 case 1 /* Operator.DIV */ :

 // execute div

 break;

 // ...

 }

JavaScript implementations can use these explicit constants to generate efficient code for this switch

statement, for example by building a jump table indexed by case value.

1.8 Overloading on String Parameters

An important goal of TypeScript is to provide accurate and straightforward types for existing JavaScript

programming patterns. To that end, TypeScript includes generic types, discussed in the next section, and

overloading on string parameters, the topic of this section.

JavaScript programming interfaces often include functions whose behavior is discriminated by a string

constant passed to the function. The Document Object Model makes heavy use of this pattern. For

example, the following screen shot shows that the ‘createElement’ method of the ‘document’ object has

multiple signatures, some of which identify the types returned when specific strings are passed into the

method.

The following code fragment uses this feature. Because the ‘span’ variable is inferred to have the type

‘HTMLSpanElement’, the code can reference without static error the ‘isMultiline’ property of ‘span’.

var span = document.createElement("span");
span.isMultiLine = false; // OK: HTMLSpanElement has an 'isMultiline' property

12

In the following screen shot, a programming tool combines information from overloading on string

parameters with contextual typing to infer that the type of the variable ‘e’ is ‘MouseEvent’ and that

therefore ‘e’ has a ‘clientX’ property.

Section 3.7.2.4 provides details on how to use string literals in function signatures.

1.9 Generic Types and Functions

Like overloading on string parameters, generic types make it easier for TypeScript to accurately capture

the behavior of JavaScript libraries. Because they enable type information to flow from client code,

through library code, and back into client code, generic types may do more than any other TypeScript

feature to support detailed API descriptions.

To illustrate this, let’s take a look at part of the TypeScript interface for the built-in JavaScript array type.

You can find this interface in the ‘lib.d.ts’ file that accompanies a TypeScript distribution.

interface Array<T> {

 reverse(): T[];

 sort(compareFn?: (a: T, b: T) => number): T[];

 // ...

}

Interface definitions, like the one above, can have one or more type parameters. In this case the ‘Array’

interface has a single parameter, ‘T’, that defines the element type for the array. The ‘reverse’ method

returns an array with the same element type. The sort method takes an optional parameter, ‘compareFn’,

whose type is a function that takes two parameters of type ‘T’ and returns a number. Finally, sort returns

an array with element type ‘T’.

Functions can also have generic parameters. For example, the array interface contains a ‘map’ method,

defined as follows:

map<U>(func: (value: T, index: number, array: T[]) => U, thisArg?: any): U[];

13

The map method, invoked on an array ‘a’ with element type ‘T’, will apply function ‘func’ to each element

of ‘a’, returning a value of type ‘U’.

The TypeScript compiler can often infer generic method parameters, making it unnecessary for the

programmer to explicitly provide them. In the following example, the compiler infers that parameter ‘U’ of

the map method has type ‘string’, because the function passed to map returns a string.

function numberToString(a: number[]) {

 var stringArray = a.map(v => v.toString());

 return stringArray;

}

The compiler infers in this example that the ‘numberToString’ function returns an array of strings.

In TypeScript, classes can also have type parameters. The following code declares a class that implements

a linked list of items of type ‘T’. This code illustrates how programmers can constrain type parameters to

extend a specific type. In this case, the items on the list must extend the type ‘NamedItem’. This enables

the programmer to implement the ‘log’ function, which logs the name of the item.

interface NamedItem {

 name: string;

}

class List<T extends NamedItem> {

 next: List<T> = null;

 constructor(public item: T) {

 }

 insertAfter(item: T) {

 var temp = this.next;

 this.next = new List(item);

 this.next.next = temp;

 }

 log() {

 console.log(this.item.name);

 }

 // ...

}

Section 3.5 provides further information about generic types.

1.10 Modules

Classes and interfaces support large-scale JavaScript development by providing a mechanism for

describing how to use a software component that can be separated from that component’s

implementation. TypeScript enforces encapsulation of implementation in classes at design time (by

14

restricting use of private members), but cannot enforce encapsulation at runtime because all object

properties are accessible at runtime. Future versions of JavaScript may provide private names which would

enable runtime enforcement of private members.

In the current version of JavaScript, the only way to enforce encapsulation at runtime is to use the module

pattern: encapsulate private fields and methods using closure variables. The module pattern is a natural

way to provide organizational structure and dynamic loading options by drawing a boundary around a

software component. A module can also provide the ability to introduce namespaces, avoiding use of the

global namespace for most software components.

The following example illustrates the JavaScript module pattern.

(function(exports) {

 var key = generateSecretKey();

 function sendMessage(message) {

 sendSecureMessage(message, key);

 }

 exports.sendMessage = sendMessage;

})(MessageModule);

This example illustrates the two essential elements of the module pattern: a module closure and a module

object. The module closure is a function that encapsulates the module’s implementation, in this case the

variable ‘key’ and the function ‘sendMessage’. The module object contains the exported variables and

functions of the module. Simple modules may create and return the module object. The module above

takes the module object as a parameter, ‘exports’, and adds the ‘sendMessage’ property to the module

object. This augmentation approach simplifies dynamic loading of modules and also supports separation

of module code into multiple files.

The example assumes that an outer lexical scope defines the functions ‘generateSecretKey’ and

‘sendSecureMessage’; it also assumes that the outer scope has assigned the module object to the variable

‘MessageModule’.

TypeScript modules provide a mechanism for succinctly expressing the module pattern. In TypeScript,

programmers can combine the module pattern with the class pattern by nesting modules and classes

within an outer module.

The following example shows the definition and use of a simple module.

module M {

 var s = "hello";

 export function f() {

 return s;

 }

}

M.f();

M.s; // Error, s is not exported

15

In this example, variable ‘s’ is a private feature of the module, but function ‘f’ is exported from the module

and accessible to code outside of the module. If we were to describe the effect of module ‘M’ in terms of

interfaces and variables, we would write

interface M {

 f(): string;

}

var M: M;

The interface ‘M’ summarizes the externally visible behavior of module ‘M’. In this example, we can use the

same name for the interface as for the initialized variable because in TypeScript type names and variable

names do not conflict: each lexical scope contains a variable declaration space and type declaration space

(see section 2.3 for more details).

Module ‘M’ is an example of an internal module, because it is nested within the global module (see

section 10 for more details). The TypeScript compiler emits the following JavaScript code for this module.

var M;

(function(M) {

 var s = "hello";

 function f() {

 return s;

 }

 M.f = f;

})(M||(M={}));

In this case, the compiler assumes that the module object resides in global variable ‘M’, which may or may

not have been initialized to the desired module object.

TypeScript also supports external modules, which are files that contain top-level export and import

directives. For this type of module the TypeScript compiler will emit code whose module closure and

module object implementation vary according to the specified dynamic loading system, for example, the

Asynchronous Module Definition system.

17

2 Basic Concepts

The remainder of this document is the formal specification of the TypeScript programming language and

is intended to be read as an adjunct to the ECMAScript Language Specification (specifically, the ECMA-

262 Standard, 5
th

 Edition). This document describes the syntactic grammar added by TypeScript along

with the compile-time processing and type checking performed by the TypeScript compiler, but it only

minimally discusses the run-time behavior of programs since that is covered by the ECMAScript

specification.

2.1 Grammar Conventions

The syntactic grammar added by TypeScript language is specified throughout this document using the

existing conventions and production names of the ECMAScript grammar. In places where TypeScript

augments an existing grammar production it is so noted. For example:

CallExpression: (Modified)

…

super (ArgumentListopt)

super . IdentifierName

The ‘(Modified)’ annotation indicates that an existing grammar production is being replaced, and the ‘…’

references the contents of the original grammar production.

Similar to the ECMAScript grammar, if the phrase “[no LineTerminator here]” appears in the right-hand side of

a production of the syntactic grammar, it indicates that the production is not a match if a LineTerminator

occurs in the input stream at the indicated position.

2.2 Namespaces and Named Types

TypeScript supports named types that can be organized in hierarchical namespaces. Namespaces are

introduced by module declarations and named types are introduced by class, interface, and enum

declarations. Named types are denoted by qualified names that extend from some root module (possibly

the global module) to the point of their declaration. The example

module X {

 export module Y {

 export interface Z { }

 }

 export interface Y { }

}

declares two interface types with the qualified names ‘X.Y.Z’ and ‘X.Y’ relative to the root module in which

‘X’ is declared.

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

18

In a qualified type name all identifiers but the last one refer to namespaces and the last identifier refers to

a named type. Named type and namespace names are in separate declaration spaces and it is therefore

possible for a named type and a namespace to have the same name, as in the example above.

The hierarchy formed by namespace and named type names partially mirrors that formed by module

instances and members. The example

module A {

 export module B {

 export class C { }

 }

}

introduces a named type with the qualified name ‘A.B.C’ and also introduces a constructor function that

can be accessed using the expression ‘A.B.C’. Thus, in the example

var c: A.B.C = new A.B.C();

the two occurrences of ‘A.B.C’ in fact refer to different entities. It is the context of the occurrences that

determines whether ‘A.B.C’ is processed as a type name or an expression.

2.3 Declarations

Declarations introduce names in the declaration spaces to which they belong. It is an error to have two

names with same spelling in the same declaration space. Declaration spaces exist as follows:

 The global module and each external or internal module has a declaration space for variables

(including functions, modules, class constructor functions, and enum objects), a declaration space

for named types (classes, interfaces, and enums), and a declaration space for namespaces

(containers of named types). Every declaration (whether local or exported) in a module

contributes to one or more of these declaration spaces.

 Each external or internal module has a declaration space for exported members, a declaration

space for exported named types, and a declaration space for exported namespaces. All export

declarations in the module contribute to these declaration spaces. Each internal module’s export

declaration spaces are shared with other internal modules that have the same root module and

the same qualified name starting from that root module.

 Each class declaration has a declaration space for instance members, a declaration space for static

members, and a declaration space for type parameters.

 Each interface declaration has a declaration space for members and a declaration space for type

parameters. An interface’s declaration space is shared with other interfaces that have the same

root module and the same qualified name starting from that root module.

 Each enum declaration has a declaration space for its enum members. An enum’s declaration

space is shared with other enums that have the same root module and the same qualified name

starting from that root module.

19

 Each function declaration (including constructor, member function, and member accessor

declarations) and each function expression has a declaration space for variables (parameters, local

variables, and local functions) and a declaration space for type parameters.

 Each object literal has a declaration space for its properties.

 Each object type literal has a declaration space for its members.

Top-level declarations in a source file with no top-level import or export declarations belong to the

global module. Top-level declarations in a source file with one or more top-level import or export

declarations belong to the external module represented by that source file.

An internal module declaration contributes a namespace name (representing a container of types) and

possibly a member name (representing the module instance) to the containing module. A class

declaration contributes both a member name (representing the constructor function) and a type name

(representing the class type) to the containing module. An interface declaration contributes a type name

to the containing module. An enum declaration contributes both a member name (representing the enum

object) and a type name (representing the enum type) to the containing module. Any other declaration

contributes a member name to the declaration space to which it belongs.

The parent module of an entity is defined as follows:

 The parent module of an entity declared in an internal module is that internal module.

 The parent module of an entity declared in an external module is that external module.

 The parent module of an entity declared in the global module is the global module.

 The parent module of an external module is the global module.

The root module of an entity is defined as follows:

 The root module of a non-exported entity is the entity’s parent module.

 The root module of an exported entity is the root module of the entity’s parent module.

Intuitively, the root module of an entity is the outermost module body from within which the entity is

reachable.

Interfaces, enums, and internal modules are “open ended,” meaning that interface, enum, and internal

module declarations with the same qualified name relative to a common root are automatically merged.

For further details, see sections 7.2, 9.3, and 10.5.

Namespace, type, and member names exist in separate declaration spaces. Furthermore, declarations of

non-instantiated modules (modules that contain only interfaces or modules at all levels of nesting) do not

introduce a member name in their containing declaration space. This means that the following is

permitted, provided module ‘X’ contains only interface or module declarations at all levels of nesting:

20

module M {

 module X { ... } // Namespace

 interface X { ... } // Type

 var X; // Member

}

If module ‘X’ above was an instantiated module (section 10.1) it would cause a member ‘X’ to be

introduced in ‘M’. This member would conflict with the variable ‘X’ and thus cause an error.

Instance and static members in a class are likewise in separate declaration spaces. Thus the following is

permitted:

class C {

 x: number; // Instance member

 static x: string; // Static member

}

2.4 Scopes

The scope of a name is the region of program text within which it is possible to refer to the entity

declared by that name without qualification of the name. The scope of a name depends on the context in

which the name is declared. The contexts are listed below in order from outermost to innermost:

 The scope of an entity declared in the global module is the entire program text.

 The scope of an entity declared in an external module is the source file of that external module.

 The scope of an exported entity declared in an internal module is the body of that module and

every internal module with the same root and the same qualified name relative to that root.

 The scope of a non-exported entity declared within an internal module declaration is the body of

that internal module declaration.

 The scope of a type parameter declared in a class or interface declaration is that entire

declaration, including constraints, extends clause, implements clause, and declaration body, but

not including static member declarations.

 The scope of a member declared in an enum declaration is the body of that declaration and every

enum declaration with the same root and the same qualified name relative to that root.

 The scope of a type parameter declared in a call or construct signature is that entire signature

declaration, including constraints, parameter list, and return type. If the signature is part of a

function implementation, the scope includes the function body.

 The scope of a parameter, local variable, or local function declared within a function declaration

(including a constructor, member function, or member accessor declaration) or function

expression is the body of that function declaration or function expression.

Scopes may overlap, for example through nesting of modules and functions. When the scopes of two

entities with the same name overlap, the entity with the innermost declaration takes precedence and

access to the outer entity is either not possible or only possible by qualifying its name.

21

When an identifier is resolved as a TypeName (section 3.6.2), only classes, interfaces, enums, and type

parameters are considered and other entities in scope are ignored.

When an identifier is resolved as a ModuleName (section 3.6.2), only modules are considered and other

entities in scope are ignored.

When an identifier is resolved as a PrimaryExpression (section 4.3), only instantiated modules (section

10.1), classes, enums, functions, variables, and parameters are considered and other entities in scope are

ignored.

Note that class and enum members are never directly in scope—they can only be accessed by applying

the dot (‘.’) operator to a class instance or enum object. This even includes members of the current

instance in a constructor or member function, which are accessed by applying the dot operator to this.

As the rules above imply, locally declared entities in an internal module are closer in scope than exported

entities declared in other module declarations for the same internal module. For example:

var x = 1;

module M {

 export var x = 2;

 console.log(x); // 2

}

module M {

 console.log(x); // 2

}

module M {

 var x = 3;

 console.log(x); // 3

}

23

3 Types

TypeScript adds optional static types to JavaScript. Types are used to place static constraints on program

entities such as functions, variables, and properties so that compilers and development tools can offer

better verification and assistance during software development. TypeScript’s static compile-time type

system closely models the dynamic run-time type system of JavaScript, allowing programmers to

accurately express the type relationships that are expected to exist when their programs run and have

those assumptions pre-validated by the TypeScript compiler. TypeScript’s type analysis occurs entirely at

compile-time and adds no run-time overhead to program execution.

All types in TypeScript are subtypes of a single top type called the Any type. The any keyword references

this type. The Any type is the one type that can represent any JavaScript value with no constraints. All

other types are categorized as primitive types, object types, or type parameters. These types introduce

various static constraints on their values.

The primitive types are the Number, Boolean, String, Void, Null, and Undefined types along with user

defined enum types. The number, boolean, string, and void keywords reference the Number, Boolean,

String, and Void primitive types respectively. The Void type exists purely to indicate the absence of a

value, such as in a function with no return value. It is not possible to explicitly reference the Null and

Undefined types—only values of those types can be referenced, using the null and undefined literals.

The object types are all class, interface, array, and literal types. Class and interface types are introduced

through class and interface declarations and are referenced by the name given to them in their

declarations. Class and interface types may be generic types which have one or more type parameters.

Literal types are written as object, array, function, or constructor type literals and are used to compose

new types from other types.

Declarations of modules, classes, properties, functions, variables and other language entities associate

types with those entities. The mechanism by which a type is formed and associated with a language entity

depends on the particular kind of entity. For example, a module declaration associates the module with an

anonymous type containing a set of properties corresponding to the exported variables and functions in

the module, and a function declaration associates the function with an anonymous type containing a call

signature corresponding to the parameters and return type of the function. Types can be associated with

variables through explicit type annotations, such as

var x: number;

or through implicit type inference, as in

var x = 1;

which infers the type of ‘x’ to be the Number primitive type because that is the type of the value used to

initialize ‘x’.

24

3.1 The Any Type

The Any type is used to represent any JavaScript value. A value of the Any type supports the same

operations as a value in JavaScript and minimal static type checking is performed for operations on Any

values. Specifically, properties of any name can be accessed through an Any value and Any values can be

called as functions or constructors with any argument list.

The any keyword references the Any type. In general, in places where a type is not explicitly provided and

TypeScript cannot infer one, the Any type is assumed.

The Any type is a supertype of all types, and is assignable to and from all types.

Some examples:

var x: any; // Explicitly typed

var y; // Same as y: any

var z: { a; b; }; // Same as z: { a: any; b: any; }

function f(x) { // Same as f(x: any): void

 console.log(x);

}

3.2 Primitive Types

The primitive types are the Number, Boolean, String, Void, Null, and Undefined types and all user defined

enum types.

3.2.1 The Number Type

The Number primitive type corresponds to the similarly named JavaScript primitive type and represents

double-precision 64-bit format IEEE 754 floating point values.

The number keyword references the Number primitive type and numeric literals may be used to write

values of the Number primitive type.

For purposes of determining type relationships (section 3.8) and accessing properties (section 4.10), the

Number primitive type behaves as an object type with the same properties as the global interface type

‘Number’.

Some examples:

var x: number; // Explicitly typed

var y = 0; // Same as y: number = 0

var z = 123.456; // Same as z: number = 123.456

var s = z.toFixed(2); // Property of Number interface

25

3.2.2 The Boolean Type

The Boolean primitive type corresponds to the similarly named JavaScript primitive type and represents

logical values that are either true or false.

The boolean keyword references the Boolean primitive type and the true and false literals reference

the two Boolean truth values.

For purposes of determining type relationships (section 3.8) and accessing properties (section 4.10), the

Boolean primitive type behaves as an object type with the same properties as the global interface type

‘Boolean’.

Some examples:

var b: boolean; // Explicitly typed

var yes = true; // Same as yes: boolean = true

var no = false; // Same as no: boolean = false

3.2.3 The String Type

The String primitive type corresponds to the similarly named JavaScript primitive type and represents

sequences of characters stored as Unicode UTF-16 code units.

The string keyword references the String primitive type and string literals may be used to write values of

the String primitive type.

For purposes of determining type relationships (section 3.8) and accessing properties (section 4.10), the

String primitive type behaves as an object type with the same properties as the global interface type

‘String’.

Some examples:

var s: string; // Explicitly typed

var empty = ""; // Same as empty: string = ""

var abc = 'abc'; // Same as abc: string = "abc"

var c = abc.charAt(2); // Property of String interface

3.2.4 The Void Type

The Void type, referenced by the void keyword, represents the absence of a value and is used as the

return type of functions with no return value.

The only possible values for the Void type are null and undefined. The Void type is a subtype of the Any

type and a supertype of the Null and Undefined types, but otherwise Void is unrelated to all other types.

NOTE: We might consider disallowing declaring variables of type Void as they serve no useful purpose.

However, because Void is permitted as a type argument to a generic type or function it is not feasible to

disallow Void properties or parameters.

26

3.2.5 The Null Type

The Null type corresponds to the similarly named JavaScript primitive type and is the type of the null

literal.

The null literal references the one and only value of the Null type. It is not possible to directly reference

the Null type itself.

The Null type is a subtype of all types, except the Undefined type. This means that null is considered a

valid value for all primitive types, object types, and type parameters, including even the Number and

Boolean primitive types.

Some examples:

var n: number = null; // Primitives can be null

var x = null; // Same as x: any = null

var e: Null; // Error, can't reference Null type

3.2.6 The Undefined Type

The Undefined type corresponds to the similarly named JavaScript primitive type and is the type of the

undefined literal.

The undefined literal denotes the value given to all uninitialized variables and is the one and only value

of the Undefined type. It is not possible to directly reference the Undefined type itself.

The undefined type is a subtype of all types. This means that undefined is considered a valid value for all

primitive types, object types, and type parameters.

Some examples:

var n: number; // Same as n: number = undefined

var x = undefined; // Same as x: any = undefined

var e: Undefined; // Error, can't reference Undefined type

3.2.7 Enum Types

Enum types are distinct user defined subtypes of the Number primitive type. Enum types are declared

using enum declarations (section 9.1) and referenced using type references (section 3.6.2).

Enum types are assignable to the Number primitive type, and vice versa, but different enum types are not

assignable to each other.

3.2.8 String Literal Types

Specialized signatures (section 3.7.2.4) permit string literals to be used as types in parameter type

annotations. String literal types are permitted only in that context and nowhere else.

All string literal types are subtypes of the String primitive type.

27

3.3 Object Types

The object types include references to class and interface types as well as anonymous object types

created by a number of constructs such as object literals, function declarations, and module declarations.

Object types are composed from properties, call signatures, construct signatures, and index signatures,

collectively called members.

3.3.1 Named Type References

Type references (section 3.6.2) to class and interface types are classified as object types. Type references

to generic class and interface types include type arguments that are substituted for the type parameters

of the class or interface to produce an actual object type.

3.3.2 Array Types

Array types represent JavaScript arrays. Array types are type references (section 3.6.2) created from the

generic interface type ‘Array’ in the global module. Array type literals (section 3.6.4) provide a shorthand

notation for creating such references.

Array literals (section 4.6) may be used to create values of array types.

3.3.3 Anonymous Types

Several constructs in the TypeScript language introduce new anonymous object types:

 Function and constructor type literals (section 3.6.4).

 Object type literals (section 3.7).

 Object literals (section 4.5).

 Function expressions (section 4.9) and function declarations (6.1).

 Constructor function types created by class declarations (section 8.2.5).

 Module instance types created by module declarations (section 10.3).

3.3.4 Members

Every object type is composed from zero or more of the following kinds of members:

 Properties, which define the names and types of the properties of objects of the given type.

Property names are unique within their type.

 Call signatures, which define the possible parameter lists and return types associated with

applying call operations to objects of the given type.

 Construct signatures, which define the possible parameter lists and return types associated with

applying the new operator to objects of the given type.

 Index signatures, which define type constraints for properties in the given type. An object type

can have at most one string index signature and one numeric index signature.

Properties are either public or private and are either required or optional:

28

 Properties in a class declaration may be designated public or private, while properties declared in

other contexts are always considered public. Private members are only accessible within the class

body containing their declaration, as described in section 8.2.2, and private properties match only

themselves in subtype and assignment compatibility checks, as described in section 3.8.

 Properties in an object type literal or interface declaration may be designated required or

optional, while properties declared in other contexts are always considered required. Properties

that are optional in the target type of an assignment may be omitted from source objects, as

described in section 3.8.4.

Call and construct signatures may be specialized (section 3.7.2.4) by including parameters with string

literal types. Specialized signatures are used to express patterns where specific string values for some

parameters cause the types of other parameters or the function result to become further specialized.

3.4 Type Parameters

A type parameter represents an actual type that the parameter is bound to in a generic type reference or

a generic function call. Type parameters have constraints that establish upper bounds for their actual type

arguments.

Since a type parameter represents a multitude of different type arguments, type parameters have certain

restrictions compared to other types. In particular, a type parameter cannot be used as a base class or

interface.

3.4.1 Type Parameter Lists

Class, interface, and function declarations may optionally include lists of type parameters enclosed in <

and > brackets. Type parameters are also permitted in call signatures of object, function, and constructor

type literals.

TypeParameters:

< TypeParameterList >

TypeParameterList:

TypeParameter

TypeParameterList , TypeParameter

TypeParameter:

Identifier Constraintopt

Constraint:

extends Type

Type parameter names must be unique. A compile-time error occurs if two or more type parameters in

the same TypeParameterList have the same name.

29

The scope of a type parameter extends over the entire declaration with which the type parameter list is

associated, with the exception of static member declarations in classes.

Each type parameter has an associated type parameter constraint that establishes an upper bound for

type arguments. Omitting a constraint corresponds to specifying the empty object type {}. Type

parameters declared in a particular type parameter list may not be referenced in constraints in that type

parameter list.

The base constraint of a type parameter T is defined as follows:

 If T has no declared constraint, T’s base constraint is the empty object type {}.

 If T’s declared constraint is a type parameter, T’s base constraint is that of the type parameter.

 Otherwise, T’s base constraint is T’s declared constraint.

In the example

interface G<T, U extends Function> {

 f<V extends U>(x: V): V;

}

the base constraint of ‘T’ is the empty object type, and the base constraint of ‘U’ and ‘V’ is ‘Function’.

For purposes of determining type relationships (section 3.8), type parameters appear to be subtypes of

their base constraint. Likewise, in property accesses (section 4.10), new operations (section 4.11), and

function calls (section 4.12), type parameters appear to have the members of their base constraint, but no

other members.

3.4.2 Type Argument Lists

A type reference (section 3.6.2) to a generic type must include a list of type arguments enclosed in angle

brackets and separated by commas. Similarly, a call (section 4.12) to a generic function may explicitly

include a type argument list instead of relying on type inference.

TypeArguments:

< TypeArgumentList >

TypeArgumentList:

TypeArgument

TypeArgumentList , TypeArgument

TypeArgument:

Type

Type arguments correspond one-to-one with type parameters of the generic type or function being

referenced. A type argument list is required to specify exactly one type argument for each corresponding

type parameter, and each type argument is required to satisfy the constraint of its corresponding type

30

parameter. A type argument satisfies a type parameter constraint if the type argument is assignable to

(section 3.8.4) the constraint type once type arguments are substituted for type parameters.

Given the declaration

interface G<T, U extends Function> { }

a type reference of the form ‘G<A, B>’ places no requirements on ‘A’ but requires ‘B’ to be assignable to

‘Function’.

The process of substituting type arguments for type parameters in a generic type or generic signature is

known as instantiating the generic type or signature. Instantiation of a generic type or signature can fail

if the supplied type arguments do not satisfy the constraints of their corresponding type parameters.

3.5 Named Types

Class, interface, and enum types are named types that are introduced through class declarations (section

8.1), interface declarations (section 7.1), and enum declarations (9.1). Class and interface types may have

type parameters and are then called generic types. Conversely, named types without type parameters are

called non-generic types.

Interface declarations only introduce named types, whereas class declarations introduce named types and

constructor functions that create instances of implementations of those named types. The named types

introduced by class and interface declarations have only minor differences (classes can’t declare optional

members and interfaces can’t declare private members) and are in most contexts interchangeable. In

particular, class declarations with only public members introduce named types that function exactly like

those created by interface declarations.

Named types are referenced through type references (section 3.6.2) that specify a type name and, if

applicable, the type arguments to be substituted for the type parameters of the named type.

Named types are technically not types—only references to named types are. This distinction is particularly

evident with generic types: Generic types are “templates” from which multiple actual types can be created

by writing type references that supply type arguments to substitute in place of the generic type’s type

parameters. This substitution process is known as instantiating a generic type. Only once a generic type

is instantiated does it denote an actual type.

TypeScript has a structural type system, and therefore an instantiation of a generic type is

indistinguishable from an equivalent manually written expansion. For example, given the declaration

interface Pair<T1, T2> { first: T1; second: T2; }

the type reference

Pair<string, Entity>

is indistinguishable from the type

31

{ first: string; second: Entity; }

3.5.1 Instance Types

Each named type has an associated actual type known as the instance type. For a non-generic type, the

instance type is simply a type reference to the non-generic type. For a generic type, the instance type is an

instantiation of the generic type where each of the type arguments is the corresponding type parameter.

Since the instance type uses the type parameters it can be used only where the type parameters are in

scope—that is, inside the declaration of the generic type. Within the constructor and instance member

functions of a class, the type of this is the instance type of the class.

The following example illustrates the concept of an instance type:

class G<T> { // Introduce type parameter T

 self: G<T>; // Use T as type argument to form instance type

 f() {

 this.self = this; // self and this are both of type G<T>

 }

}

3.6 Specifying Types

Types are specified either by referencing their keyword or name, by querying expression types, or by

writing type literals which compose other types into new types.

Type:

PredefinedType

TypeReference

TypeQuery

TypeLiteral

3.6.1 Predefined Types

The any, number, boolean, string, and void keywords reference the Any type and the Number, Boolean,

String, and Void primitive types respectively.

PredefinedType:

any

number

boolean

string

void

The predefined type keywords are reserved and cannot be used as names of user defined types.

32

3.6.2 Type References

A type reference references a named type or type parameter through its name and, in the case of a

generic type, supplies a type argument list.

TypeReference:

TypeName [no LineTerminator here] TypeArgumentsopt

TypeName:

Identifier

ModuleName . Identifier

ModuleName:

Identifier

ModuleName . Identifier

A TypeReference consists of a TypeName that a references a named type or type parameter. A reference to

a generic type must be followed by a list of TypeArguments (section 3.4.2).

Resolution of a TypeName consisting of a single identifier is described in section 2.4.

Resolution of a TypeName of the form M.N, where M is a ModuleName and N is an Identifier, proceeds by

first resolving the module name M. If the resolution of M is successful and the resulting module contains

an exported named type N, then M.N refers to that member. Otherwise, M.N is undefined.

Resolution of a ModuleName consisting of a single identifier is described in section 2.4.

Resolution of a ModuleName of the form M.N, where M is a ModuleName and N is an Identifier, proceeds

by first resolving the module name M. If the resolution of M is successful and the resulting module

contains an exported module member N, then M.N refers to that member. Otherwise, M.N is undefined.

A type reference to a generic type is required to specify exactly one type argument for each type

parameter of the referenced generic type, and each type argument must be assignable to (section 3.8.4)

the constraint of the corresponding type parameter or otherwise an error occurs. An example:

interface A { a: string; }

interface B extends A { b: string; }

interface C extends B { c: string; }

interface G<T, U extends B> {

 x: T;

 y: U;

}

33

var v1: G<A, C>; // Ok

var v2: G<{ a: string }, C>; // Ok, equivalent to G<A, C>

var v3: G<A, A>; // Error, A not valid argument for U

var v4: G<G<A, B>, C>; // Ok

var v5: G<any, any>; // Ok

var v6: G<any>; // Error, wrong number of arguments

var v7: G; // Error, no arguments

A type argument is simply a Type and may itself be a type reference to a generic type, as demonstrated by

‘v4’ in the example above.

As described in section 3.5, a type reference to a generic type G designates a type wherein all occurrences

of G’s type parameters have been replaced with the actual type arguments supplied in the type reference.

For example, the declaration of ‘v1’ above is equivalent to:

var v1: {

 x: { a: string; }

 y: { a: string; b: string; c: string };

};

3.6.3 Type Queries

A type query obtains the type of an expression.

TypeQuery:

typeof TypeQueryExpression

TypeQueryExpression:

Identifier

TypeQueryExpression . IdentifierName

A type query consists of the keyword typeof followed by an expression. The expression is restricted to a

single identifier or a sequence of identifiers separated by periods. The expression is processed as an

identifier expression (section 4.3) or property access expression (section 4.10), the widened type (section

3.9) of which becomes the result. Similar to other static typing constructs, type queries are erased from

the generated JavaScript code and add no run-time overhead.

Type queries are useful for capturing anonymous types that are generated by various constructs such as

object literals, function declarations, and module declarations. For example:

var a = { x: 10, y: 20 };

var b: typeof a;

Above, ‘b’ is given the same type as ‘a’, namely ‘{ x: number; y: number; }’.

3.6.4 Type Literals

Type literals compose other types into new anonymous types.

34

TypeLiteral:

ObjectType

ArrayType

FunctionType

ConstructorType

ArrayType:

ElementType [no LineTerminator here] []

ElementType:

PredefinedType

TypeReference

TypeQuery

ObjectType

ArrayType

FunctionType:

TypeParametersopt (ParameterListopt) => Type

ConstructorType:

new TypeParametersopt (ParameterListopt) => Type

Object type literals are the primary form of type literals and are described in section 3.7. Array, function,

and constructor type literals are simply shorthand notations for other types:

Type literal Equivalent form

T [] Array < T >

< TParams > (Params) => Result { < TParams > (Params) : Result }

new < TParams > (Params) => Result { new < TParams > (Params) : Result }

As the table above illustrates, an array type literal is shorthand for a reference to the generic interface type

‘Array’ in the global module, a function type literal is shorthand for an object type containing a single call

signature, and a constructor type literal is shorthand for an object type containing a single construct

signature. Note that function and constructor types with multiple call or construct signatures cannot be

written as function or constructor type literals but must instead be written as object type literals.

In order to avoid grammar ambiguities, array type literals permit only a restricted set of notations for the

element type. Specifically, an ArrayType cannot start with a FunctionType or ConstructorType. To use one

of those forms for the element type, an array type must be written using the ‘Array<T>’ notation. For

example, the type

() => string[]

35

denotes a function returning a string array, not an array of functions returning string. The latter can be

expressed using ‘Array<T>’ notation

Array<() => string>

or by writing the element type as an object type literal

{ (): string }[]

3.7 Object Type Literals

An object type literal defines an object type by specifying the set of members that are statically

considered to be present in instances of the type. Object type literals can be given names using interface

declarations but are otherwise anonymous.

ObjectType:

{ TypeBodyopt }

TypeBody:

TypeMemberList ;opt

TypeMemberList:

TypeMember

TypeMemberList ; TypeMember

TypeMember:

PropertySignature

CallSignature

ConstructSignature

IndexSignature

MethodSignature

The members of an object type literal are specified as a combination of property, call, construct, index,

and method signatures. The signatures are separated by semicolons and enclosed in curly braces.

3.7.1 Property Signatures

A property signature declares the name and type of a property member.

PropertySignature:

PropertyName ?opt TypeAnnotationopt

PropertyName:

IdentifierName

StringLiteral

NumericLiteral

36

The PropertyName production, reproduced above from the ECMAScript grammar, permits a property

name to be any identifier (including a reserved word), a string literal, or a numeric literal. String literals can

be used to give properties names that are not valid identifiers, such as names containing blanks. Numeric

literal property names are equivalent to string literal property names with the string representation of the

numeric literal, as defined in the ECMAScript specification.

The PropertyName of a property signature must be unique within its containing type. If the property name

is followed by a question mark, the property is optional. Otherwise, the property is required.

If a property signature omits a TypeAnnotation, the Any type is assumed.

3.7.2 Call Signatures

A call signature defines the type parameters, parameter list, and return type associated with applying a

call operation (section 4.12) to an instance of the containing type. A type may overload call operations by

defining multiple different call signatures.

CallSignature:

TypeParametersopt (ParameterListopt) TypeAnnotationopt

A call signature that includes TypeParameters (section 3.4.1) is called a generic call signature. Conversely,

a call signature with no TypeParameters is called a non-generic call signature.

As well as being members of object type literals, call signatures occur in method signatures (section 3.7.5),

function expressions (section 4.9), and function declarations (section 6.1).

An object type containing call signatures is said to be a function type.

3.7.2.1 Type Parameters

Type parameters (section 3.4.1) in call signatures provide a mechanism for expressing the relationships of

parameter and return types in call operations. For example, a signature might introduce a type parameter

and use it as both a parameter type and a return type, in effect describing a function that returns a value

of the same type as its argument.

Type parameters may be referenced in parameter types and return type annotations, but not in type

parameter constraints, of the call signature in which they are introduced.

Type arguments (section 3.4.2) for call signature type parameters may be explicitly specified in a call

operation or may, when possible, be inferred (section 4.12.2) from the types of the regular arguments in

the call. An instantiation of a generic call signature for a particular set of type arguments is the call

signature formed by replacing each type parameter with its corresponding type argument.

Some examples of call signatures with type parameters:

<T>(x: T): T
A function taking an argument of any type,

returning a value of that same type.

37

<T>(x: T, y: T): T[]
A function taking two values of the same type,

returning an array of that type.

<T, U>(x: T, y: U): { x: T; y: U; }

A function taking two arguments of different

types, returning an object with properties ‘x’

and ‘y’ of those types.

<T, U>(a: T[], f: (x: T) => U): U[]

A function taking an array of one type and a

function argument, returning an array of

another type, where the function argument

takes a value of the first array element type

and returns a value of the second array

element type.

3.7.2.2 Parameter List

A signature’s parameter list consists of zero or more required parameters, followed by zero or more

optional parameters, finally followed by an optional rest parameter.

ParameterList:

RequiredParameterList

OptionalParameterList

RestParameter

RequiredParameterList , OptionalParameterList

RequiredParameterList , RestParameter

OptionalParameterList , RestParameter

RequiredParameterList , OptionalParameterList , RestParameter

RequiredParameterList:

RequiredParameter

RequiredParameterList , RequiredParameter

RequiredParameter:

PublicOrPrivateopt Identifier TypeAnnotationopt

Identifier : StringLiteral

PublicOrPrivate:

public

private

OptionalParameterList:

OptionalParameter

OptionalParameterList , OptionalParameter

38

OptionalParameter:

PublicOrPrivateopt Identifier ? TypeAnnotationopt

PublicOrPrivateopt Identifier TypeAnnotationopt Initialiser

RestParameter:

... Identifier TypeAnnotationopt

Parameter names must be unique. A compile-time error occurs if two or more parameters have the same

name.

A parameter is permitted to include a public or private modifier only if it occurs in the parameter list of

a ConstructorImplementation (section 8.3.1).

A parameter with a type annotation is considered to be of that type. A type annotation for a rest

parameter must denote an array type.

A parameter with no type annotation or initializer is considered to be of type any, unless it is a rest

parameter, in which case it is considered to be of type any[].

When a parameter type annotation specifies a string literal type, the containing signature is a specialized

signature (section 3.7.2.4). Specialized signatures are not permitted in conjunction with a function body,

i.e. the FunctionExpression, FunctionImplementation, MemberFunctionImplementation, and

ConstructorImplementation grammar productions do not permit parameters with string literal types.

A parameter can be marked optional by following its name with a question mark (?) or by including an

initializer. The form that includes an initializer is permitted only in conjunction with a function body, i.e.

only in a FunctionExpression, FunctionImplementation, MemberFunctionImplementation, or

ConstructorImplementation grammar production.

3.7.2.3 Return Type

If present, a call signature’s return type annotation specifies the type of the value computed and returned

by a call operation. A void return type annotation is used to indicate that a function has no return value.

When a call signature with no return type annotation occurs in a context without a function body, the

return type is assumed to be the Any type.

When a call signature with no return type annotation occurs in a context that has a function body

(specifically, a function implementation, a member function implementation, or a member accessor

declaration), the return type is inferred from the function body as described in section 6.3.

3.7.2.4 Specialized Signatures

When a parameter type annotation specifies a string literal type (section 3.2.8), the containing signature is

considered a specialized signature. Specialized signatures are used to express patterns where specific

string values for some parameters cause the types of other parameters or the function result to become

further specialized. For example, the declaration

39

interface Document {

 createElement(tagName: "div"): HTMLDivElement;

 createElement(tagName: "span"): HTMLSpanElement;

 createElement(tagName: "canvas"): HTMLCanvasElement;

 createElement(tagName: string): HTMLElement;

}

states that calls to ‘createElement’ with the string literals “div”, “span”, and “canvas” return values of type

‘HTMLDivElement’, ‘HTMLSpanElement’, and ‘HTMLCanvasElement’ respectively, and that calls with all

other string expressions return values of type ‘HTMLElement’.

When writing overloaded declarations such as the one above it is important to list the non-specialized

signature last. This is because overload resolution (section 4.12.1) processes the candidates in declaration

order and picks the first one that matches.

Every specialized call or construct signature in an object type must be assignable to at least one non-

specialized call or construct signature in the same object type (where a call signature A is considered

assignable to another call signature B if an object type containing only A would be assignable to an object

type containing only B). For example, the ‘createElement’ property in the example above is of a type that

contains three specialized signatures, all of which are assignable to the non-specialized signature in the

type.

3.7.3 Construct Signatures

A construct signature defines the parameter list and return type associated with applying the new

operator (section 4.11) to an instance of the containing type. A type may overload new operations by

defining multiple construct signatures with different parameter lists.

ConstructSignature:

new TypeParametersopt (ParameterListopt) TypeAnnotationopt

The type parameters, parameter list, and return type of a construct signature are subject to the same rules

as a call signature.

A type containing construct signatures is said to be a constructor type.

3.7.4 Index Signatures

An index signature defines a type constraint for properties in the containing type.

IndexSignature:

[Identifier : string] TypeAnnotation

[Identifier : number] TypeAnnotation

There are two kinds of index signatures:

 String index signatures, specified using index type string, define type constraints for all

properties and numeric index signatures in the containing type. Specifically, in a type with a string

40

index signature of type T, all properties and numeric index signatures must have types that are

assignable to T.

 Numeric index signatures, specified using index type number, define type constraints for all

numerically named properties in the containing type. Specifically, in a type with a numeric index

signature of type T, all numerically named properties must have types that are assignable to T.

A numerically named property is a property whose name is a valid numeric literal. Specifically, a

property with a name N for which ToNumber(N) is not NaN, where ToNumber is the abstract operation

defined in ECMAScript specification.

An object type can contain at most one string index signature and one numeric index signature.

Index signatures affect the determination of the type that results from applying a bracket notation

property access to an instance of the containing type, as described in section 4.10.

3.7.5 Method Signatures

A method signature is shorthand for declaring a property of a function type.

MethodSignature:

PropertyName ?opt CallSignature

If the identifier is followed by a question mark, the property is optional. Otherwise, the property is

required. Only object type literals and interfaces can declare optional properties.

A method signature of the form

PropName < TypeParamList > (ParamList) : ReturnType

is equivalent to the property declaration

PropName : { < TypeParamList > (ParamList) : ReturnType }

A literal type may overload a method by declaring multiple method signatures with the same name but

differing parameter lists. Overloads must either all be required (question mark omitted) or all be optional

(question mark included). A set of overloaded method signatures correspond to a declaration of a single

property with a type composed from an equivalent set of call signatures. Specifically

PropName < TypeParamList1 > (ParamList1) : ReturnType1 ;

PropName < TypeParamList2 > (ParamList2) : ReturnType2 ;

…

PropName < TypeParamListn > (ParamListn) : ReturnTypen ;

is equivalent to

41

PropName : {

 < TypeParamList1 > (ParamList1) : ReturnType1 ;

 < TypeParamList2 > (ParamList2) : ReturnType2 ;

 …

 < TypeParamListn > (ParamListn) : ReturnTypen ; }

In the following example of an object type

{

 func1(x: number): number; // Method signature

 func2: (x: number) => number; // Function type literal

 func3: { (x: number): number }; // Object type literal

}

the properties ‘func1’, ‘func2’, and ‘func3’ are all of the same type, namely an object type with a single call

signature taking a number and returning a number. Likewise, in the object type

{

 func4(x: number): number;

 func4(s: string): string;

 func5: {

 (x: number): number;

 (s: string): string;

 };

}

the properties ‘func4’ and ‘func5’ are of the same type, namely an object type with two call signatures

taking and returning number and string respectively.

3.8 Type Relationships

Types in TypeScript have identity, subtype, supertype, and assignment compatibility relationships as

defined in the following sections.

For purposes of determining type relationships, all object types appear to have the members of the

‘Object’ interface unless those members are hidden by members with the same name in the object types,

and object types with one or more call or construct signatures appear to have the members of the

‘Function’ interface unless those members are hidden by members with the same name in the object

types. Apparent types (section 3.8.1) that are object types appear to have these extra members as well.

3.8.1 Apparent Type

In certain contexts a type appears to have the characteristics of a related type called the type’s apparent

type. Specifically, a type’s apparent type is used when determining subtype, supertype, and assignment

compatibility relationships, as well as in the type checking of property accesses (section 4.10), new

operations (section 4.11), and function calls (section 4.12).

42

The apparent type of a type T is defined as follows:

 If T is the primitive type Number, Boolean, or String, the apparent type of T is the augmented

form (as defined below) of the global interface type ‘Number’, ‘Boolean’, or ‘String’.

 if T is an enum type, the apparent type of T is the augmented form of the global interface type

‘Number’.

 If T is an object type, the apparent type of T is the augmented form of T.

 If T is a type parameter, the apparent type of T is the apparent type of T’s base constraint (section

3.4.1).

 Otherwise, the apparent type of T is T itself.

The augmented form of an object type T adds to T those members of the global interface type ‘Object’

that aren’t hidden by members in T. Furthermore, if T has one or more call or construct signatures, the

augmented form of T adds to T the members of the global interface type ‘Function’ that aren’t hidden by

members in T. Members in T hide ‘Object’ or ‘Function’ interface members in the following manner:

 A property hides an ‘Object’ or ‘Function’ property with the same name.

 A call signature hides an ‘Object’ or ‘Function’ call signature with the same number of parameters

and identical parameter types in the respective positions.

 A construct signature hides an ‘Object’ or ‘Function’ construct signature with the same number of

parameters and identical parameter types in the respective positions.

 An index signature hides an ‘Object’ or ‘Function’ index signature with the same parameter type.

In effect, a type’s apparent type is a subtype of the ‘Object’ or ‘Function’ interface unless the type defines

members that are incompatible with those of the ‘Object’ or ‘Function’ interface—which, for example,

occurs if the type defines a property with the same name as a property in the ‘Object’ or ‘Function’

interface but with a type that isn’t a subtype of that in the ‘Object’ or ‘Function’ interface.

Some examples:

var o: Object = { x: 10, y: 20 }; // Ok

var f: Function = (x: number) => x * x; // Ok

var err: Object = { toString: 0 }; // Error

The last assignment is an error because the apparent type of the object literal has a ‘toString’ method that

isn’t compatible with that of ‘Object’.

3.8.2 Type and Member Identity

Two types are considered identical when

 they are both the Any type,

 they are the same primitive type,

 they are the same type parameter, or

 they are object types with identical sets of members.

43

Two members are considered identical when

 they are public properties with identical names, optionality, and types,

 they are private properties originating in the same declaration and having identical types,

 they are identical call signatures,

 they are identical construct signatures, or

 they are index signatures of identical kind with identical types.

Two call or construct signatures are considered identical when they have the same number of type

parameters with identical type parameter constraints and, after substituting type Any for the type

parameters introduced by the signatures, identical number of parameters with identical kind (required,

optional or rest) and types, and identical return types.

Note that, except for primitive types and classes with private members, it is structure, not naming, of types

that determines identity. Also, note that parameter names are not significant when determining identity of

signatures.

Private properties match only if they originate in the same declaration and have identical types. Two

distinct types might contain properties that originate in the same declaration if the types are separate

parameterized references to the same generic class. In the example

class C<T> { private x: T; }

interface X { f(): string; }

interface Y { f(): string; }

var a: C<X>;

var b: C<Y>;

the variables ‘a’ and ‘b’ are of identical types because the two type references to ‘C’ create types with a

private member ‘x’ that originates in the same declaration, and because the two private ‘x’ members have

types with identical sets of members once the type arguments ‘X’ and ‘Y’ are substituted.

3.8.3 Subtypes and Supertypes

S is a subtype of a type T, and T is a supertype of S, if one of the following is true, where S’ denotes the

apparent type (section 3.8.1) of S:

 S and T are identical types.

 T is the Any type.

 S is the Undefined type.

 S is the Null type and T is not the Undefined type.

 S is an enum type and T is the primitive type Number.

 S is a string literal type and T is the primitive type String.

 S and T are type parameters, and S is directly or indirectly constrained to T.

 S’ and T are object types and, for each member M in T, one of the following is true:

44

o M is a property and S’ contains a property N where

 M and N have the same name,

 the type of N is a subtype of that of M,

 M and N are both public, or M and N are both private and originate in the same

declaration, and

 if M is a required property, N is also a required property.

o M is an optional property and S’ contains no property of the same name as M.

o M is a non-specialized call or construct signature and S’ contains a call or construct

signature N where, when M and N are instantiated using type Any as the type argument

for all type parameters declared by M and N (if any),

 the signatures are of the same kind (call or construct),

 M has a rest parameter or the number of non-optional parameters in N is less

than or equal to the total number of parameters in M,

 for parameter positions that are present in both signatures, each parameter type

in N is a subtype or supertype of the corresponding parameter type in M, and

 the result type of M is Void, or the result type of N is a subtype of that of M.

o M is a string index signature of type U and S’ contains a string index signature of a type

that is a subtype of U.

o M is a numeric index signature of type U and S’ contains a string or numeric index

signature of a type that is a subtype of U.

When comparing call or construct signatures, parameter names are ignored and rest parameters

correspond to an unbounded expansion of optional parameters of the rest parameter element type.

Note that specialized call and construct signatures (section 3.7.2.4) are not significant when determining

subtype and supertype relationships.

Also note that type parameters are not considered object types. Thus, the only subtypes of a type

parameter T are T itself and other type parameters that are directly or indirectly constrained to T.

3.8.4 Assignment Compatibility

Types are required to be assignment compatible in certain circumstances, such as expression and variable

types in assignment statements and argument and parameter types in function calls.

S is assignable to a type T, and T is assignable from S, if one of the following is true, where S’ denotes

the apparent type (section 3.8.1) of S:

 S and T are identical types.

 S or T is the Any type.

 S is the Undefined type.

 S is the Null type and T is not the Undefined type.

 S or T is an enum type and the other is the primitive type Number.

 S is a string literal type and T is the primitive type String.

 S and T are type parameters, and S is directly or indirectly constrained to T.

45

 S’ and T are object types and, for each member M in T, one of the following is true:

o M is a property and S’ contains a property N where

 M and N have the same name,

 the type of N is assignable to that of M,

 M and N are both public, or M and N are both private and originate in the same

declaration, and

 if M is a required property, N is also a required property.

o M is an optional property and S’ contains no property of the same name as M.

o M is a non-specialized call or construct signature and S’ contains a call or construct

signature N where, when M and N are instantiated using type Any as the type argument

for all type parameters declared by M and N (if any),

 the signatures are of the same kind (call or construct),

 M has a rest parameter or the number of non-optional parameters in N is less

than or equal to the total number of parameters in M,

 for parameter positions that are present in both signatures, each parameter type

in N is assignable to or from the corresponding parameter type in M, and

 the result type of M is Void, or the result type of N is assignable to that of M.

o M is a string index signature of type U and S’ contains a string index signature of a type

that is assignable to U.

o M is a numeric index signature of type U and S’ contains a string or numeric index

signature of a type that is assignable to U.

When comparing call or construct signatures, parameter names are ignored and rest parameters

correspond to an unbounded expansion of optional parameters of the rest parameter element type.

Note that specialized call and construct signatures (section 3.7.2.4) are not significant when determining

assignment compatibility.

The assignment compatibility and subtyping rules differ only in that

 the Any type is assignable to, but not a subtype of, all types, and

 the primitive type Number is assignable to, but not a subtype of, all enum types.

The assignment compatibility rules imply that, when assigning values or passing parameters, optional

properties must either be present and of a compatible type, or not be present at all. For example:

function foo(x: { id: number; name?: string; }) { }

foo({ id: 1234 }); // Ok

foo({ id: 1234, name: "hello" }); // Ok

foo({ id: 1234, name: false }); // Error, name of wrong type

foo({ name: "hello" }); // Error, id required but missing

46

3.8.5 Contextual Signature Instantiation

During type argument inference in a function call (section 4.12.2) it is in certain circumstances necessary

to instantiate a generic call signature of an argument expression in the context of a non-generic call

signature of a parameter such that further inferences can be made. A generic call signature A is

instantiated in the context of non-generic call signature B as follows:

 Using the process described in 3.8.6, inferences for A’s type parameters are made from each

parameter type in B to the corresponding parameter type in A for those parameter positions that

are present in both signatures, where rest parameters correspond to an unbounded expansion of

optional parameters of the rest parameter element type.

 The inferred type argument for each type parameter is the best common type (section 3.10) of the

set of inferences made for that type parameter. However, if the best common type does not

satisfy the constraint of the type parameter, the inferred type argument is instead the constraint.

3.8.6 Type Inference

In certain contexts, inferences for a given set of type parameters are made from a type S, in which those

type parameters do not occur, to another type T, in which those type parameters do occur. Inferences

consist of a set of candidate type arguments collected for each of the type parameters. The inference

process recursively relates S and T to gather as many inferences as possible:

 If T is one of the type parameters for which inferences are being made, S is added to the set of

inferences for that type parameter.

 Otherwise, if S and T are object types, then for each member M in T:

o If M is a property and S contains a property N with the same name as M, inferences are

made from the type of N to the type of M.

o If M is a call signature then for each call signature N in S, N is instantiated with the Any

type as an argument for each type parameter (if any) and inferences are made from

parameter types in N to the corresponding parameter types in M for positions that are

present in both signatures, and from the return type of N to the return type of M.

o If M is a construct signature then for each construct signature N in S, N is instantiated

with the Any type as an argument for each type parameter (if any) and inferences are

made from parameter types in N to the corresponding parameter types in M for positions

that are present in both signatures, and from the return type of N to the return type of M.

o If M is a string index signature and S contains a string index signature N, inferences are

made from the type of N to the type of M.

o If M is a numeric index signature and S contains a numeric index signature N, inferences

are made from the type of N to the type of M.

3.8.7 Recursive Types

Classes and interfaces can reference themselves in their internal structure, in effect creating recursive

types with infinite nesting. For example, the type

interface A { next: A; }

47

contains an infinitely nested sequence of ‘next’ properties. Types such as this are perfectly valid but

require special treatment when determining type relationships. Specifically, when comparing types S and T

for a given relationship (identity, subtype, or assignability), the relationship in question is assumed to be

true for every directly or indirectly nested occurrence of the same S and the same T (where same means

originating in the same declaration and, if applicable, having identical type arguments). For example,

consider the identity relationship between ‘A’ above and ‘B’ below:

interface B { next: C; }

interface C { next: D; }

interface D { next: B; }

To determine whether ‘A’ and ‘B’ are identical, first the ‘next’ properties of type ‘A’ and ‘C’ are compared.

That leads to comparing the ‘next’ properties of type ‘A’ and ‘D’, which leads to comparing the ‘next’

properties of type ‘A’ and ‘B’. Since ‘A’ and ‘B’ are already being compared this relationship is by definition

true. That in turn causes the other comparisons to be true, and therefore the final result is true.

When this same technique is used to compare generic type references, two type references are

considered the same when they originate in the same declaration and have identical type arguments.

In certain circumstances, generic types that directly or indirectly reference themselves in a recursive

fashion can lead to infinite series of distinct instantiations. For example, in the type

interface List<T> {

 data: T;

 next: List<T>;

 owner: List<List<T>>;

}

‘List<T>’ has a member ‘owner’ of type ‘List<List<T>>’, which has a member ‘owner’ of type

‘List<List<List<T>>>’, which has a member ‘owner’ of type ‘List<List<List<List<T>>>>’ and so on, ad

infinitum. Since type relationships are determined structurally, possibly exploring the constituent types to

their full depth, in order to determine type relationships involving infinitely expanding generic types it is

necessary to introduce a mechanism that terminates the recursion.

Within a generic class or interface G, type references contained in declared or inherited members are

classified as follows

 A type reference without type arguments or with type arguments that do not reference any of G’s

type parameters is classified as a closed type reference.

 A type reference that references any of G’s type parameters in a type argument is classified as an

open type reference.

 A type reference which, directly or indirectly, references G through open type references and

which contains a wrapped form of any of G’s type parameters in one or more type arguments is

48

classified as an infinitely expanding type reference. A type is said to wrap a type parameter if it

references the type parameter but isn’t simply the type parameter itself.

A type is said to originate in an infinitely expanding type reference if it was created (by instantiation of a

generic class or interface) from an infinitely expanding type reference (in that generic class or interface).

When comparing two types S and T for identity (section 3.8.2), subtype (section 3.8.3), and assignability

(section 3.8.4) relationships, if either type originates in an infinitely expanding type reference and the

other is not the Any, Null, or Undefined type, S and T are not compared by the rules in the preceding

sections. Instead, for the relationship to be considered true,

 S and T must both be type references to the same named type, and

 the relationship in question must be true for each corresponding pair of type arguments in the

type argument lists of S and T.

Likewise, when making type inferences (section 3.8.6) from a type S to a type T, if either type originates in

an infinitely expanding type reference, then

 if S and T are type references to the same named type, inferences are made from each type

argument in S to each type argument in T,

 otherwise, no inferences are made.

Referring to the example above, the ‘List<T>’ type reference in the ‘next’ property is classified as an open

type reference and the ‘List<List<T>>’ type reference in the ‘owner’ property is classified as an infinitely

expanding type reference.

3.9 Widened Types

In several situations TypeScript infers types from context, alleviating the need for the programmer to

explicitly specify types that appear obvious. For example

var name = "Steve";

infers the type of ‘name’ to be the String primitive type since that is the type of the value used to initialize

it. When inferring the type of a variable, property or function result from an expression, the widened form

of the source type is used as the inferred type of the target. The widened form of a type is the type in

which all occurrences of the Null and Undefined types have been replaced with the type any.

The following example shows the results of widening types to produce inferred variable types.

var a = null; // var a: any

var b = undefined; // var b: any

var c = { x: 0, y: null }; // var c: { x: number, y: any }

var d = [null, undefined]; // var d: any[]

49

3.10 Best Common Type

In some cases a best common type needs to be inferred from a set of types. In particular, return types of

functions with multiple return statements and element types of array literals are found this way.

For an empty set of types, the best common type is an empty object type (the type {}).

For a non-empty set of types { T1, T2, …, Tn }, the best common type is the one Tx in the set that is a

supertype of every Tn. It is possible that no such type exists or more than one such type exists, in which

case the best common type is an empty object type.

51

4 Expressions

This chapter describes the manner in which TypeScript provides type inference and type checking for

JavaScript expressions. TypeScript’s type analysis occurs entirely at compile-time and adds no run-time

overhead to expression evaluation.

TypeScript’s typing rules define a type for every expression construct. For example, the type of the literal

123 is the Number primitive type, and the type of the object literal { a: 10, b: "hello" } is { a: number; b:

string; }. The sections in this chapter describe these rules in detail.

In addition to type inference and type checking, TypeScript augments JavaScript expressions with the

following constructs:

 Optional parameter and return type annotations in function expressions.

 Default parameter values and rest parameters in function expressions.

 Arrow function expressions.

 Super calls and member access.

 Type assertions.

Unless otherwise noted in the sections that follow, TypeScript expressions and the JavaScript expressions

generated from them are identical.

4.1 Values and References

Expressions are classified as values or references. References are the subset of expressions that are

permitted as the target of an assignment. Specifically, references are combinations of identifiers (section

4.3), parentheses (section 4.7), and property accesses (section 4.10). All other expression constructs

described in this chapter are classified as values.

4.2 The this Keyword

The type of this in an expression depends on the location in which the reference takes place:

 In a constructor, instance member function, instance member accessor, or instance member

variable initializer, this is of the class instance type of the containing class.

 In a static member function or static member accessor, the type of this is the constructor

function type of the containing class.

 In a function declaration or a standard function expression, this is of type Any.

 In the global module, this is of type Any.

In all other contexts it is a compile-time error to reference this.

In the body of an arrow function expression, references to this are rewritten in the generated JavaScript

code, as described in section 4.9.2.

52

4.3 Identifiers

When an expression is an Identifier, the expression refers to the most nested module, class, enum,

function, variable, or parameter with that name whose scope (section 2.4) includes the location of the

reference. The type of such an expression is the type associated with the referenced entity:

 For a module, the object type associated with the module instance.

 For a class, the constructor type associated with the constructor function object.

 For an enum, the object type associated with the enum object.

 For a function, the function type associated with the function object.

 For a variable, the type of the variable.

 For a parameter, the type of the parameter.

An identifier expression that references a variable or parameter is classified as a reference. An identifier

expression that references any other kind of entity is classified as a value (and therefore cannot be the

target of an assignment).

4.4 Literals

Literals are typed as follows:

 The type of the null literal is the Null primitive type.

 The type of the literals true and false is the Boolean primitive type.

 The type of numeric literals is the Number primitive type.

 The type of string literals is the String primitive type.

 The type of regular expression literals is the global interface type ‘RegExp’.

4.5 Object Literals

Object literals are extended to support type annotations in get and set accessors.

PropertyAssignment: (Modified)

PropertyName : AssignmentExpression

PropertyName CallSignature { FunctionBody }

GetAccessor

SetAccessor

GetAccessor:

get PropertyName () TypeAnnotationopt { FunctionBody }

SetAccessor:

set PropertyName (Identifier TypeAnnotationopt) { FunctionBody }

The type of an object literal is an object type with the set of properties specified by the property

assignments in the object literal. A get and set accessor may specify the same property name, but

otherwise it is an error to specify multiple property assignments for the same property.

53

A property assignment of the form

PropertyName CallSignature { FunctionBody }

is simply shorthand for

PropertyName : function CallSignature { FunctionBody }

Each property assignment in an object literal is processed as follows:

 If the object literal is contextually typed and the contextual type contains a property with a

matching name, the property assignment is contextually typed by the type of that property.

 Otherwise, if the object literal is contextually typed, the contextual type contains a numeric index

signature, and the property assignment specifies a numeric property name, the property

assignment is contextually typed by the type of the numeric index signature.

 Otherwise, if the object literal is contextually typed and the contextual type contains a string index

signature, the property assignment is contextually typed by the type of the string index signature.

 Otherwise, the property assignment is processed without a contextual type.

The type of a property introduced by a property assignment of the form Name : Expr is the type of Expr.

A get accessor declaration is processed in the same manner as an ordinary function declaration (section

6.1) with no parameters. A set accessor declaration is processed in the same manner as an ordinary

function declaration with a single parameter and a Void return type. When both a get and set accessor is

declared for a property:

 If both accessors include type annotations, the specified types must be identical.

 If only one accessor includes a type annotation, the other behaves as if it had the same type

annotation.

 If neither accessor includes a type annotation, the inferred return type of the get accessor

becomes the parameter type of the set accessor.

If a get accessor is declared for a property, the return type of the get accessor becomes the type of the

property. If only a set accessor is declared for a property, the parameter type (which may be type Any if no

type annotation is present) of the set accessor becomes the type of the property.

When an object literal is contextually typed by a type that includes a string index signature of type T, the

resulting type of the object literal includes a string index signature with the widened form of the best

common type of T and the types of the properties declared in the object literal. Likewise, when an object

literal is contextually typed by a type that includes a numeric index signature of type T, the resulting type

of the object literal includes a numeric index signature with the widened form of the best common type of

T and the types of the numerically named properties (section 3.7.4) declared in the object literal.

54

4.6 Array Literals

In the absence of a contextual type, the type of an array literal is C[], where C is the Undefined type

(section 3.2.6) if the array literal is empty, or the best common type of the element expressions if the array

literal is not empty.

When an array literal is contextually typed (section 4.19) by an object type containing a numeric index

signature of type T, each element expression is contextually typed by T and the type of the array literal is

the best common type of T and the types of the element expressions.

4.7 Parentheses

A parenthesized expression

(Expression)

has the same type and classification as the Expression itself. Specifically, if the contained expression is

classified as a reference, so is the parenthesized expression.

4.8 The super Keyword

The super keyword can be used in expressions to reference base class properties and the base class

constructor.

CallExpression: (Modified)

…

super (ArgumentListopt)

super . IdentifierName

4.8.1 Super Calls

Super calls consist of the keyword super followed by an argument list enclosed in parentheses. Super

calls are only permitted in constructors of derived classes, as described in section 8.3.2.

A super call invokes the constructor of the base class on the instance referenced by this. A super call is

processed as a function call (section 4.12) using the construct signatures of the base class constructor

function type as the initial set of candidate signatures for overload resolution. Type arguments cannot be

explicitly specified in a super call. If the base class is a generic class, the type arguments used to process a

super call are always those specified in the extends clause that references the base class.

The type of a super call expression is Void.

The JavaScript code generated for a super call is specified in section 8.6.2.

4.8.2 Super Property Access

A super property access consists of the keyword super followed by a dot and an identifier. Super property

accesses are used to access base class member functions from derived classes and are permitted in

55

contexts where this (section 4.2) references a derived class instance or a derived class constructor

function. Specifically:

 In a constructor, instance member function, instance member accessor, or instance member

variable initializer where this references a derived class instance, a super property access is

permitted and must specify a public instance member function of the base class.

 In a static member function or static member accessor where this references the constructor

function object of a derived class, a super property access is permitted and must specify a public

static member function of the base class.

Super property accesses are not permitted in other contexts, and it is not possible to access other kinds of

base class members in a super property access. Note that super property accesses are not permitted

inside standard function expressions nested in the above constructs because this is of type Any in such

function expressions.

Super property accesses are typically used to access overridden base class member functions from

derived class member functions. For an example of this, see section 8.4.2.

The JavaScript code generated for a super property access is specified in section 8.6.2.

4.9 Function Expressions

Function expressions are extended from JavaScript to optionally include parameter and return type

annotations, and a new compact form, called arrow function expressions, is introduced.

FunctionExpression: (Modified)

function Identifieropt CallSignature { FunctionBody }

AssignmentExpression: (Modified)

…

ArrowFunctionExpression

ArrowFunctionExpression:

ArrowFormalParameters => Block

ArrowFormalParameters => AssignmentExpression

ArrowFormalParameters:

CallSignature

Identifier

The terms standard function expression and arrow function expression are used to refer to the

FunctionExpression and ArrowFunctionExpression forms respectively. When referring to either, the generic

term function expression is used.

The type of a function expression is an object type containing a single call signature with parameter and

return types inferred from the function expression’s signature and body.

56

The descriptions of function declarations provided in section 6.1 apply to function expressions as well,

except that function expressions do not support overloading.

4.9.1 Standard Function Expressions

Standard function expressions are function expressions written with the function keyword. The type of

this in a standard function expression is the Any type.

Standard function expressions are transformed to JavaScript in the same manner as function declarations

(see section 6.5).

4.9.2 Arrow Function Expressions

TypeScript supports arrow function expressions, a new feature planned for ECMAScript 6. Arrow

function expressions are a compact form of function expressions that omit the function keyword and

have lexical scoping of this.

An arrow function expression of the form

ArrowFormalParameters => AssignmentExpression

is exactly equivalent to

ArrowFormalParameters => { return AssignmentExpression ; }

Furthermore, arrow function expressions of the forms

Identifier => Block

Identifier => AssignmentExpression

are exactly equivalent to

(Identifier) => Block

(Identifier) => AssignmentExpression

Thus, the following examples are all equivalent:

(x) => { return Math.sin(x); }

(x) => Math.sin(x)

x => { return Math.sin(x); }

x => Math.sin(x)

A function expression using the function keyword introduces a new dynamically bound this, whereas

an arrow function expression preserves the this of its enclosing context. Arrow function expressions are

particularly useful for writing callbacks, which otherwise often have an undefined or unexpected this.

In the example

57

class Messenger {

 message = "Hello World";

 start() {

 setTimeout(() => alert(this.message), 3000);

 }

};

var messenger = new Messenger();

messenger.start();

the use of an arrow function expression causes the callback to have the same this as the surrounding

‘start’ method. Writing the callback as a standard function expression it becomes necessary to manually

arrange access to the surrounding this, for example by copying it into a local variable:

class Messenger {

 message = "Hello World";

 start() {

 var _this = this;

 setTimeout(function() { alert(_this.message); }, 3000);

 }

};

var messenger = new Messenger();

messenger.start();

The TypeScript compiler applies this type of transformation to rewrite arrow function expressions into

standard function expressions.

A construct of the form

< Identifier > (ParamList) => { ... }

could be parsed as an arrow function expression with a type parameter or a type assertion applied to an

arrow function with no type parameter. It is resolved as the former, but parentheses can be used to select

the latter meaning:

< Identifier > ((ParamList) => { ... })

4.9.3 Contextually Typed Function Expressions

Function expressions with no type parameters and no parameter or return type annotations (but possibly

with optional parameters and default parameter values) are contextually typed in certain circumstances, as

described in section 4.19.

When a function expression is contextually typed by a function type T, the function expression is

processed as if it had explicitly specified parameter type annotations as they exist in T. Parameters are

matched by position and need not have matching names. If the function expression has fewer parameters

than T, the additional parameters in T are ignored. If the function expression has more parameters than T,

the additional parameters are all considered to have type Any.

58

Furthermore, when a function expression is contextually typed by a function type T, expressions in

contained return statements (section 5.7) are contextually typed by T’s return type.

4.10 Property Access

A property access uses either dot notation or bracket notation. A property access expression is always

classified as a reference.

A property access uses an object’s apparent type (section 3.8.1) to determine its properties. Furthermore,

in a property access, an object’s apparent type includes the properties that originate in the ‘Object’ or

‘Function’ global interface types, as described in section 3.3.

A dot notation property access of the form

ObjExpr . Name

where ObjExpr is an expression and Name is an identifier (including, possibly, a reserved word), is used to

access the property with the given name on the given object. A dot notation property access is processed

as follows at compile-time:

 If ObjExpr is of type Any, any Name is permitted and the property access is of type Any.

 Otherwise, if Name denotes a property member in the apparent type of ObjExpr, the property

access is of the type of that property.

 Otherwise, the property access is invalid and a compile-time error occurs.

A bracket notation property access of the form

ObjExpr [IndexExpr]

where ObjExpr and IndexExpr are expressions, is used to access the property with the name computed by

the index expression on the given object. A bracket notation property access is processed as follows at

compile-time:

 If IndexExpr is a string literal or a numeric literal and ObjExpr’s apparent type has a property with

the name given by that literal (converted to its string representation in the case of a numeric

literal), the property access is of the type of that property.

 Otherwise, if ObjExpr’s apparent type has a numeric index signature and IndexExpr is of type Any,

the Number primitive type, or an enum type, the property access is of the type of that index

signature.

 Otherwise, if ObjExpr’s apparent type has a string index signature and IndexExpr is of type Any,

the String or Number primitive type, or an enum type, the property access is of the type of that

index signature.

 Otherwise, if IndexExpr is of type Any, the String or Number primitive type, or an enum type, the

property access is of type Any.

 Otherwise, the property access is invalid and a compile-time error occurs.

59

4.11 The new Operator

A new operation has one of the following forms:

new ConstructExpr

new ConstructExpr (Args)

where ConstructExpr is an expression and Args is an argument list. The first form is equivalent to supplying

an empty argument list. ConstructExpr must be of type Any or of an object type with one or more

construct or call signatures. The operation is processed as follows at compile-time:

 If ConstructExpr is of type Any, Args can be any argument list and the result of the operation is of

type Any.

 If ConstructExpr’s apparent type (section 3.8.1) is an object type with one or more construct

signatures, the expression is processed in the same manner as a function call, but using the

construct signatures as the initial set of candidate signatures for overload resolution. The result

type of the function call becomes the result type of the operation.

 If ConstructExpr’s apparent type is an object type with no construct signatures but one or more

call signatures, the expression is processed as a function call. A compile-time error occurs if the

result of the function call is not Void. The type of the result of the operation is Any.

4.12 Function Calls

Function calls are extended from JavaScript to optionally include type arguments.

Arguments: (Modified)

TypeArgumentsopt (ArgumentListopt)

A function call takes one of the forms

FuncExpr (Args)

FuncExpr < TypeArgs > (Args)

where FuncExpr is an expression of a function type or of type Any, TypeArgs is a type argument list

(section 3.4.2), and Args is an argument list.

If FuncExpr is of type Any, or of an object type that has no call signatures but is a subtype of the Function

interface, the call is an untyped function call. In an untyped function call no TypeArgs are permitted, Args

can be any argument list, no contextual types are provided for the argument expressions, and the result is

always of type Any.

If FuncExpr’s apparent type (section 3.8.1) is a function type, the call is a typed function call. TypeScript

employs overload resolution in typed function calls in order to support functions with multiple call

signatures. Furthermore, TypeScript may perform type argument inference to automatically determine

type arguments in generic function calls.

60

4.12.1 Overload Resolution

The purpose of overload resolution in a function call is to ensure that at least one signature is applicable,

to provide contextual types for the arguments, and to determine the result type of the function call, which

could differ between the multiple applicable signatures. Overload resolution has no impact on the run-

time behavior of a function call. Since JavaScript doesn’t support function overloading, all that matters at

run-time is the name of the function.

The compile-time processing of a typed function call consists of the following steps:

 First, a list of candidate signatures is constructed from the call signatures in the function type in

declaration order. For classes and interfaces, inherited signatures are considered to follow

explicitly declared signatures in extends clause order.

o A non-generic signature is a candidate when

 the function call has no type arguments, and

 the signature is applicable with respect to the argument list of the function call.

o A generic signature is a candidate in a function call without type arguments when

 type inference (section 4.12.2) succeeds in inferring a list of type arguments,

 the inferred type arguments satisfy their constraints, and

 once the inferred type arguments are substituted for their associated type

parameters, the signature is applicable with respect to the argument list of the

function call.

o A generic signature is a candidate in a function call with type arguments when

 The signature has the same number of type parameters as were supplied in the

type argument list,

 the type arguments satisfy their constraints, and

 once the type arguments are substituted for their associated type parameters, the

signature is applicable with respect to the argument list of the function call.

 If the list of candidate signatures is empty, the function call is an error.

 Otherwise, if the candidate list contains one or more signatures for which the type of each

argument expression is a subtype of each corresponding parameter type, the return type of the

first of those signatures becomes the return type of the function call.

 Otherwise, the return type of the first signature in the candidate list becomes the return type of

the function call.

A signature is said to be an applicable signature with respect to an argument list when

 the number of arguments is not less than the number of required parameters,

 the number of arguments is not greater than the number of parameters, and

 for each argument expression e and its corresponding parameter P, when e is contextually typed

(section 4.19) by the type of P, no errors ensue and the type of e is assignable to (section 3.8.4)

the type of P.

61

4.12.2 Type Argument Inference

Given a signature < T1 , T2 , … , Tn > (p1 : P1 , p2 : P2 , … , pm : Pm), where each parameter type P references

zero or more of the type parameters T, and an argument list (e1 , e2 , … , em), the task of type argument

inference is to find a set of type arguments A1…An to substitute for T1…Tn such that the argument list

becomes an applicable signature.

The inferred type argument for a particular type parameter is determined from a set of candidate types.

Given a type parameter T, let C denote the widened form (section 3.9) of the best common type (section

3.10) of the set of candidate types T. Then,

 If C satisfies T’s constraint, the inferred type argument for T is C.

 Otherwise, the inferred type argument for T is T’s constraint.

In order to compute candidate types, the argument list is processed as follows:

 Initially all inferred type arguments are considered unfixed with an empty set of candidate types.

 Proceeding from left to right, each argument expression e is inferentially typed by its

corresponding parameter type P, possibly causing some inferred type arguments to become

fixed, and candidate type inferences (section 3.8.6) are made for unfixed inferred type arguments

from the type computed for e to P.

The process of inferentially typing an expression e by a type T is the same as that of contextually typing e

by T, with the following exceptions:

 Where expressions contained within e would be contextually typed, they are instead inferentially

typed.

 Where a contextual type would be included in a candidate set for a best common type (such as

when inferentially typing an object or array literal), an inferential type is not.

 When a function expression is inferentially typed (section 4.9.3) and a type assigned to a

parameter in that expression references type parameters for which inferences are being made, the

corresponding inferred type arguments to become fixed and no further candidate inferences are

made for them.

 If e is an expression of a function type that contains exactly one generic call signature and no

other members, and T is a function type with exactly one non-generic call signature and no other

members, then any inferences made for type parameters referenced by the parameters of T’s call

signature are fixed, and e’s type is changed to a function type with e’s call signature instantiated

in the context of T’s call signature (section 3.8.5).

In the example

function choose<T>(x: T, y: T): T {

 return Math.random() < 0.5 ? x : y;

}

var x = choose("Five", 5);

62

inferences for ‘T’ in the call to ‘choose’ are made as follows: For the first parameter, an inference is made

from type ‘string’ to ‘T’. For the second parameter, an inference is made from type ‘number’ to ‘T’. Since

the best common type (section 3.10) of ‘string’ and ‘number’ is the empty object type, the call to ‘choose’

is equivalent to

var x = choose<{}>("Five", 5);

and the resulting type of ‘x’ is therefore the empty object type. Note that had both arguments been of

type ‘string’ or ‘number’, ‘x’ would have been of that type.

In the example

function map<T, U>(a: T[], f: (x: T) => U): U[] {

 var result: U[] = [];

 for (var i = 0; i < a.length; i++) result.push(f(a[i]));

 return result;

}

var names = ["Peter", "Paul", "Mary"];

var lengths = map(names, s => s.length);

inferences for ‘T’ and ‘U’ in the call to ‘map’ are made as follows: For the first parameter, inferences are

made from the type ‘string[]’ (the type of ‘names’) to the type ‘T[]’, inferring ‘string’ for ‘T’. For the second

parameter, inferential typing of the arrow expression ‘s => s.length’ causes ‘T’ to become fixed such that

the inferred type ‘string’ can be used for the parameter ‘s’. The return type of the arrow expression can

then be determined, and inferences are made from the type ‘(s: string) => number’ to the type ‘(x: T) =>

U’, inferring ‘number’ for ‘U’. Thus the call to ‘map’ is equivalent to

var lengths = map<string, number>(names, s => s.length);

and the resulting type of ‘lengths’ is therefore ‘number[]’.

In the example

function zip<S, T, U>(x: S[], y: T[], combine: (x: S) => (y: T) => U): U[] {

 var len = Math.max(x.length, y.length);

 var result: U[] = [];

 for (var i = 0; i < len; i++) result.push(combine(x[i])(y[i]));

 return result;

}

var names = ["Peter", "Paul", "Mary"];

var ages = [7, 9, 12];

var pairs = zip(names, ages, s => n => ({ name: s, age: n }));

inferences for ‘S’, ‘T’ and ‘U’ in the call to ‘zip’ are made as follows: Using the first two parameters,

inferences of ‘string’ for ‘S’ and ‘number’ for ‘T’ are made. For the third parameter, inferential typing of the

outer arrow expression causes ‘S’ to become fixed such that the inferred type ‘string’ can be used for the

63

parameter ‘s’. When a function expression is inferentially typed, its return expression(s) are also

inferentially typed. Thus, the inner arrow function is inferentially typed, causing ‘T’ to become fixed such

that the inferred type ‘number’ can be used for the parameter ‘n’. The return type of the inner arrow

function can then be determined, which in turn determines the return type of the function returned from

the outer arrow function, and inferences are made from the type ‘(s: string) => (n: number) => { name:

string; age: number }’ to the type ‘(x: S) => (y: T) => R’, inferring ‘{ name: string; age: number }’ for ‘R’.

Thus the call to ‘zip’ is equivalent to

var pairs = zip<string, number, { name: string; age: number }>(

 names, ages, s => n => ({ name: s, age: n }));

and the resulting type of ‘pairs’ is therefore ‘{ name: string; age: number }[]’.

4.12.3 Grammar Ambiguities

The inclusion of type arguments in the Arguments production (section 4.12) gives rise to certain

ambiguities in the grammar for expressions. For example, the statement

f(g<A, B>(7));

could be interpreted as a call to ‘f’ with two arguments, ‘g < A’ and ‘B > (7)’. Alternatively, it could be

interpreted as a call to ‘f’ with one argument, which is a call to a generic function ‘g’ with two type

arguments and one regular argument.

The grammar ambiguity is resolved as follows: In a context where one possible interpretation of a

sequence of tokens is an Arguments production, if the initial sequence of tokens forms a syntactically

correct TypeArguments production and is followed by a ‘(‘ token, then the sequence of tokens is

processed an Arguments production, and any other possible interpretation is discarded. Otherwise, the

sequence of tokens is not considered an Arguments production.

This rule means that the call to ‘f’ above is interpreted as a call with one argument, which is a call to a

generic function ‘g’ with two type arguments and one regular argument. However, the statements

f(g < A, B > 7);

f(g < A, B > +(7));

are both interpreted as calls to ‘f’ with two arguments.

4.13 Type Assertions

TypeScript extends the JavaScript expression grammar with the ability to assert a type for an expression:

UnaryExpression: (Modified)

…

< Type > UnaryExpression

64

A type assertion expression consists of a type enclosed in < and > followed by a unary expression. Type

assertion expressions are purely a compile-time construct. Type assertions are not checked at run-time

and have no impact on the emitted JavaScript (and therefore no run-time cost). The type and the

enclosing < and > are simply removed from the generated code.

In a type assertion expression of the form < T > e, e is contextually typed (section 4.19) by T and the

resulting type of e is required to be assignable to T, or T is required to be assignable to the widened form

of the resulting type of e, or otherwise a compile-time error occurs. The type of the result is T.

Type assertions check for assignment compatibility in both directions. Thus, type assertions allow type

conversions that might be correct, but aren’t known to be correct. In the example

class Shape { ... }

class Circle extends Shape { ... }

function createShape(kind: string): Shape {

 if (kind === "circle") return new Circle();

 ...

}

var circle = <Circle> createShape("circle");

the type annotations indicate that the ‘createShape’ function might return a ‘Circle’ (because ‘Circle’ is a

subtype of ‘Shape’), but isn’t known to do so (because its return type is ‘Shape’). Therefore, a type

assertion is needed to treat the result as a ‘Circle’.

As mentioned above, type assertions are not checked at run-time and it is up to the programmer to guard

against errors, for example using the instanceof operator:

var shape = createShape(shapeKind);

if (shape instanceof Circle) {

 var circle = <Circle> shape;

 ...

}

4.14 Unary Operators

The subsections that follow specify the compile-time processing rules of the unary operators. In general, if

the operand of a unary operator does not meet the stated requirements, a compile-time error occurs and

the result of the operation defaults to type Any in further processing.

4.14.1 The ++ and -- operators

These operators, in prefix or postfix form, require their operand to be of type Any, the Number primitive

type, or an enum type, and classified as a reference (section 4.1). They produce a result of the Number

primitive type.

65

4.14.2 The +, –, and ~ operators

These operators permit their operand to be of any type and produce a result of the Number primitive

type.

The unary + operator can conveniently be used to convert a value of any type to the Number primitive

type:

function getValue() { ... }

var n = +getValue();

The example above converts the result of ‘getValue()’ to a number if it isn’t a number already. The type

inferred for ‘n’ is the Number primitive type regardless of the return type of ‘getValue’.

4.14.3 The ! operator

The ! operator permits its operand to be of any type and produces a result of the Boolean primitive type.

Two unary ! operators in sequence can conveniently be used to convert a value of any type to the Boolean

primitive type:

function getValue() { ... }

var b = !!getValue();

The example above converts the result of ‘getValue()’ to a Boolean if it isn’t a Boolean already. The type

inferred for ‘b’ is the Boolean primitive type regardless of the return type of ‘getValue’.

4.14.4 The delete Operator

The ‘delete’ operator takes an operand of any type and produces a result of the Boolean primitive type.

4.14.5 The void Operator

The ‘void’ operator takes an operand of any type and produces the value ‘undefined’. The type of the

result is the Undefined type (3.2.6).

4.14.6 The typeof Operator

The ‘typeof’ operator takes an operand of any type and produces a value of the String primitive type. In

positions where a type is expected, ‘typeof’ can also be used in a type query (section 3.6.3) to produce the

type of an expression.

var x = 5;

var y = typeof x; // Use in an expression

var z: typeof x; // Use in a type query

In the example above, ‘x’ is of type ‘number’, ‘y’ is of type ‘string’ because when used in an expression,

‘typeof’ produces a value of type string (in this case the string “number”), and ‘z’ is of type ‘number’

because when used in a type query, ‘typeof’ obtains the type of an expression.

66

4.15 Binary Operators

The subsections that follow specify the compile-time processing rules of the binary operators. In general,

if the operands of a binary operator do not meet the stated requirements, a compile-time error occurs

and the result of the operation defaults to type any in further processing. Tables that summarize the

compile-time processing rules for operands of the Any type, the Boolean, Number, and String primitive

types, and all object types and type parameters (the Object column in the tables) are provided.

4.15.1 The *, /, %, –, <<, >>, >>>, &, ^, and | operators

These operators require their operands to be of type Any, the Number primitive type, or an enum type.

Operands of an enum type are treated as having the primitive type Number. If one operand is the null or

undefined value, it is treated as having the type of the other operand. The result is always of the Number

primitive type.

 Any Boolean Number String Object

Any Number Number

Boolean

Number Number Number

String

Object

4.15.2 The + operator

The binary + operator requires both operands to be of the Number primitive type or an enum type, or at

least one of the operands to be of type Any or the String primitive type. Operands of an enum type are

treated as having the primitive type Number. If one operand is the null or undefined value, it is treated

as having the type of the other operand. If both operands are of the Number primitive type, the result is

of the Number primitive type. If one or both operands are of the String primitive type, the result is of the

String primitive type. Otherwise, the result is of type Any.

 Any Boolean Number String Object

Any Any Any Any String Any

Boolean Any String

Number Any Number String

String String String String String String

Object Any String

A value of any type can converted to the String primitive type by adding an empty string:

67

function getValue() { ... }

var s = getValue() + "";

The example above converts the result of ‘getValue()’ to a string if it isn’t a string already. The type

inferred for ‘s’ is the String primitive type regardless of the return type of ‘getValue’.

4.15.3 The <, >, <=, >=, ==, !=, ===, and !== operators

These operators require one operand type to be identical to or a subtype of the other operand type. The

result is always of the Boolean primitive type.

 Any Boolean Number String Object

Any Boolean Boolean Boolean Boolean Boolean

Boolean Boolean Boolean

Number Boolean Boolean

String Boolean Boolean

Object Boolean Boolean

4.15.4 The instanceof operator

The instanceof operator requires the left operand to be of type Any, an object type, or a type parameter

type, and the right operand to be of type Any or a subtype of the ‘Function’ interface type. The result is

always of the Boolean primitive type.

Note that object types containing one or more call or construct signatures are automatically subtypes of

the ‘Function’ interface type, as described in section 3.3.

4.15.5 The in operator

The in operator requires the left operand to be of type Any, the String primitive type, or the Number

primitive type, and the right operand to be of type Any, an object type, or a type parameter type. The

result is always of the Boolean primitive type.

4.15.6 The && operator

The && operator permits the operands to be of any type and produces a result of the same type as the

second operand.

68

 Any Boolean Number String Object

Any Any Boolean Number String Object

Boolean Any Boolean Number String Object

Number Any Boolean Number String Object

String Any Boolean Number String Object

Object Any Boolean Number String Object

4.15.7 The || operator

The || operator permits the operands to be of any type.

If the || expression is contextually typed (section 4.19), the operands are contextually typed by the same

type and the result is of the best common type (section 3.10) of the contextual type and the two operand

types.

If the || expression is not contextually typed, the right operand is contextually typed by the type of the left

operand and the result is of the best common type of the two operand types.

 Any Boolean Number String Object

Any Any Any Any Any Any

Boolean Any Boolean { } { } { }

Number Any { } Number { } { }

String Any { } { } String { }

Object Any { } { } { } Object

4.16 The Conditional Operator

In a conditional expression of the form

Cond ? Expr1 : Expr2

the Cond expression may be of any type.

If the conditional expression is contextually typed (section 4.19), Expr1 and Expr2 are contextually typed by

the same type and the result is of the best common type (section 3.10) of the contextual type and the

types of Expr1 and Expr2. An error occurs if the best common type is not identical to at least one of the

three candidate types.

69

If the conditional expression is not contextually typed, the result is of the best common type of the types

of Expr1 and Expr2. An error occurs if the best common type is not identical to at least one of the two

candidate types.

4.17 Assignment Operators

An assignment of the form

VarExpr = ValueExpr

requires VarExpr to be classified as a reference (section 4.1). ValueExpr is contextually typed (section 4.19)

by the type of VarExpr, and the type of ValueExpr must be assignable to (section 3.8.4) the type of

VarExpr, or otherwise a compile-time error occurs. The result is a value with the type of ValueExpr.

A compound assignment of the form

VarExpr Operator= ValueExpr

where Operator= is of the compound assignment operators

*= /= %= += -= <<= >>= >>>= &= ^= |=

is subject to the same requirements, and produces a value of the same type, as the corresponding non-

compound operation. A compound assignment furthermore requires VarExpr to be classified as a

reference (section 4.1) and the type of the non-compound operation to be assignable to the type of

VarExpr.

4.18 The Comma Operator

The comma operator permits the operands to be of any type and produces a result that is of the same

type as the second operand.

4.19 Contextually Typed Expressions

In certain situations, parameter and return types of function expressions are automatically inferred from

the contexts in which the function expressions occur. For example, given the declaration

var f: (s: string) => string;

the assignment

f = function(s) { return s.toLowerCase(); }

infers the type of the ‘s’ parameter to be the String primitive type even though there is no type annotation

to that effect. The function expression is said to be contextually typed by the variable to which it is being

assigned. Contextual typing occurs in the following situations:

70

 In variable, parameter, and member declarations with a type annotation and an initializer, the

initializer expression is contextually typed by the type of the variable, parameter, or property.

 In return statements, if the containing function includes a return type annotation, return

expressions are contextually typed by that return type. Otherwise, if the containing function is

contextually typed by a type T, return expressions are contextually typed by T’s return type.

 In typed function calls, argument expressions are contextually typed by their parameter types.

 In type assertions, the expression is contextually typed by the indicated type.

 In || operator expressions without a contextual type, the right hand expression is contextually

typed by the type of the left hand expression.

 In assignment expressions, the right hand expression is contextually typed by the type of the left

hand expression.

 In contextually typed object literals, property assignments are contextually typed by their property

types.

 In contextually typed array literals, element expressions are contextually typed by the array

element type.

 In contextually typed || operator expressions, the operands are contextually typed as well.

 In contextually typed conditional operator expressions, the operands are contextually typed as

well.

Contextual typing of an expression e by a type T proceeds as follows:

 If e is an ObjectLiteral and T is an object type, e is processed with the contextual type T, as

described in section 4.5.

 If e is an ArrayLiteral and T is an object type with a numeric index signature, e is processed with

the contextual type T, as described in section 4.6.

 If e is a FunctionExpression or ArrowFunctionExpression with no type parameters and no parameter

or return type annotations, T is a function type with exactly one call signature and T’s call

signature is non-generic, then any inferences made for type parameters referenced by the

parameters of T’s call signature are fixed (section 4.12.2) and e is processed with the contextual

type T, as described in section 4.9.3.

 If e is a || operator expression and T is an object type, e is processed with the contextual type T, as

described in section 4.15.7.

 If e is a conditional operator expression and T is an object type, e is processed with the contextual

type T, as described in section 4.16.

 Otherwise, e is processed without a contextual type.

The rules above require expressions be of the exact syntactic forms specified in order to be processed as

contextually typed constructs. For example, given the declaration of the variable ‘f’ above, the assignment

f = s => s.toLowerCase();

causes the function expression to be contextually typed, inferring the String primitive type for ‘s’.

However, simply enclosing the construct in parentheses

71

f = (s => s.toLowerCase());

causes the function expression to be processed without a contextual type, now inferring ‘s’ and the result

of the function to be of type Any as no type annotations are present.

In the following example

interface EventObject {

 x: number;

 y: number;

}

interface EventHandlers {

 mousedown?: (event: EventObject) => void;

 mouseup?: (event: EventObject) => void;

 mousemove?: (event: EventObject) => void;

}

function setEventHandlers(handlers: EventHandlers) { ... }

setEventHandlers({

 mousedown: e => { startTracking(e.x, e.y); },

 mouseup: e => { endTracking(); }

});

the object literal passed to ‘setEventHandlers’ is contextually typed to the ‘EventHandlers’ type. This

causes the two property assignments to be contextually typed to the unnamed function type ‘(event:

EventObject) => void’, which in turn causes the ‘e’ parameters in the arrow function expressions to

automatically be typed as ‘EventObject’.

73

5 Statements

This chapter describes the static type checking TypeScript provides for JavaScript statements. TypeScript

itself does not introduce any new statement constructs.

5.1 Variable Statements

Variable statements are extended to include optional type annotations.

VariableDeclaration: (Modified)

Identifier TypeAnnotationopt Initialiseropt

VariableDeclarationNoIn: (Modified)

Identifier TypeAnnotationopt InitialiserNoInopt

TypeAnnotation:

: Type

A variable declaration introduces a variable with the given name in the containing declaration space. The

type associated with a variable is determined as follows:

 If the declaration includes a type annotation, the stated type becomes the type of the variable. If

an initializer is present, the initializer expression is contextually typed (section 4.19) by the stated

type and must be assignable to the stated type, or otherwise a compile-time error occurs.

 If the declaration includes an initializer but no type annotation, and if the initializer doesn’t

directly or indirectly reference the variable, the widened type (section 3.9) of the initializer

expression becomes the type of the variable. If the initializer directly or indirectly references the

variable, the type of the variable becomes the Any type.

 If the declaration includes neither a type annotation nor an initializer, the type of the variable

becomes the Any type.

Multiple declarations for the same variable name in the same declaration space are permitted, provided

that each declaration associates the same type with the variable.

Below are some examples of variable declarations and their associated types.

var a; // any

var b: number; // number

var c = 1; // number

var d = { x: 1, y: "hello" }; // { x: number; y: string; }

var e: any = "test"; // any

The following is permitted because all declarations of the single variable ‘x’ associate the same type

(Number) with ‘x’.

74

var x = 1;

var x: number;

if (x == 1) {

 var x = 2;

}

In the following example, all five variables are of the same type, ‘{ x: number; y: number; }’.

interface Point { x: number; y: number; }

var a = { x: 0, y: <number> undefined };

var b: Point = { x: 0, y: undefined };

var c = <Point> { x: 0, y: undefined };

var d: { x: number; y: number; } = { x: 0, y: undefined };

var e = <{ x: number; y: number; }> { x: 0, y: undefined };

5.2 If, Do, and While Statements

Expressions controlling ‘if’, ‘do’, and ‘while’ statements can be of any type (and not just type Boolean).

5.3 For Statements

Variable declarations in ‘for’ statements are extended in the same manner as variable declarations in

variable statements (section 5.1).

5.4 For-In Statements

In a ‘for-in’ statement of the form

for (Var in Expr) Statement

Var must be an expression classified as a reference of type Any or the String primitive type, and Expr must

be an expression of type Any, an object type, or a type parameter type.

In a ‘for-in’ statement of the form

for (var VarDecl in Expr) Statement

VarDecl must be a variable declaration without a type annotation that declares a variable of type Any, and

Expr must be an expression of type Any, an object type, or a type parameter type.

5.5 Continue Statements

A ‘continue’ statement is required to be nested, directly or indirectly (but not crossing function

boundaries), within an iteration (‘do’, ‘while’, ‘for’, or ‘for-in’) statement. When a ‘continue’ statement

includes a target label, that target label must appear in the label set of an enclosing (but not crossing

function boundaries) iteration statement.

75

5.6 Break Statements

A ‘break’ statement is required to be nested, directly or indirectly (but not crossing function boundaries),

within an iteration (‘do’, ‘while’, ‘for’, or ‘for-in’) or ‘switch’ statement. When a ‘break’ statement includes a

target label, that target label must appear in the label set of an enclosing (but not crossing function

boundaries) statement.

5.7 Return Statements

It is an error for a ‘return’ statement to occur outside a function body. Specifically, ‘return’ statements are

not permitted at the global level or in module bodies.

A ‘return’ statement without an expression returns the value ‘undefined’ and is permitted in the body of

any function, regardless of the return type of the function.

When a ‘return’ statement includes an expression, if the containing function includes a return type

annotation, the return expression is contextually typed (section 4.19) by that return type and must be of a

type that is assignable to the return type. Otherwise, if the containing function is contextually typed by a

type T, Expr is contextually typed by T’s return type.

In a function implementation without a return type annotation, the return type is inferred from the ‘return’

statements in the function body, as described in section 6.3.

In the example

function f(): (x: string) => number {

 return s => s.length;

}

the arrow expression in the ‘return’ statement is contextually typed by the return type of ‘f’, thus giving

type ‘string’ to ‘s’.

5.8 With Statements

Use of the ‘with’ statement in TypeScript is an error, as is the case in ECMAScript 5’s strict mode.

Furthermore, within the body of a ‘with’ statement, TypeScript considers every identifier occurring in an

expression (section 4.3) to be of the Any type regardless of its declared type. Because the ‘with’ statement

puts a statically unknown set of identifiers in scope in front of those that are statically known, it is not

possible to meaningfully assign a static type to any identifier.

5.9 Switch Statements

In a ‘switch’ statement, each ‘case’ expression must be of a type that is assignable to or from (section

3.8.4) the type of the ‘switch’ expression.

76

5.10 Throw Statements

The expression specified in a ‘throw’ statement can be of any type.

5.11 Try Statements

The variable introduced by a ‘catch’ clause of a ‘try’ statement is always of type Any. It is not possible to

include a type annotation in a ‘catch’ clause.

77

6 Functions

TypeScript extends JavaScript functions to include type parameters, parameter and return type

annotations, overloads, default parameter values, and rest parameters.

6.1 Function Declarations

Function declarations consist of an optional set of function overloads followed by an actual function

implementation.

FunctionDeclaration: (Modified)

FunctionOverloadsopt FunctionImplementation

FunctionOverloads:

FunctionOverload

FunctionOverloads FunctionOverload

FunctionOverload:

function Identifier CallSignature ;

FunctionImplementation:

function Identifier CallSignature { FunctionBody }

A function declaration introduces a function with the given name in the containing declaration space.

Function overloads, if present, must specify the same name as the function implementation. If a function

declaration includes overloads, the overloads determine the call signatures of the type given to the

function object and the function implementation signature must be assignable to that type. Otherwise,

the function implementation itself determines the call signature. Function overloads have no other effect

on a function declaration.

6.2 Function Overloads

Function overloads allow a more accurate specification of the patterns of invocation supported by a

function than is possible with a single signature. The compile-time processing of a call to an overloaded

function chooses the best candidate overload for the particular arguments and the return type of that

overload becomes the result type the function call expression. Thus, using overloads it is possible to

statically describe the manner in which a function’s return type varies based on its arguments. Overload

resolution in function calls is described further in section 4.12.

Function overloads are purely a compile-time construct. They have no impact on the emitted JavaScript

and thus no run-time cost.

The parameter list of a function overload cannot specify default values for parameters. In other words, an

overload may use only the ? form when specifying optional parameters.

78

The following is an example of a function with overloads.

function attr(name: string): string;

function attr(name: string, value: string): Accessor;

function attr(map: any): Accessor;

function attr(nameOrMap: any, value?: string): any {

 if (nameOrMap && typeof nameOrMap === "string") {

 // handle string case

 }

 else {

 // handle map case

 }

}

Note that each overload and the final implementation specify the same identifier. The type of the local

variable ‘attr’ introduced by this declaration is

var attr: {

 (name: string): string;

 (name: string, value: string): Accessor;

 (map: any): Accessor;

};

Note that the signature of the actual function implementation is not included in the type.

6.3 Function Implementations

A function implementation without a return type annotation is said to be an implicitly typed function.

The return type of an implicitly typed function f is inferred from its function body as follows:

 If there are no return statements with expressions in f’s function body, the inferred return type is

Void.

 Otherwise, if f’s function body directly references f or references any implicitly typed functions

that through this same analysis reference f, the inferred return type is Any.

 Otherwise, the inferred return type is the widened form (section 3.9) of the best common type

(section 3.10) of the types of the return statement expression in the function body, ignoring

return statements with no expressions. A compile-time error occurs if the best common type isn’t

one of the return statement expression types (i.e. if the best common type is an empty type).

In the example

function f(x: number) {

 if (x <= 0) return x;

 return g(x);

}

79

function g(x: number) {

 return f(x - 1);

}

the inferred return type for ‘f’ and ‘g’ is Any because the functions reference themselves through a cycle

with no return type annotations. Adding an explicit return type ‘number’ to either breaks the cycle and

causes the return type ‘number’ to be inferred for the other.

An explicitly typed function whose return type isn’t the Void or the Any type must have at least one return

statement somewhere in its body. An exception to this rule is if the function implementation consists of a

single ‘throw’ statement.

The type of ‘this’ in a function implementation is the Any type.

In the signature of a function implementation, a parameter can be marked optional by following it with an

initializer. When a parameter declaration includes both a type annotation and an initializer, the initializer

expression is contextually typed (section 4.19) by the stated type and must be assignable to the stated

type, or otherwise a compile-time error occurs. When a parameter declaration has no type annotation but

includes an initializer, the type of the parameter is the widened form (section 3.9) of the type of the

initializer expression.

Initializer expressions are evaluated in the scope of the function body but are not permitted to reference

local variables and are only permitted to access parameters that are declared to the left of the parameter

they initialize.

For each parameter with an initializer, a statement that substitutes the default value for an omitted

argument is included in the generated JavaScript, as described in section 6.5. The example

function strange(x: number, y = x * 2, z = x + y) {

 return z;

}

generates JavaScript that is equivalent to

function strange(x, y, z) {

 if (typeof y === "undefined") { y = x * 2; }

 if (typeof z === "undefined") { z = x + y; }

 return z;

}

In the example

var x = 1;

function f(a = x) {

 var x = "hello";

}

80

the local variable ‘x’ is in scope in the parameter initializer (thus hiding the outer ‘x’), but it is an error to

reference it because it will always be uninitialized at the time the parameter initializer is evaluated.

6.4 Generic Functions

A function implementation may include type parameters in its signature (section 3.7.2.1) and is then called

a generic function. Type parameters provide a mechanism for expressing relationships between

parameter and return types in call operations. Type parameters have no run-time representation—they

are purely a compile-time construct.

Type parameters declared in the signature of a function implementation are in scope in the signature and

body of that function implementation.

The following is an example of a generic function:

interface Comparable {

 localeCompare(other: any): number;

}

function compare<T extends Comparable>(x: T, y: T): number {

 if (x == null) return y == null ? 0 : -1;

 if (y == null) return 1;

 return x.localeCompare(y);

}

Note that the ‘x’ and ‘y’ parameters are known to be subtypes of the constraint ‘Comparable’ and

therefore have a ‘compareTo’ member. This is described further in section 3.4.1.

The type arguments of a call to a generic function may be explicitly specified in a call operation or may,

when possible, be inferred (section 4.12.2) from the types of the regular arguments in the call. In the

example

class Person {

 name: string;

 localeCompare(other: Person) {

 return compare(this.name, other.name);

 }

}

the type argument to ‘compare’ is automatically inferred to be the String type because the two arguments

are strings.

6.5 Code Generation

A function declaration generates JavaScript code that is equivalent to:

81

function <FunctionName>(<FunctionParameters>) {

 <DefaultValueAssignments>

 <FunctionStatements>

}

FunctionName is the name of the function (or nothing in the case of a function expression).

FunctionParameters is a comma separated list of the function’s parameter names.

DefaultValueAssignments is a sequence of default property value assignments, one for each parameter

with a default value, in the order they are declared, of the form

if (typeof <Parameter> === "undefined") { <Parameter> = <Default>; }

where Parameter is the parameter name and Default is the default value expression.

FunctionStatements is the code generated for the statements specified in the function body.

83

7 Interfaces

Interfaces provide the ability to name and parameterize object types and to compose existing named

object types into new ones.

Interfaces have no run-time representation—they are purely a compile-time construct. Interfaces are

particularly useful for documenting and validating the required shape of properties, objects passed as

parameters, and objects returned from functions.

Because TypeScript has a structural type system, an interface type with a particular set of members is

considered identical to, and can be substituted for, another interface type or object type literal with an

identical set of members (see section 3.8.2).

Class declarations may reference interfaces in their implements clause to validate that they provide an

implementation of the interfaces.

7.1 Interface Declarations

An interface declaration declares a new named type (section 3.5) by introducing a type name in the

containing module.

InterfaceDeclaration:

interface Identifier TypeParametersopt InterfaceExtendsClauseopt ObjectType

InterfaceExtendsClause:

extends ClassOrInterfaceTypeList

ClassOrInterfaceTypeList:

ClassOrInterfaceType

ClassOrInterfaceTypeList , ClassOrInterfaceType

ClassOrInterfaceType:

TypeReference

The Identifier of an interface declaration may not be one of the predefined type names (section 3.6.1).

An interface may optionally have type parameters (section 3.4.1) that serve as placeholders for actual

types to be provided when the interface is referenced in type references. An interface with type

parameters is called a generic interface. The type parameters of a generic interface declaration are in

scope in the entire declaration and may be referenced in the InterfaceExtendsClause and ObjectType body.

An interface can inherit from zero or more base types which are specified in the InterfaceExtendsClause.

The base types must be type references to class or interface types.

84

An interface has the members specified in the ObjectType of its declaration and furthermore inherits all

base type members that aren’t hidden by declarations in the interface:

 A property declaration hides a public base type property with the same name.

 A call signature declaration hides a base type call signature that is identical when return types are

ignored.

 A construct signature declaration hides a base type construct signature that is identical when

return types are ignored.

 A string index signature declaration hides a base type string index signature.

 A numeric index signature declaration hides a base type numeric index signature.

The following constraints must be satisfied by an interface declaration or otherwise a compile-time error

occurs:

 An interface declaration may not, directly or indirectly, specify a base type that originates in the

same declaration. In other words an interface cannot, directly or indirectly, be a base type of itself,

regardless of type arguments.

 An interface cannot declare a property with the same name as an inherited private property.

 Inherited properties with the same name must be identical (section 3.8.2).

 All properties of the interface must satisfy the constraints implied by the index signatures of the

interface as specified in section 3.7.4.

 The instance type (section 3.5.1) of the declared interface must be assignable (section 3.8.4) to

each of the base type references.

An interface is permitted to inherit identical members from multiple base types and will in that case only

contain one occurrence of each particular member.

Below is an example of two interfaces that contain properties with the same name but different types:

interface Mover {

 move(): void;

 getStatus(): { speed: number; };

}

interface Shaker {

 shake(): void;

 getStatus(): { frequency: number; };

}

An interface that extends ‘Mover’ and ‘Shaker’ must declare a new ‘getStatus’ property as it would

otherwise inherit two ‘getStatus’ properties with different types. The new ‘getStatus’ property must be

declared such that the resulting ‘MoverShaker’ is a subtype of both ‘Mover’ and ‘Shaker’:

interface MoverShaker extends Mover, Shaker {

 getStatus(): { speed: number; frequency: number; };

}

85

Since function and constructor types are just object types containing call and construct signatures,

interfaces can be used to declare named function and constructor types. For example:

interface StringComparer { (a: string, b: string): number; }

This declares type ‘StringComparer’ to be a function type taking two strings and returning a number.

7.2 Declaration Merging

Interfaces are “open-ended” and interface declarations with the same qualified name relative to a

common root (as defined in section 2.3) contribute to a single interface.

When a generic interface has multiple declarations, all declarations must have identical type parameter

lists, i.e. identical type parameter names with identical constraints in identical order.

In an interface with multiple declarations, the extends clauses are merged into a single set of base types

and the bodies of the interface declarations are merged into a single object type. Declaration merging

produces a declaration order that corresponds to prepending the members of each interface declaration,

in the order the members are written, to the combined list of members in the order of the interface

declarations. Thus, members declared in the last interface declaration will appear first in the declaration

order of the merged type.

For example, a sequence of declarations in this order:

interface Document {

 createElement(tagName: any): Element;

}

interface Document {

 createElement(tagName: string): HTMLElement;

}

interface Document {

 createElement(tagName: "div"): HTMLDivElement;

 createElement(tagName: "span"): HTMLSpanElement;

 createElement(tagName: "canvas"): HTMLCanvasElement;

}

is equivalent to the following single declaration:

interface Document {

 createElement(tagName: "div"): HTMLDivElement;

 createElement(tagName: "span"): HTMLSpanElement;

 createElement(tagName: "canvas"): HTMLCanvasElement;

 createElement(tagName: string): HTMLElement;

 createElement(tagName: any): Element;

}

86

Note that the members of the last interface declaration appear first in the merged declaration. Also note

that the relative order of members declared in the same interface body is preserved.

7.3 Interfaces Extending Classes

When an interface type extends a class type it inherits the members of the class but not their

implementations. It is as if the interface had declared all of the members of the class without providing an

implementation. Interfaces inherit even the private members of a base class. When a class containing

private members is the base type of an interface type, that interface type can only be implemented by

that class or a descendant class. For example:

class Control {

 private state: any;

}

interface SelectableControl extends Control {

 select(): void;

}

class Button extends Control {

 select() { }

}

class TextBox extends Control {

 select() { }

}

class Image extends Control {

}

class Location {

 select() { }

}

In the above example, ‘SelectableControl’ contains all of the members of ‘Control’, including the private

‘state’ property. Since ‘state’ is a private member it is only possible for descendants of ‘Control’ to

implement ‘SelectableControl’. This is because only descendants of ‘Control’ will have a ‘state’ private

member that originates in the same declaration, which is a requirement for private members to be

compatible (section 3.8).

Within the ‘Control’ class it is possible to access the ‘state’ private member through an instance of

‘SelectableControl’. Effectively, a ‘SelectableControl’ acts like a ‘Control’ that is known to have a ‘select’

method. The ‘Button’ and ‘TextBox’ classes are subtypes of ‘SelectableControl’ (because they both inherit

from ‘Control’ and have a ‘select’ method), but the ‘Image’ and ‘Location’ classes are not.

87

7.4 Dynamic Type Checks

TypeScript does not provide a direct mechanism for dynamically testing whether an object implements a

particular interface. Instead, TypeScript code can use the JavaScript technique of checking whether an

appropriate set of members are present on the object. For example, given the declarations in section 7.1,

the following is a dynamic check for the ‘MoverShaker’ interface:

var obj: any = getSomeObject();

if (obj && obj.move && obj.shake && obj.getStatus) {

 var moverShaker = <MoverShaker> obj;

 ...

}

If such a check is used often it can be abstracted into a function:

function asMoverShaker(obj: any): MoverShaker {

 return obj && obj.move && obj.shake && obj.getStatus ? obj : null;

}

89

8 Classes

TypeScript supports classes that are closely aligned with those proposed for ECMAScript 6, and includes

extensions for instance and static member declarations and properties declared and initialized from

constructor parameters.

NOTE: TypeScript currently doesn’t support class expressions or nested class declarations from the

ECMAScript 6 proposal.

8.1 Class Declarations

Class declarations introduce named types and provide implementations of those types. Classes support

inheritance, allowing derived classes to extend and specialize base classes.

ClassDeclaration:

class Identifier TypeParametersopt ClassHeritage { ClassBody }

A ClassDeclaration declares a class type and a constructor function, both with the name given by

Identifier, in the containing module. The class type is created from the instance members declared in the

class body and the instance members inherited from the base class. The constructor function is created

from the constructor declaration, the static member declarations in the class body, and the static

members inherited from the base class. The constructor function initializes and returns an instance of the

class type.

The Identifier of a class declaration may not be one of the predefined type names (section 3.6.1).

A class may optionally have type parameters (section 3.4.1) that serve as placeholders for actual types to

be provided when the class is referenced in type references. A class with type parameters is called a

generic class. The type parameters of a generic class declaration are in scope in the entire declaration

and may be referenced in the ClassHeritage and ClassBody.

The following example introduces both a named type called ‘Point’ (the class type) and a member called

‘Point’ (the constructor function) in the containing module.

class Point {

 constructor(public x: number, public y: number) { }

 public length() { return Math.sqrt(this.x * this.x + this.y * this.y); }

 static origin = new Point(0, 0);

}

The ‘Point’ type is exactly equivalent to

90

interface Point {

 x: number;

 y: number;

 length(): number;

}

The ‘Point’ member is a constructor function whose type corresponds to the declaration

var Point: {

 new(x: number, y: number): Point;

 origin: Point;

};

The context in which a class is referenced distinguishes between the class instance type and the

constructor function. For example, in the assignment statement

var p: Point = new Point(10, 20);

the identifier ‘Point’ in the type annotation refers to the class instance type, whereas the identifier ‘Point’

in the new expression refers to the constructor function object.

8.1.1 Class Heritage Specification

The heritage specification of a class consists of optional extends and implements clauses. The extends

clause specifies the base class of the class and the implements clause specifies a set of interfaces for

which to validate the class provides an implementation.

ClassHeritage:

ClassExtendsClauseopt ImplementsClauseopt

ClassExtendsClause:

extends ClassType

ClassType:

TypeReference

ImplementsClause:

implements ClassOrInterfaceTypeList

A class that includes an extends clause is called a derived class, and the class specified in the extends

clause is called the base class of the derived class. When a class heritage specification omits the extends

clause, the class does not have a base class. However, as is the case with every object type, type

references (section 3.3.1) to the class will appear to have the members of the global interface type named

‘Object’ unless those members are hidden by members with the same name in the class.

The following constraints must be satisfied by the class heritage specification or otherwise a compile-time

error occurs:

91

 If present, the type reference specified in the extends clause must denote a class type.

Furthermore, the TypeName part of the type reference is required to be a reference to the class

constructor function when evaluated as an expression.

 A class declaration may not, directly or indirectly, specify a base class that originates in the same

declaration. In other words a class cannot, directly or indirectly, be a base class of itself, regardless

of type arguments.

 The instance type (section 3.5.1) of the declared class must be assignable (section 3.8.4) to the

base type reference and each of the type references listed in the implements clause.

 The constructor function type created by the class declaration must be assignable to the base

class constructor function type, ignoring construct signatures.

The following example illustrates a situation in which the first rule above would be violated:

class A { a: number; }

module Foo {

 var A = 1;

 class B extends A { b: string; }

}

When evaluated as an expression, the type reference ‘A’ in the extends clause doesn’t reference the class

constructor function of ‘A’ (instead it references the local variable ‘A’).

The only situation in which the last two constraints above are violated is when a class overrides one or

more base class members with incompatible new members.

Note that because TypeScript has a structural type system, a class doesn’t need to explicitly state that it

implements an interface—it suffices for the class to simply contain the appropriate set of instance

members. The implements clause of a class provides a mechanism to assert and validate that the class

contains the appropriate sets of instance members, but otherwise it has no effect on the class type.

8.1.2 Class Body

The class body consists of zero or more constructor or member declarations. Statements are not allowed

in the body of a class—they must be placed in the constructor or in members.

ClassBody:

ClassElementsopt

ClassElements:

ClassElement

ClassElements ClassElement

ClassElement:

ConstructorDeclaration

PropertyMemberDeclaration

IndexMemberDeclaration

92

The body of class may optionally contain a single constructor declaration. Constructor declarations are

described in section 8.3.

Member declarations are used to declare instance and static members of the class. Property member

declarations are described in section 8.4 and index member declarations are described in section 8.5.

8.2 Members

The members of a class consist of the members introduced through member declarations in the class

body and the members inherited from the base class.

8.2.1 Instance and Static Members

Members are either instance members or static members.

Instance members are members of the class type (section 8.2.4) and its associated instance type. Within

constructors, instance member functions, and instance member accessors, the type of this is the instance

type (section 3.5.1) of the class.

Static members are declared using the static modifier and are members of the constructor function type

(section 8.2.5). Within static member functions and static member accessors, the type of this is the

constructor function type.

Class type parameters cannot be referenced in static member declarations.

8.2.2 Accessibility

Property members have either public or private accessibility. The default is public accessibility, but

property member declarations may include a public or private modifier to explicitly specify the desired

accessibility.

Public property members can be accessed everywhere, but private property members can be accessed

only within the class body that contains their declaration. Any attempt to access a private property

member outside the class body that contains its declaration results in a compile-time error.

Private accessibility is enforced only at compile-time and serves as no more than an indication of intent.

Since JavaScript provides no mechanism to create private properties on an object, it is not possible to

enforce the private modifier in dynamic code at run-time. For example, private accessibility can be

defeated by changing an object’s static type to Any and accessing the member dynamically.

8.2.3 Inheritance and Overriding

A derived class inherits all members from its base class it doesn’t override. Inheritance means that a

derived class implicitly contains all non-overridden members of the base class. Both public and private

property members are inherited, but only public property members can be overridden.

93

A property member in a derived class is said to override a property member in a base class when the

derived class property member has the same name and kind (instance or static) as the base class property

member. The type of an overriding property member must be assignable (section 3.8.4) to the type of the

overridden property member, or otherwise a compile-time error occurs.

Base class instance member functions can be overridden by derived class instance member functions, but

not by other kinds of members.

Base class instance member variables and accessors can be overridden by derived class instance member

variables and accessors, but not by other kinds of members.

Base class static property members can be overridden by derived class static property members of any

kind as long as the types are compatible, as described above.

An index member in a derived class is said to override an index member in a base class when the derived

class index member is of the same index kind (string or numeric) as the base class index member. The

type of an overriding index member must be assignable (section 3.8.4) to the type of the overridden index

member, or otherwise a compile-time error occurs.

8.2.4 Class Types

A class declaration declares a new named type (section 3.5) called a class type. Within the constructor and

member functions of a class, the type of this is the instance type (section 3.5.1) of this class type. The

class type has the following members:

 A property for each instance member variable declaration in the class body.

 A property of a function type for each instance member function declaration in the class body.

 A property for each uniquely named instance member accessor declaration in the class body.

 A property for each constructor parameter declared with a public or private modifier.

 An index signature for each instance index member declaration in the class body.

 All base class instance type property or index members that are not overridden in the class.

All instance property members (including those that are private) of a class must satisfy the constraints

implied by the index members of the class as specified in section 3.7.4.

In the example

class A {

 public x: number;

 public f() { }

 public g(a: any) { return undefined; }

 static s: string;

}

94

class B extends A {

 public y: number;

 public g(b: boolean) { return false; }

}

the instance type of ‘A’ is

interface A {

 x: number;

 f: () => void;

 g: (a: any) => any;

}

and the instance type of ‘B’ is

interface B {

 x: number;

 y: number;

 f: () => void;

 g: (b: boolean) => boolean;

}

Note that static declarations in a class do not contribute to the class type and its instance type—rather,

static declarations introduce properties on the constructor function object. Also note that the declaration

of ‘g’ in ‘B’ overrides the member inherited from ‘A’.

8.2.5 Constructor Function Types

The type of the constructor function introduced by a class declaration is called the constructor function

type. The constructor function type has the following members:

 If the class contains no constructor declaration and has no base class, a single construct signature

with no parameters, having the same type parameters as the class and returning the instance type

of the class.

 If the class contains no constructor declaration and has a base class, a set of construct signatures

with the same parameters as those of the base class constructor function type following

substitution of type parameters with the type arguments specified in the base class type

reference, all having the same type parameters as the class and returning the instance type of the

class.

 If the class contains a constructor declaration with no overloads, a construct signature with the

parameter list of the constructor implementation, having the same type parameters as the class

and returning the instance type of the class.

 If the class contains a constructor declaration with overloads, a set of construct signatures with

the parameter lists of the overloads, all having the same type parameters as the class and

returning the instance type of the class.

 A property for each static member variable declaration in the class body.

 A property of a function type for each static member function declaration in the class body.

95

 A property for each uniquely named static member accessor declaration in the class body.

 A property named ‘prototype’, the type of which is an instantiation of the class type with type Any

supplied as a type argument for each type parameter.

 All base class constructor function type properties that are not overridden in the class.

Every class automatically contains a static property member named ‘prototype’, the type of which is the

containing class with type Any substituted for each type parameter.

The example

class Pair<T1, T2> {

 constructor(public item1: T1, public item2: T2) { }

}

class TwoArrays<T> extends Pair<T[], T[]> { }

introduces two named types corresponding to

interface Pair<T1, T2> {

 item1: T1;

 item2: T2;

}

interface TwoArrays<T> {

 item1: T[];

 item2: T[];

}

and two constructor functions corresponding to

var Pair: {

 new <T1, T2>(item1: T1, item2: T2): Pair<T1, T2>;

}

var TwoArrays: {

 new <T>(item1: T[], item2: T[]): TwoArrays<T>;

}

Note that the construct signatures in the constructor function types have the same type parameters as

their class and return the instance type of their class. Also note that when a derived class doesn’t declare a

constructor, type arguments from the base class reference are substituted before construct signatures are

propagated from the base constructor function type to the derived constructor function type.

8.3 Constructor Declarations

A constructor declaration declares the constructor function of a class.

ConstructorDeclaration:

ConstructorOverloadsopt ConstructorImplementation

96

ConstructorOverloads:

ConstructorOverload

ConstructorOverloads ConstructorOverload

ConstructorOverload:

PublicOrPrivateopt constructor (ParameterListopt) ;

ConstructorImplementation:

PublicOrPrivateopt constructor (ParameterListopt) { FunctionBody }

A class may contain at most one constructor declaration. If a class contains no constructor declaration, an

automatic constructor is provided, as described in section 8.3.3.

Overloads and the implementation of a constructor may include a public or private accessibility modifier,

but only public constructors are supported and private constructors result in an error.

If a constructor declaration includes overloads, the overloads determine the construct signatures of the

type given to the constructor function object, and the constructor implementation signature must be

assignable to that type. Otherwise, the constructor implementation itself determines the construct

signature. This exactly parallels the way overloads are processed in a function declaration (section 6.2).

The function body of a constructor is permitted to contain return statements. If return statements specify

expressions, those expressions must be of types that are assignable to the instance type of the class.

The type parameters of a generic class are in scope and accessible in a constructor declaration.

8.3.1 Constructor Parameters

Similar to functions, only the constructor implementation (and not constructor overloads) can specify

default value expressions for optional parameters. It is a compile-time error for such default value

expressions to reference this. For each parameter with a default value, a statement that substitutes the

default value for an omitted argument is included in the JavaScript generated for the constructor function.

A parameter of a ConstructorImplementation may be prefixed with a public or private modifier. This is

called a parameter property declaration and is shorthand for declaring a property with the same name

as the parameter and initializing it with the value of the parameter. For example, the declaration

class Point {

 constructor(public x: number, public y: number) {

 // Constructor body

 }

}

is equivalent to writing

97

class Point {

 public x: number;

 public y: number;

 constructor(x: number, y: number) {

 this.x = x;

 this.y = y;

 // Constructor body

 }

}

8.3.2 Super Calls

Super calls (section 4.8.1) are used to call the constructor of the base class. A super call consists of the

keyword super followed by an argument list enclosed in parentheses. For example:

class ColoredPoint extends Point {

 constructor(x: number, y: number, public color: string) {

 super(x, y);

 }

}

Constructors of classes with no extends clause may not contain super calls, whereas constructors of

derived classes must contain at least one super call somewhere in their function body. Super calls are not

permitted outside constructors or in local functions inside constructors.

The first statement in the body of a constructor must be a super call if both of the following are true:

 The containing class is a derived class.

 The constructor declares parameter properties or the containing class declares instance member

variables with initializers.

In such a required super call, it is a compile-time error for argument expressions to reference this.

Initialization of parameter properties and instance member variables with initializers takes place

immediately at the beginning of the constructor body if the class has no base class, or immediately

following the super call if the class is a derived class.

8.3.3 Automatic Constructors

If a class omits a constructor declaration, an automatic constructor is provided.

In a class with no extends clause, the automatic constructor has no parameters and performs no action

other than executing the instance member variable initializers (section 8.4.1), if any.

In a derived class, the automatic constructor has the same parameter list (and possibly overloads) as the

base class constructor. The automatically provided constructor first forwards the call to the base class

constructor using a call equivalent to

BaseClass.apply(this, arguments);

98

and then executes the instance member variable initializers, if any.

8.4 Property Member Declarations

Property member declarations can be member variable declarations, member function declarations, or

member accessor declarations.

PropertyMemberDeclaration:

MemberVariableDeclaration

MemberFunctionDeclaration

MemberAccessorDeclaration

Member declarations without a static modifier are called instance member declarations. Instance

property member declarations declare properties in the class instance type (section 8.2.4), and must

specify names that are unique among all instance property member and parameter property declarations

in the containing class, with the exception that instance get and set accessor declarations may pairwise

specify the same name.

Member declarations with a static modifier are called static member declarations. Static property

member declarations declare properties in the constructor function type (section 8.2.5), and must specify

names that are unique among all static property member declarations in the containing class, with the

exception that static get and set accessor declarations may pairwise specify the same name.

Note that the declaration spaces of instance and static property members are separate. Thus, it is possible

to have instance and static property members with the same name.

Except for overrides, as described in section 8.2.3, it is an error for a derived class to declare a property

member with the same name and kind (instance or static) as a base class member.

Every class automatically contains a static property member named ‘prototype’, the type of which is an

instantiation of the class type with type Any supplied as a type argument for each type parameter. It is an

error to explicitly declare a static property member with the name ‘prototype’.

Below is an example of a class containing both instance and static property member declarations:

class Point {

 constructor(public x: number, public y: number) { }

 public distance(p: Point) {

 var dx = this.x - p.x;

 var dy = this.y - p.y;

 return Math.sqrt(dx * dx + dy * dy);

 }

 static origin = new Point(0, 0);

 static distance(p1: Point, p2: Point) { return p1.distance(p2); }

}

The class instance type ‘Point’ has the members:

99

interface Point {

 x: number;

 y: number;

 distance(p: Point);

}

and the constructor function ‘Point’ has a type corresponding to the declaration:

var Point: {

 new(x: number, y: number): Point;

 origin: Point;

 distance(p1: Point, p2: Point): number;

}

8.4.1 Member Variable Declarations

A member variable declaration declares an instance member variable or a static member variable.

MemberVariableDeclaration:

PublicOrPrivateopt staticopt PropertyName TypeAnnotationopt Initialiseropt ;

The type associated with a member variable declaration is determined in the same manner as an ordinary

variable declaration (see section 5.1).

An instance member variable declaration introduces a member in the class instance type and optionally

initializes a property on instances of the class. Initializers in instance member variable declarations are

executed once for every new instance of the class and are equivalent to assignments to properties of this

in the constructor. In an initializer expression for an instance member variable, this is of the class

instance type.

A static member variable declaration introduces a property in the constructor function type and optionally

initializes a property on the constructor function object. Initializers in static member variable declarations

are executed once when the containing program or module is loaded.

Initializer expressions for instance member variables are evaluated in the scope of the class constructor

body but are not permitted to reference parameters or local variables of the constructor. This effectively

means that entities from outer scopes by the same name as a constructor parameter or local variable are

inaccessible in initializer expressions for instance member variables.

Since instance member variable initializers are equivalent to assignments to properties of this in the

constructor, the example

100

class Employee {

 public name: string;

 public address: string;

 public retired = false;

 public manager: Employee = null;

 public reports: Employee[] = [];

}

is equivalent to

class Employee {

 public name: string;

 public address: string;

 public retired: boolean;

 public manager: Employee;

 public reports: Employee[];

 constructor() {

 this.retired = false;

 this.manager = null;

 this.reports = [];

 }

}

8.4.2 Member Function Declarations

A member function declaration declares an instance member function or a static member function.

MemberFunctionDeclaration:

MemberFunctionOverloadsopt MemberFunctionImplementation

MemberFunctionOverloads:

MemberFunctionOverload

MemberFunctionOverloads MemberFunctionOverload

MemberFunctionOverload:

PublicOrPrivateopt staticopt PropertyName CallSignature ;

MemberFunctionImplementation:

PublicOrPrivateopt staticopt PropertyName CallSignature { FunctionBody }

A member function declaration is processed in the same manner as an ordinary function declaration

(section 6), except that in a member function this has a known type.

All overloads of a member function must have the same accessibility (public or private) and kind (instance

or static).

101

An instance member function declaration declares a property in the class instance type and assigns a

function object to a property on the prototype object of the class. In the body of an instance member

function declaration, this is of the class instance type.

A static member function declaration declares a property in the constructor function type and assigns a

function object to a property on the constructor function object. In the body of a static member function

declaration, the type of this is the constructor function type.

A member function can access overridden base class members using a super property access (section

4.8.2). For example

class Point {

 constructor(public x: number, public y: number) { }

 public toString() {

 return "x=" + this.x + " y=" + this.y;

 }

}

class ColoredPoint extends Point {

 constructor(x: number, y: number, public color: string) {

 super(x, y);

 }

 public toString() {

 return super.toString() + " color=" + this.color;

 }

}

In a static member function, this represents the constructor function object on which the static member

function was invoked. Thus, a call to ‘new this()’ may actually invoke a derived class constructor:

class A {

 a = 1;

 static create() {

 return new this();

 }

}

class B extends A {

 b = 2;

}

var x = A.create(); // new A()

var y = B.create(); // new B()

Note that TypeScript doesn’t require or verify that derived constructor functions are subtypes of base

constructor functions. In other words, changing the declaration of ‘B’ to

102

class B extends A {

 constructor(public b: number) {

 super();

 }

}

does not cause errors in the example, even though the call to the constructor from the ‘create’ function

doesn’t specify an argument (thus giving the value ‘undefined’ to ‘b’).

8.4.3 Member Accessor Declarations

A member accessor declaration declares an instance member accessor or a static member accessor.

MemberAccessorDeclaration:

PublicOrPrivateopt staticopt GetAccessor

PublicOrPrivateopt staticopt SetAccessor

Get and set accessors are processed in the same manner as in an object literal (section 4.5), except that a

contextual type is never available in a member accessor declaration.

Accessors for the same member name must specify the same accessibility.

An instance member accessor declaration declares a property in the class instance type and defines a

property on the prototype object of the class with a get or set accessor. In the body of an instance

member accessor declaration, this is of the class instance type.

A static member accessor declaration declares a property in the constructor function type and defines a

property on the constructor function object of the class with a get or set accessor. In the body of a static

member accessor declaration, the type of this is the constructor function type.

Get and set accessors are emitted as calls to ‘Object.defineProperty’ in the generated JavaScript, as

described in section 8.6.1.

8.5 Index Member Declarations

An index member declaration introduces an index signature (section 3.7.4) in the class instance type.

IndexMemberDeclaration:

IndexSignature ;

Index member declarations have no body and cannot specify an accessibility modifier.

A class declaration can have at most one string index member declaration and one numeric index

member declaration. All instance property members of a class must satisfy the constraints implied by the

index members of the class as specified in section 3.7.4.

It is not possible to declare index members for the static side of a class.

103

Note that it is seldom meaningful to include a string index signature in a class because it constrains all

instance properties of the class. However, numeric index signatures can be useful to control the element

type when a class is used in an array-like manner.

8.6 Code Generation

This section describes the structure of the JavaScript code generated from TypeScript classes.

8.6.1 Classes Without Extends Clauses

A class with no extends clause generates JavaScript equivalent to the following:

var <ClassName> = (function () {

 function <ClassName>(<ConstructorParameters>) {

 <DefaultValueAssignments>

 <ParameterPropertyAssignments>

 <MemberVariableAssignments>

 <ConstructorStatements>

 }

 <MemberFunctionStatements>

 <StaticVariableAssignments>

 return <ClassName>;

})();

ClassName is the name of the class.

ConstructorParameters is a comma separated list of the constructor’s parameter names.

DefaultValueAssignments is a sequence of default property value assignments corresponding to those

generated for a regular function declaration, as described in section 6.5.

ParameterPropertyAssignments is a sequence of assignments, one for each parameter property declaration

in the constructor, in order they are declared, of the form

this.<ParameterName> = <ParameterName>;

where ParameterName is the name of a parameter property.

MemberVariableAssignments is a sequence of assignments, one for each instance member variable

declaration with an initializer, in the order they are declared, of the form

this.<MemberName> = <InitializerExpression>;

where MemberName is the name of the member variable and InitializerExpression is the code generated

for the initializer expression.

ConstructorStatements is the code generated for the statements specified in the constructor body.

104

MemberFunctionStatements is a sequence of statements, one for each member function declaration or

member accessor declaration, in the order they are declared.

An instance member function declaration generates a statement of the form

<ClassName>.prototype.<MemberName> = function (<FunctionParameters>) {

 <DefaultValueAssignments>

 <FunctionStatements>

}

and static member function declaration generates a statement of the form

<ClassName>.<MemberName> = function (<FunctionParameters>) {

 <DefaultValueAssignments>

 <FunctionStatements>

}

where MemberName is the name of the member function, and FunctionParameters,

DefaultValueAssignments, and FunctionStatements correspond to those generated for a regular function

declaration, as described in section 6.5.

A get or set instance member accessor declaration, or a pair of get and set instance member accessor

declarations with the same name, generates a statement of the form

Object.defineProperty(<ClassName>.prototype, "<MemberName>", {

 get: function () {

 <GetAccessorStatements>

 },

 set: function (<ParameterName>) {

 <SetAccessorStatements>

 },

 enumerable: true,

 configurable: true

};

and a get or set static member accessor declaration, or a pair of get and set static member accessor

declarations with the same name, generates a statement of the form

105

Object.defineProperty(<ClassName>, "<MemberName>", {

 get: function () {

 <GetAccessorStatements>

 },

 set: function (<ParameterName>) {

 <SetAccessorStatements>

 },

 enumerable: true,

 configurable: true

};

where MemberName is the name of the member accessor, GetAccessorStatements is the code generated

for the statements in the get acessor’s function body, ParameterName is the name of the set accessor

parameter, and SetAccessorStatements is the code generated for the statements in the set accessor’s

function body. The ‘get’ property is included only if a get accessor is declared and the ‘set’ property is

included only if a set accessor is declared.

StaticVariableAssignments is a sequence of statements, one for each static member variable declaration

with an initializer, in the order they are declared, of the form

<ClassName>.<MemberName> = <InitializerExpression>;

where MemberName is the name of the static variable, and InitializerExpression is the code generated for

the initializer expression.

8.6.2 Classes With Extends Clauses

A class with an extends clause generates JavaScript equivalent to the following:

var <ClassName> = (function (_super) {

 __extends(<ClassName>, _super);

 function <ClassName>(<ConstructorParameters>) {

 <DefaultValueAssignments>

 <SuperCallStatement>

 <ParameterPropertyAssignments>

 <MemberVariableAssignments>

 <ConstructorStatements>

 }

 <MemberFunctionStatements>

 <StaticVariableAssignments>

 return <ClassName>;

})(<BaseClassName>);

In addition, the ‘__extends’ function below is emitted at the beginning of the JavaScript source file. It

copies all properties from the base constructor function object to the derived constructor function object

106

(in order to inherit static members), and appropriately establishes the ‘prototype’ property of the derived

constructor function object.

var __extends = this.__extends || function(d, b) {

 for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];

 function f() { this.constructor = d; }

 f.prototype = b.prototype;

 d.prototype = new f();

}

BaseClassName is the class name specified in the extends clause.

If the class has no explicitly declared constructor, the SuperCallStatement takes the form

_super.apply(this, arguments);

Otherwise the SuperCallStatement is present if the constructor function is required to start with a super

call, as discussed in section 8.3.2, and takes the form

_super.call(this, <SuperCallArguments>)

where SuperCallArguments is the argument list specified in the super call. Note that this call precedes the

code generated for parameter properties and member variables with initializers. Super calls elsewhere in

the constructor generate similar code, but the code generated for such calls will be part of the

ConstructorStatements section.

A super property access in the constructor, an instance member function, or an instance member accessor

generates JavaScript equivalent to

_super.prototype.<PropertyName>

where PropertyName is the name of the referenced base class property. When the super property access

appears in a function call, the generated JavaScript is equivalent to

_super.prototype.<PropertyName>.call(this, <Arguments>)

where Arguments is the code generated for the argument list specified in the function call.

A super property access in a static member function or a static member accessor generates JavaScript

equivalent to

_super.<PropertyName>

where PropertyName is the name of the referenced base class property. When the super property access

appears in a function call, the generated JavaScript is equivalent to

_super.<PropertyName>.call(this, <Arguments>)

where Arguments is the code generated for the argument list specified in the function call.

107

109

9 Enums

An enum type is a distinct subtype of the Number primitive type with an associated set of named

constants that define the possible values of the enum type.

9.1 Enum Declarations

An enum declaration declares an enum type and an enum object in the containing module.

EnumDeclaration:

enum Identifier { EnumBodyopt }

The enum type and enum object declared by an EnumDeclaration both have the name given by the

Identifier of the declaration. The enum type is a distinct subtype of the Number primitive type. The enum

object is a variable of an anonymous object type containing a set of properties, all of the enum type,

corresponding to the values declared for the enum type in the body of the declaration. The enum object’s

type furthermore includes a numeric index signature with the signature ‘[x: number]: string’.

The Identifier of an enum declaration may not be one of the predefined type names (section 3.6.1).

The example

enum Color { Red, Green, Blue }

declares a subtype of the Number primitive type called ‘Color’ and introduces a variable ‘Color’ with a

type that corresponds to the declaration

var Color: {

 [x: number]: string;

 Red: Color;

 Green: Color;

 Blue: Color;

};

The numeric index signature reflects a “reverse mapping” that is automatically generated in every enum

object, as described in section 9.4. The reverse mapping provides a convenient way to obtain the string

representation of an enum value. For example

var c = Color.Red;

console.log(Color[c]); // Outputs "Red"

9.2 Enum Members

The body of an enum declaration defines zero or more enum members which are the named values of the

enum type. Each enum member has an associated numeric value of the primitive type introduced by the

enum declaration.

110

EnumBody:

ConstantEnumMembers ,opt

ConstantEnumMembers , EnumMemberSections ,opt

EnumMemberSections ,opt

ConstantEnumMembers:

PropertyName

ConstantEnumMembers , PropertyName

EnumMemberSections:

EnumMemberSection

EnumMemberSections , EnumMemberSection

EnumMemberSection:

ConstantEnumMemberSection

ComputedEnumMember

ConstantEnumMemberSection:

PropertyName = NumericLiteral

PropertyName = NumericLiteral , ConstantEnumMembers

ComputedEnumMember:

PropertyName = AssignmentExpression

Enum members are either constant members or computed members. Constant members have known

constant values that are substituted in place of references to the members in the generated JavaScript

code. Computed members have values that are computed at run-time and not known at compile-time.

No substitution is performed for references to computed members.

The body of an enum declaration consists of an optional ConstantEnumMembers production followed by

any number of ConstantEnumMemberSection or ComputedEnumMember productions.

 If present, the initial ConstantEnumMembers production introduces a series of constant members

with consecutive integral values starting at the value zero.

 A ConstantEnumMemberSection introduces one or more constant members with consecutive

integral values starting at the specified constant value.

 A ComputedEnumMember introduces a computed member with a value computed by an

expression.

Expressions specified for computed members must produce values of type Any, the Number primitive

type, or the enum type itself.

In the example

111

enum Test {

 A,

 B,

 C = Math.floor(Math.random() * 1000),

 D = 10,

 E

}

‘A’, ‘B’, ‘D’, and ‘E’ are constant members with values 0, 1, 10, and 11 respectively, and ‘C’ is a computed

member.

In the example

enum Style {

 None = 0,

 Bold = 1,

 Italic = 2,

 Underline = 4,

 Emphasis = Bold | Italic,

 Hyperlink = Bold | Underline

}

the first four members are constant members and the last two are computed members. Note that

computed member declarations can reference other enum members without qualification. Also, because

enums are subtypes of the Number primitive type, numeric operators, such as the bitwise OR operator,

can be used to compute enum values.

9.3 Declaration Merging

Enums are “open-ended” and enum declarations with the same qualified name relative to a common root

(as defined in section 2.3) define a single enum type and contribute to a single enum object.

It isn’t possible for one enum declaration to continue the automatic numbering sequence of another, and

when an enum type has multiple declarations, only one declaration is permitted to omit a value for the

first member.

9.4 Code Generation

An enum declaration generates JavaScript equivalent to the following:

var <EnumName>;

(function (<EnumName>) {

 <EnumMemberAssignments>

})(<EnumName>||(<EnumName>={}));

EnumName is the name of the enum.

112

EnumMemberAssignments is a sequence of assignments, one for each enum member, in order they are

declared, of the form

<EnumName>[<EnumName>["<MemberName>"] = <Value>] = "<MemberName>";

where MemberName is the name of the enum member and Value is the assigned constant value or the

code generated for the computed value expression.

For example, the ‘Color’ enum example from section 9.1 generates the following JavaScript:

var Color;

(function (Color) {

 Color[Color["Red"] = 0] = "Red";

 Color[Color["Green"] = 1] = "Green";

 Color[Color["Blue"] = 2] = "Blue";

})(Color||(Color={}));

113

10 Internal Modules

An internal module is a named container of statements and declarations. An internal module represents

both a namespace and a singleton module instance. The namespace contains named types and other

namespaces, and the singleton module instance contains properties for the module’s exported members.

The body of an internal module corresponds to a function that is executed once, thereby providing a

mechanism for maintaining local state with assured isolation.

10.1 Module Declarations

An internal module declaration declares a namespace name and, in the case of an instantiated module, a

member name in the containing module.

ModuleDeclaration:

module IdentifierPath { ModuleBody }

IdentifierPath:

Identifier

IdentifierPath . Identifier

Internal modules are either instantiated or non-instantiated. A non-instantiated module is an internal

module containing only interface types and other non-instantiated modules. An instantiated module is an

internal module that doesn’t meet this definition. In intuitive terms, an instantiated module is one for

which a module object instance is created, whereas a non-instantiated module is one for which no code is

generated.

When a module identifier is referenced as a ModuleName (section 3.6.2) it denotes a container of module

and type names, and when a module identifier is referenced as a PrimaryExpression (section 4.3) it

denotes the singleton module instance. For example:

module M {

 export interface P { x: number; y: number; }

 export var a = 1;

}

var p: M.P; // M used as ModuleName

var m = M; // M used as PrimaryExpression

var x1 = M.a; // M used as PrimaryExpression

var x2 = m.a; // Same as M.a

var q: m.P; // Error

Above, when ‘M’ is used as a PrimaryExpression it denotes an object instance with a single member ‘a’ and

when ‘M’ is used as a ModuleName it denotes a container with a single type member ‘P’. The final line in

the example is an error because ‘m’ is a variable which cannot be referenced in a type name.

114

If the declaration of ‘M’ above had excluded the exported variable ‘a’, ‘M’ would be a non-instantiated

module and it would be an error to reference ‘M’ as a PrimaryExpression.

An internal module declaration that specifies an IdentifierPath with more than one identifier is equivalent

to a series of nested single-identifier internal module declarations where all but the outermost are

automatically exported. For example:

module A.B.C {

 export var x = 1;

}

corresponds to

module A {

 export module B {

 export module C {

 export var x = 1;

 }

 }

}

10.2 Module Body

The body of an internal module corresponds to a function that is executed once to initialize the module

instance.

ModuleBody:

ModuleElementsopt

ModuleElements:

ModuleElement

ModuleElements ModuleElement

ModuleElement:

Statement

exportopt VariableDeclaration

exportopt FunctionDeclaration

exportopt ClassDeclaration

exportopt InterfaceDeclaration

exportopt EnumDeclaration

exportopt ModuleDeclaration

exportopt ImportDeclaration

Each module body has a declaration space for local variables (including functions, modules, class

constructor functions, and enum objects), a declaration space for local named types (classes, interfaces,

115

and enums), and a declaration space for local namespaces (containers of named types). Every declaration

(whether local or exported) in a module contributes to one or more of these declaration spaces.

10.3 Import Declarations

Import declarations are used to create local aliases for entities in other modules.

ImportDeclaration:

import Identifier = EntityName ;

EntityName:

ModuleName

ModuleName . Identifier

An EntityName consisting of a single identifier is resolved as a ModuleName and is thus required to

reference an internal module. The resulting local alias references the given internal module and is itself

classified as an internal module.

An EntityName consisting of more than one identifier is resolved as a ModuleName followed by an

identifier that names one or more exported entities in the given module. The resulting local alias has all

the meanings and classifications of the referenced entity or entities. (As many as three distinct meanings

are possible for an entity name—namespace, type, and member.) In effect, it is as if the imported entity or

entities were declared locally with the local alias name.

In the example

module A {

 export interface X { s: string }

 export var X: X;

}

module B {

 interface A { n: number }

 import Y = A; // Alias only for module A

 import Z = A.X; // Alias for both type and member A.X

 var v: Z = Z;

}

within ‘B’, ‘Y’ is an alias only for module ‘A’ and not the local interface ‘A’, whereas ‘Z’ is an alias for all

exported meanings of ‘A.X’, thus denoting both an interface type and a variable.

If the ModuleName portion of an EntityName references an instantiated module, the ModuleName is

required to reference the module instance when evaluated as an expression. In the example

module A {

 export interface X { s: string }

}

116

module B {

 var A = 1;

 import Y = A;

}

‘Y’ is a local alias for the non-instantiated module ‘A’. If the declaration of ‘A’ is changed such that ‘A’

becomes an instantiated module, for example by including a variable declaration in ‘A’, the import

statement in ‘B’ above would be an error because the expression ‘A’ doesn’t reference the module

instance of module ‘A’.

When an import statement includes an export modifier, all meanings of the local alias are exported.

10.4 Export Declarations

An export declaration declares an externally accessible module member. An export declaration is simply a

regular declaration prefixed with the keyword export.

Exported class, interface, and enum types can be accessed as a TypeName (section 3.6.2) of the form M.T,

where M is a reference to the containing module and T is the exported type name. Likewise, as part of a

TypeName, exported modules can be accessed as a ModuleName of the form M.N, where M is a reference

to the containing module and N is the exported module.

Exported variable, function, class, enum, module, and import alias declarations become properties on the

module instance and together establish the module’s instance type. This unnamed type has the following

members:

 A property for each exported variable declaration.

 A property of a function type for each exported function declaration.

 A property of a constructor type for each exported class declaration.

 A property of an object type for each exported enum declaration.

 A property of an object type for each exported instantiated module declaration.

 A property for each exported import alias that references a variable, function, class, enum, or

instantiated module.

An exported member depends on a (possibly empty) set of named types (section 3.5). Those named types

must be at least as accessible as the exported member, or otherwise an error occurs.

The named types upon which a member depends are the named types occurring in the transitive closure

of the directly depends on relationship defined as follows:

 A variable directly depends on the Type specified in its type annotation.

 A function directly depends on each Type specified in a parameter or return type annotation.

 A class directly depends on each Type specified as a type parameter constraint, each

TypeReference specified as a base class or implemented interface, and each Type specified in a

constructor parameter type annotation, member variable type annotation, member function

117

parameter or return type annotation, member accessor parameter or return type annotation, or

index signature type annotation.

 An interface directly depends on each Type specified as a type parameter constraint, each

TypeReference specified as a base interface, and the ObjectType specified as its body.

 A module directly depends on its exported members.

 A Type or ObjectType directly depends on every TypeReference that occurs within the type at any

level of nesting.

 A TypeReference directly depends on the type it references and on each Type specified as a type

argument.

A named type T having a root module R (section 2.3) is said to be at least as accessible as a member M if

 R is the global module or an external module, or

 R is an internal module in the parent module chain of M.

In the example

interface A { x: string; }

module M {

 export interface B { x: A; }

 export interface C { x: B; }

 export function foo(c: C) { … }

}

the ‘foo’ function depends upon the named types ‘A’, ‘B’, and ‘C’. In order to export ‘foo’ it is necessary to

also export ‘B’ and ‘C’ as they otherwise would not be at least as accessible as ‘foo’. The ‘A’ interface is

already at least as accessible as ‘foo’ because it is declared in a parent module of foo’s module.

10.5 Declaration Merging

Internal modules are “open-ended” and internal module declarations with the same qualified name

relative to a common root (as defined in section 2.3) contribute to a single module. For example, the

following two declarations of a module outer might be located in separate source files.

File a.ts:

module outer {

 var local = 1; // Non-exported local variable

 export var a = local; // outer.a

 export module inner {

 export var x = 10; // outer.inner.x

 }

}

File b.ts:

118

module outer {

 var local = 2; // Non-exported local variable

 export var b = local; // outer.b

 export module inner {

 export var y = 20; // outer.inner.y

 }

}

Assuming the two source files are part of the same program, the two declarations will have the global

module as their common root and will therefore contribute to the same module instance, the instance

type of which will be:

{

 a: number;

 b: number;

 inner: {

 x: number;

 y: number;

 };

}

Declaration merging does not apply to local aliases created by import declarations. In other words, it is

not possible have an import declaration and a module declaration for the same name within the same

module body.

Declaration merging also extends to internal module declarations with the same qualified name relative to

a common root as a function, class, or enum declaration:

 When merging a function and an internal module, the type of the function object is merged with

the instance type of the module. In effect, the overloads or implementation of the function

provide the call signatures and the exported members of the module provide the properties of

the combined type.

 When merging a class and an internal module, the type of the constructor function object is

merged with the instance type of the module. In effect, the overloads or implementation of the

class constructor provide the construct signatures, and the static members of the class and

exported members of the module provide the properties of the combined type. It is an error to

have static class members and exported module members with the same name.

 When merging an enum and an internal module, the type of the enum object is merged with the

instance type of the module. In effect, the members of the enum and the exported members of

the module provide the properties of the combined type. It is an error to have enum members

and exported module members with the same name.

When merging a non-ambient function or class declaration and a non-ambient internal module

declaration, the function or class declaration must be located prior to the internal module declaration in

the same source file. This ensures that the shared object instance is created as a function object. (While it

119

is possible to add properties to an object after its creation, it is not possible to make an object “callable”

after the fact.)

The example

interface Point {

 x: number;

 y: number;

}

function point(x: number, y: number): Point {

 return { x: x, y: y };

}

module point {

 export var origin = point(0, 0);

 export function equals(p1: Point, p2: Point) {

 return p1.x == p2.x && p1.y == p2.y;

 }

}

var p1 = point(0, 0);

var p2 = point.origin;

var b = point.equals(p1, p2);

declares ‘point’ as a function object with two properties, ‘origin’ and ‘equals’. Note that the module

declaration for ‘point’ is located after the function declaration.

10.6 Code Generation

An internal module generates JavaScript code that is equivalent to the following:

var <ModuleName>;

(function(<ModuleName>) {

 <ModuleStatements>

})(<ModuleName>||(<ModuleName>={}));

where ModuleName is the name of the module and ModuleStatements is the code generated for the

statements in the module body. The ModuleName function parameter may be prefixed with one or more

underscore characters to ensure the name is unique within the function body. Note that the entire module

is emitted as an anonymous function that is immediately executed. This ensures that local variables are in

their own lexical environment isolated from the surrounding context. Also note that the generated

function doesn’t create and return a module instance, but rather it extends the existing instance (which

may have just been created in the function call). This ensures that internal modules can extend each other.

An import statement generates code of the form

var <Alias> = <EntityName>;

120

This code is emitted only if the imported entity is referenced as a PrimaryExpression somewhere in the

body of the importing module. If an imported entity is referenced only as a TypeName or ModuleName,

nothing is emitted. This ensures that types declared in one internal module can be referenced through an

import alias in another internal module with no run-time overhead.

When a variable is exported, all references to the variable in the body of the module are replaced with

<ModuleName>.<VariableName>

This effectively promotes the variable to be a property on the module instance and ensures that all

references to the variable become references to the property.

When a function, class, enum, or module is exported, the code generated for the entity is followed by an

assignment statement of the form

<ModuleName>.<EntityName> = <EntityName>;

This copies a reference to the entity into a property on the module instance.

121

11 Source Files and External Modules

TypeScript implements external modules that are closely aligned with those proposed for ECMAScript 6

and supports code generation targeting CommonJS and AMD module systems.

NOTE: TypeScript currently doesn’t support the full proposed capabilities of the ECMAScript 6 import and

export syntax. We expect to align more closely on the syntax as the ECMAScript 6 specification evolves.

11.1 Source Files

A TypeScript program consists of one or more source files that are either implementation source files or

declaration source files. Source files with extension ‘.ts’ are ImplementationSourceFiles containing

statements and declarations. Source files with extension ‘.d.ts’ are DeclarationSourceFiles containing

declarations only. Declaration source files are a strict subset of implementation source files.

SourceFile:

ImplementationSourceFile

DeclarationSourceFile

ImplementationSourceFile:

ImplementationElementsopt

ImplementationElements:

ImplementationElement

ImplementationElements ImplementationElement

ImplementationElement:

ModuleElement

ExportAssignment

exportopt ExternalImportDeclaration

exportopt AmbientDeclaration

DeclarationSourceFile:

DeclarationElementsopt

DeclarationElements:

DeclarationElement

DeclarationElements DeclarationElement

122

DeclarationElement:

exportopt InterfaceDeclaration

exportopt ImportDeclaration

ExportAssignment

exportopt ExternalImportDeclaration

exportopt AmbientDeclaration

When a TypeScript program is compiled, all of the program’s source files are processed together.

Statements and declarations in different source files can depend on each other, possibly in a circular

fashion. By default, a JavaScript output file is generated for each implementation source file in a

compilation, but no output is generated from declaration source files.

The source elements permitted in a TypeScript implementation source file are a superset of those

supported by JavaScript. Specifically, TypeScript extends the JavaScript grammar’s existing

VariableDeclaration (section 5.1) and FunctionDeclaration (section 6.1) productions, and adds

InterfaceDeclaration (section 7.1), ClassDeclaration (section 8.1), EnumDeclaration (section 9.1),

ModuleDeclaration (section 10.1), ImportDeclaration (section 10.3), ExternalImportDeclaration (section

11.2.2), ExportAssignment (section 11.2.4), and AmbientDeclaration (section 12.1) productions.

Declaration source files are restricted to contain declarations only. Declaration source files can be used to

declare the static type information associated with existing JavaScript code in an adjunct manner. They are

entirely optional but enable the TypeScript compiler and tools to provide better verification and

assistance when integrating existing JavaScript code and libraries in a TypeScript application.

Implementation and declaration source files that contain no import or export declarations form the single

global module. Entities declared in the global module are in scope everywhere in a program. Initialization

order of the source files that make up the global module ultimately depends on the order in which the

generated JavaScript files are loaded at run-time (which, for example, may be controlled by <script/> tags

that reference the generated JavaScript files).

Implementation and declaration source files that contain at least one external import declaration, export

assignment, or top-level exported declaration are considered separate external modules. Entities

declared in an external module are in scope only in that module, but exported entities can be imported

into other modules using import declarations. Initialization order of external modules is determined by

the module loader being and is not specified by the TypeScript language. However, it is generally the case

that non-circularly dependent modules are automatically loaded and initialized in the correct order.

External modules can additionally be declared using AmbientModuleDeclarations in the global module

that directly specify the external module names as string literals. This is described further in section 12.1.6.

11.1.1 Source Files Dependencies

The TypeScript compiler automatically determines a source file’s dependencies and includes those

dependencies in the program being compiled. The determination is made from “reference comments”

and external import declarations as follows:

123

 A comment of the form /// <reference path="…"/> adds a dependency on the source file

specified in the path argument. The path is resolved relative to the directory of the containing

source file.

 An external import declaration that specifies a relative external module name (section 11.2.1)

resolves the name relative to the directory of the containing source file. If a source file with the

resulting path and file extension ‘.ts’ exists, that file is added as a dependency. Otherwise, if a

source file with the resulting path and file extension ‘.d.ts’ exists, that file is added as a

dependency.

 An external import declaration that specifies a top-level external module name (section 11.2.1)

resolves the name in a host dependent manner (typically by resolving the name relative to a

module name space root or searching for the name in a series of directories). If a source file with

extension ‘.ts’ or ‘.d.ts’ corresponding to the reference is located, that file is added as a

dependency.

Any files included as dependencies in turn have their references analyzed in a transitive manner until all

dependencies have been determined.

11.2 External Modules

External modules are separately loaded bodies of code referenced using external module names. External

modules can be likened to functions that are loaded and executed once to initialize their associated

module instance. Entities declared in an external module are private and inaccessible elsewhere unless

they are exported.

External modules are written as separate source files that contain at least one external import declaration,

export assignment, or top-level exported declaration. Specifically, if a source file contains at least one

 ExternalImportDeclaration,

 ExportAssignment,

 top-level exported VariableDeclaration,

 top-level exported FunctionDeclaration,

 top-level exported ClassDeclaration,

 top-level exported InterfaceDeclaration,

 top-level exported EnumDeclaration,

 top-level exported ModuleDeclaration,

 top-level exported ImportDeclaration, or

 top-level exported AmbientDeclaration,

that source file is considered an external module; otherwise, the source file is considered part of the

global module.

Below is an example of two external modules written in separate source files.

File main.ts:

124

import log = require("./log");

log.message("hello");

File log.ts:

export function message(s: string) {

 console.log(s);

}

The import declaration in the ‘main’ module references the ‘log’ module and compiling the ‘main.ts’ file

causes the ‘log.ts’ file to also be compiled as part of the program. At run-time, the import declaration

loads the ‘log’ module and produces a reference to its module instance through which it is possible to

reference the exported function.

TypeScript supports two patterns of JavaScript code generation for external modules: The CommonJS

Modules pattern (section 11.2.5), typically used by server frameworks such as node.js, and the

Asynchronous Module Definition (AMD) pattern (section 11.2.6), an extension to CommonJS Modules that

permits asynchronous module loading, as is typical in browsers. The desired module code generation

pattern is selected through a compiler option and does not affect the TypeScript source code. Indeed, it is

possible to author external modules that can be compiled for use both on the server side (e.g. using

node.js) and on the client side (using an AMD compliant loader) with no changes to the TypeScript source

code.

11.2.1 External Module Names

External modules are identified and referenced using external module names. The following definition is

aligned with that provided in the CommonJS Modules 1.0 specification.

 An external module name is a string of “terms” delimited by forward slashes.

 External module names may not have file-name extensions like “.js”.

 External module names may be “relative” or “top-level”. An external module name is “relative” if

the first term is “.” or “..”.

 Top-level names are resolved off the conceptual module name space root.

 Relative names are resolved relative to the name of the module in which they occur.

For purposes of resolving external module references, TypeScript associates a file path with every external

module. The file path is simply the path of the module’s source file without the file extension. For

example, an external module contained in the source file ‘C:\src\lib\io.ts’ has the file path ‘C:/src/lib/io’

and an external module contained in the source file ‘C:\src\ui\editor.d.ts’ has the file path ‘C:/src/ui/editor’.

An external module name in an import declaration is resolved as follows:

 If the import declaration specifies a relative external module name, the name is resolved relative

to the directory of the referencing module’s file path. The program must contain a module with

the resulting file path or otherwise an error occurs. For example, in a module with the file path

http://www.commonjs.org/specs/modules/1.0/
http://www.commonjs.org/specs/modules/1.0/
https://github.com/amdjs/amdjs-api/wiki/AMD
http://www.commonjs.org/specs/modules/1.0/

125

‘C:/src/ui/main’, the external module names ‘./editor’ and ‘../lib/io’ reference modules with the file

paths ‘C:/src/ui/editor’ and ‘C:/src/lib/io’.

 If the import declaration specifies a top-level external module name and the program contains an

AmbientExternalModuleDeclaration (section 12.1.6) with a string literal that specifies that exact

name, then the import declaration references that ambient external module.

 If the import declaration specifies a top-level external module name and the program contains no

AmbientExternalModuleDeclaration (section 12.1.6) with a string literal that specifies that exact

name, the name is resolved in a host dependent manner (for example by considering the name

relative to a module name space root). If a matching module cannot be found an error occurs.

11.2.2 External Import Declarations

External import declarations are used to import external modules and create local aliases by which they

may be referenced.

ExternalImportDeclaration:

import Identifier = ExternalModuleReference ;

ExternalModuleReference:

require (StringLiteral)

The string literal specified in an ExternalModuleReference is interpreted as an external module name

(section 11.2.1).

An external import declaration introduces a local identifier that references a given external module. The

local identifier becomes an alias for, and is classified exactly like, the entity or entities exported from the

referenced external module. Specifically, if the referenced external module contains no export assignment

the identifier is classified as a module, and if the referenced external module contains an export

assignment the identifier is classified exactly like the entity or entities named in the export assignment.

11.2.3 Export Declarations

An external module that contains no export assignment (section 11.2.4) exports an entity classified as a

module. Similarly to an internal module, export declarations (section 10.4) in the external module are used

to declare the members of this entity.

Unlike a non-instantiated internal module (section 10.1), an external module containing only interface

types and non-instantiated internal modules still has a module instance associated with it, albeit one with

no members.

If an external module contains an export assignment it is an error for the external module to also contain

export declarations. The two types of exports are mutually exclusive.

11.2.4 Export Assignments

An export assignment designates a module member as the entity to be exported in place of the external

module itself.

126

ExportAssignment:

export = Identifier ;

When an external module containing an export assignment is imported, the local alias introduced by the

external import declaration takes on all meanings of the identifier named in the export assignment.

It is an error for an external module to contain more than one export assignment.

Assume the following example resides in the file ‘point.ts’:

export = Point;

class Point {

 constructor(public x: number, public y: number) { }

 static origin = new Point(0, 0);

}

When ‘point.ts’ is imported in another external module, the import alias references the exported class and

can be used both as a type and as a constructor function:

import Pt = require("./point");

var p1 = new Pt(10, 20);

var p2 = Pt.origin;

Note that there is no requirement that the import alias use the same name as the exported entity.

11.2.5 CommonJS Modules

The CommonJS Modules definition specifies a methodology for writing JavaScript modules with implied

privacy, the ability to import other modules, and the ability to explicitly export members. A CommonJS

compliant system provides a ‘require’ function that can be used to synchronously load other external

modules to obtain their singleton module instance, as well as an ‘exports’ variable to which a module can

add properties to define its external API.

The ‘main’ and ‘log’ example from section 11.2 above generates the following JavaScript code when

compiled for the CommonJS Modules pattern:

File main.js:

var log = require("./log");

log.message("hello");

File log.js:

exports.message = function(s) {

 console.log(s);

}

http://www.commonjs.org/specs/modules/1.0/

127

An external import declaration is represented in the generated JavaScript as a variable initialized by a call

to the ‘require’ function provided by the module system host. A variable declaration and ‘require’ call is

emitted for a particular imported module only if the imported module, or a local alias (section 10.3) that

references the imported module, is referenced as a PrimaryExpression somewhere in the body of the

importing module. If an imported module is referenced only as a ModuleName or TypeQueryExpression,

nothing is emitted.

An example:

File geometry.ts:

export interface Point { x: number; y: number };

export function point(x: number, y: number): Point {

 return { x: x, y: y };

}

File game.ts:

import g = require("./geometry");

var p = g.point(10, 20);

The ‘game’ module references the imported ‘geometry’ module in an expression (through its alias ‘g’) and

a ‘require’ call is therefore included in the emitted JavaScript:

var g = require("./geometry");

var p = g.point(10, 20);

Had the ‘game’ module instead been written to only reference ‘geometry’ in a type position

import g = require("./geometry");

var p: g.Point = { x: 10, y: 20 };

the emitted JavaScript would have no dependency on the ‘geometry’ module and would simply be

var p = { x: 10, y: 20 };

11.2.6 AMD Modules

The Asynchronous Module Definition (AMD) specification extends the CommonJS Modules specification

with a pattern for authoring asynchronously loadable modules with associated dependencies. Using the

AMD pattern, modules are emitted as calls to a global ‘define’ function taking an array of dependencies,

specified as external module names, and a callback function containing the module body. The global

‘define’ function is provided by including an AMD compliant loader in the application. The loader arranges

to asynchronously load the module’s dependencies and, upon completion, calls the callback function

passing resolved module instances as arguments in the order they were listed in the dependency array.

The “main” and “log” example from above generates the following JavaScript code when compiled for the

AMD pattern.

https://github.com/amdjs/amdjs-api/wiki/AMD

128

File main.js:

define(["require", "exports", "./log"], function(require, exports, log) {

 log.message("hello");

}

File log.js:

define(["require", "exports"], function(require, exports) {

 exports.message = function(s) {

 console.log(s);

 }

}

The special ‘require’ and ‘exports’ dependencies are always present. Additional entries are added to the

dependencies array and the parameter list as required to represent imported external modules. Similar to

the code generation for CommonJS Modules, a dependency entry is generated for a particular imported

module only if the imported module is referenced as a PrimaryExpression somewhere in the body of the

importing module. If an imported module is referenced only as a ModuleName, no dependency is

generated for that module.

129

12 Ambients

Ambient declarations are used to provide static typing over existing JavaScript code. Ambient declarations

differ from regular declarations in that no JavaScript code is emitted for them. Instead of introducing new

variables, functions, classes, enums, or modules, ambient declarations provide type information for

entities that exist “ambiently” and are included in a program by external means, for example by

referencing a JavaScript library in a <script/> tag.

12.1 Ambient Declarations

Ambient declarations are written using the declare keyword and can declare variables, functions, classes,

enums, internal modules, or external modules.

AmbientDeclaration:

declare AmbientVariableDeclaration

declare AmbientFunctionDeclaration

declare AmbientClassDeclaration

declare AmbientEnumDeclaration

declare AmbientModuleDeclaration

declare AmbientExternalModuleDeclaration

Ambient declarations are only permitted at the top-level in a source file (section 11.1).

12.1.1 Ambient Variable Declarations

An ambient variable declaration introduces a variable in the containing declaration space.

AmbientVariableDeclaration:

var Identifier TypeAnnotationopt ;

An ambient variable declaration may optionally include a type annotation. If no type annotation is

present, the variable is assumed to have type Any.

An ambient variable declaration does not permit an initializer expression to be present.

12.1.2 Ambient Function Declarations

An ambient function declaration introduces a function in the containing declaration space.

AmbientFunctionDeclaration:

function Identifier CallSignature ;

Ambient functions may be overloaded by specifying multiple ambient function declarations with the same

name, but it is an error to declare multiple overloads that are considered identical (section 3.8.2) or differ

only in their return types.

130

Ambient function declarations cannot specify a function bodies and do not permit default parameter

values.

12.1.3 Ambient Class Declarations

An ambient class declaration declares a class instance type and a constructor function in the containing

module.

AmbientClassDeclaration:

class Identifier TypeParametersopt ClassHeritage { AmbientClassBody }

AmbientClassBody:

AmbientClassBodyElementsopt

AmbientClassBodyElements:

AmbientClassBodyElement

AmbientClassBodyElements AmbientClassBodyElement

AmbientClassBodyElement:

AmbientConstructorDeclaration

AmbientPropertyMemberDeclaration

IndexSignature

AmbientConstructorDeclaration:

constructor (ParameterListopt) ;

AmbientPropertyMemberDeclaration:

PublicOrPrivateopt staticopt PropertyName TypeAnnotationopt ;

PublicOrPrivateopt staticopt PropertyName CallSignature ;

12.1.4 Ambient Enum Declarations

An ambient enum declaration declares an enum type and an enum object in the containing module.

AmbientEnumDeclaration:

enum Identifier { AmbientEnumBodyopt }

AmbientEnumBody:

AmbientEnumMemberList ,opt

AmbientEnumMemberList:

AmbientEnumMember

AmbientEnumMemberList , AmbientEnumMember

AmbientEnumMember:

PropertyName

PropertyName = NumericLiteral

131

An AmbientEnumMember that includes an NumericLiteral value is considered a constant member. An

AmbientEnumMember with no NumericLiteral value is considered a computed member.

12.1.5 Ambient Module Declarations

An ambient module declaration declares an internal module.

AmbientModuleDeclaration:

module IdentifierPath { AmbientModuleBody }

AmbientModuleBody:

AmbientModuleElementsopt

AmbientModuleElements:

AmbientModuleElement

AmbientModuleElements AmbientModuleElement

AmbientModuleElement:

exportopt AmbientVariableDeclaration

exportopt AmbientFunctionDeclaration

exportopt AmbientClassDeclaration

exportopt InterfaceDeclaration

exportopt AmbientEnumDeclaration

exportopt AmbientModuleDeclaration

exportopt ImportDeclaration

Except for ImportDeclarations, AmbientModuleElements always declare exported entities regardless of

whether they include the optional export modifier.

12.1.6 Ambient External Module Declarations

An AmbientExternalModuleDeclaration declares an external module. This type of declaration is permitted

only in the global module. The StringLiteral must specify a top-level external module name. Relative

external module names are not permitted.

AmbientExternalModuleDeclaration:

module StringLiteral { AmbientExternalModuleBody }

AmbientExternalModuleBody:

AmbientExternalModuleElementsopt

AmbientExternalModuleElements:

AmbientExternalModuleElement

AmbientExternalModuleElements AmbientExternalModuleElement

132

AmbientExternalModuleElement:

AmbientModuleElement

ExportAssignment

exportopt ExternalImportDeclaration

An ExternalImportDeclaration in an AmbientExternalModuleDeclaration may reference other external

modules only through top-level external module names. Relative external module names are not

permitted.

If an ambient external module declaration includes an export assignment, it is an error for any of the

declarations within the module to specify an export modifier. If an ambient external module declaration

contains no export assignment, entities declared in the module are exported regardless of whether their

declarations include the optional export modifier.

133

A Grammar

This appendix contains a summary of the grammar found in the main document. As described in section

2.1, the TypeScript grammar is a superset of the grammar defined in the ECMAScript Language

Specification (specifically, the ECMA-262 Standard, 5
th

 Edition) and this appendix lists only productions

that are new or modified from the ECMAScript grammar.

A.1 Types

TypeParameters:

< TypeParameterList >

TypeParameterList:

TypeParameter

TypeParameterList , TypeParameter

TypeParameter:

Identifier Constraintopt

Constraint:

extends Type

Type:

PredefinedType

TypeReference

TypeQuery

TypeLiteral

PredefinedType:

any

number

boolean

string

void

TypeReference:

TypeName [no LineTerminator here] TypeArgumentsopt

TypeName:

Identifier

ModuleName . Identifier

ModuleName:

Identifier

ModuleName . Identifier

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

134

TypeArguments:

< TypeArgumentList >

TypeArgumentList:

TypeArgument

TypeArgumentList , TypeArgument

TypeArgument:

Type

TypeQuery:

typeof TypeQueryExpression

TypeQueryExpression:

Identifier

TypeQueryExpression . IdentifierName

TypeLiteral:

ObjectType

ArrayType

FunctionType

ConstructorType

ArrayType:

ElementType [no LineTerminator here] []

ElementType:

PredefinedType

TypeReference

TypeQuery

ObjectType

ArrayType

FunctionType:

TypeParametersopt (ParameterListopt) => Type

ConstructorType:

new TypeParametersopt (ParameterListopt) => Type

ObjectType:

{ TypeBodyopt }

TypeBody:

TypeMemberList ;opt

135

TypeMemberList:

TypeMember

TypeMemberList ; TypeMember

TypeMember:

PropertySignature

CallSignature

ConstructSignature

IndexSignature

MethodSignature

PropertySignature:

PropertyName ?opt TypeAnnotationopt

PropertyName:

IdentifierName

StringLiteral

NumericLiteral

CallSignature:

TypeParametersopt (ParameterListopt) TypeAnnotationopt

ParameterList:

RequiredParameterList

OptionalParameterList

RestParameter

RequiredParameterList , OptionalParameterList

RequiredParameterList , RestParameter

OptionalParameterList , RestParameter

RequiredParameterList , OptionalParameterList , RestParameter

RequiredParameterList:

RequiredParameter

RequiredParameterList , RequiredParameter

RequiredParameter:

PublicOrPrivateopt Identifier TypeAnnotationopt

Identifier : StringLiteral

PublicOrPrivate:

public

private

136

OptionalParameterList:

OptionalParameter

OptionalParameterList , OptionalParameter

OptionalParameter:

PublicOrPrivateopt Identifier ? TypeAnnotationopt

PublicOrPrivateopt Identifier TypeAnnotationopt Initialiser

RestParameter:

... Identifier TypeAnnotationopt

ConstructSignature:

new TypeParametersopt (ParameterListopt) TypeAnnotationopt

IndexSignature:

[Identifier : string] TypeAnnotation

[Identifier : number] TypeAnnotation

MethodSignature:

PropertyName ?opt CallSignature

A.2 Expressions

PropertyAssignment: (Modified)

PropertyName : AssignmentExpression

PropertyName CallSignature { FunctionBody }

GetAccessor

SetAccessor

GetAccessor:

get PropertyName () TypeAnnotationopt { FunctionBody }

SetAccessor:

set PropertyName (Identifier TypeAnnotationopt) { FunctionBody }

CallExpression: (Modified)

…

super (ArgumentListopt)

super . IdentifierName

FunctionExpression: (Modified)

function Identifieropt CallSignature { FunctionBody }

AssignmentExpression: (Modified)

…

ArrowFunctionExpression

137

ArrowFunctionExpression:

ArrowFormalParameters => Block

ArrowFormalParameters => AssignmentExpression

ArrowFormalParameters:

CallSignature

Identifier

Arguments: (Modified)

TypeArgumentsopt (ArgumentListopt)

UnaryExpression: (Modified)

…

< Type > UnaryExpression

A.3 Statements

VariableDeclaration: (Modified)

Identifier TypeAnnotationopt Initialiseropt

VariableDeclarationNoIn: (Modified)

Identifier TypeAnnotationopt InitialiserNoInopt

TypeAnnotation:

: Type

A.4 Functions

FunctionDeclaration: (Modified)

FunctionOverloadsopt FunctionImplementation

FunctionOverloads:

FunctionOverload

FunctionOverloads FunctionOverload

FunctionOverload:

function Identifier CallSignature ;

FunctionImplementation:

function Identifier CallSignature { FunctionBody }

A.5 Interfaces

InterfaceDeclaration:

interface Identifier TypeParametersopt InterfaceExtendsClauseopt ObjectType

138

InterfaceExtendsClause:

extends ClassOrInterfaceTypeList

ClassOrInterfaceTypeList:

ClassOrInterfaceType

ClassOrInterfaceTypeList , ClassOrInterfaceType

ClassOrInterfaceType:

TypeReference

A.6 Classes

ClassDeclaration:

class Identifier TypeParametersopt ClassHeritage { ClassBody }

ClassHeritage:

ClassExtendsClauseopt ImplementsClauseopt

ClassExtendsClause:

extends ClassType

ClassType:

TypeReference

ImplementsClause:

implements ClassOrInterfaceTypeList

ClassBody:

ClassElementsopt

ClassElements:

ClassElement

ClassElements ClassElement

ClassElement:

ConstructorDeclaration

PropertyMemberDeclaration

IndexMemberDeclaration

ConstructorDeclaration:

ConstructorOverloadsopt ConstructorImplementation

ConstructorOverloads:

ConstructorOverload

ConstructorOverloads ConstructorOverload

139

ConstructorOverload:

PublicOrPrivateopt constructor (ParameterListopt) ;

ConstructorImplementation:

PublicOrPrivateopt constructor (ParameterListopt) { FunctionBody }

PropertyMemberDeclaration:

MemberVariableDeclaration

MemberFunctionDeclaration

MemberAccessorDeclaration

MemberVariableDeclaration:

PublicOrPrivateopt staticopt PropertyName TypeAnnotationopt Initialiseropt ;

MemberFunctionDeclaration:

MemberFunctionOverloadsopt MemberFunctionImplementation

MemberFunctionOverloads:

MemberFunctionOverload

MemberFunctionOverloads MemberFunctionOverload

MemberFunctionOverload:

PublicOrPrivateopt staticopt PropertyName CallSignature ;

MemberFunctionImplementation:

PublicOrPrivateopt staticopt PropertyName CallSignature { FunctionBody }

MemberAccessorDeclaration:

PublicOrPrivateopt staticopt GetAccessor

PublicOrPrivateopt staticopt SetAccessor

IndexMemberDeclaration:

IndexSignature ;

A.7 Enums

EnumDeclaration:

enum Identifier { EnumBodyopt }

EnumBody:

ConstantEnumMembers ,opt

ConstantEnumMembers , EnumMemberSections ,opt

EnumMemberSections ,opt

140

ConstantEnumMembers:

PropertyName

ConstantEnumMembers , PropertyName

EnumMemberSections:

EnumMemberSection

EnumMemberSections , EnumMemberSection

EnumMemberSection:

ConstantEnumMemberSection

ComputedEnumMember

ConstantEnumMemberSection:

PropertyName = NumericLiteral

PropertyName = NumericLiteral , ConstantEnumMembers

ComputedEnumMember:

PropertyName = AssignmentExpression

A.8 Internal Modules

ModuleDeclaration:

module IdentifierPath { ModuleBody }

IdentifierPath:

Identifier

IdentifierPath . Identifier

ModuleBody:

ModuleElementsopt

ModuleElements:

ModuleElement

ModuleElements ModuleElement

ModuleElement:

Statement

exportopt VariableDeclaration

exportopt FunctionDeclaration

exportopt ClassDeclaration

exportopt InterfaceDeclaration

exportopt EnumDeclaration

exportopt ModuleDeclaration

exportopt ImportDeclaration

141

ImportDeclaration:

import Identifier = EntityName ;

EntityName:

Identifier

ModuleName . Identifier

A.9 Programs and External Modules

SourceFile:

ImplementationSourceFile

DeclarationSourceFile

ImplementationSourceFile:

ImplementationElementsopt

ImplementationElements:

ImplementationElement

ImplementationElements ImplementationElement

ImplementationElement:

ModuleElement

ExportAssignment

exportopt ExternalImportDeclaration

exportopt AmbientDeclaration

DeclarationSourceFile:

DeclarationElementsopt

DeclarationElements:

DeclarationElement

DeclarationElements DeclarationElement

DeclarationElement:

ExportAssignment

exportopt InterfaceDeclaration

exportopt ImportDeclaration

exportopt ExternalImportDeclaration

exportopt AmbientDeclaration

ExternalImportDeclaration:

import Identifier = ExternalModuleReference ;

ExternalModuleReference:

require (StringLiteral)

142

ExportAssignment:

export = Identifier ;

A.10 Ambients

AmbientDeclaration:

declare AmbientVariableDeclaration

declare AmbientFunctionDeclaration

declare AmbientClassDeclaration

declare AmbientEnumDeclaration

declare AmbientModuleDeclaration

declare AmbientExternalModuleDeclaration

AmbientVariableDeclaration:

var Identifier TypeAnnotationopt ;

AmbientFunctionDeclaration:

function Identifier CallSignature ;

AmbientClassDeclaration:

class Identifier TypeParametersopt ClassHeritage { AmbientClassBody }

AmbientClassBody:

AmbientClassBodyElementsopt

AmbientClassBodyElements:

AmbientClassBodyElement

AmbientClassBodyElements AmbientClassBodyElement

AmbientClassBodyElement:

AmbientConstructorDeclaration

AmbientPropertyMemberDeclaration

IndexSignature

AmbientConstructorDeclaration:

constructor (ParameterListopt) ;

AmbientPropertyMemberDeclaration:

PublicOrPrivateopt staticopt PropertyName TypeAnnotationopt ;

PublicOrPrivateopt staticopt PropertyName CallSignature ;

AmbientEnumDeclaration:

enum Identifier { AmbientEnumBodyopt }

AmbientEnumBody:

AmbientEnumMemberList ,opt

143

AmbientEnumMemberList:

AmbientEnumMember

AmbientEnumMemberList , AmbientEnumMember

AmbientEnumMember:

PropertyName

PropertyName = NumericLiteral

AmbientModuleDeclaration:

module IdentifierPath { AmbientModuleBody }

AmbientModuleBody:

AmbientModuleElementsopt

AmbientModuleElements:

AmbientModuleElement

AmbientModuleElements AmbientModuleElement

AmbientModuleElement:

exportopt AmbientVariableDeclaration

exportopt AmbientFunctionDeclaration

exportopt AmbientClassDeclaration

exportopt InterfaceDeclaration

exportopt AmbientEnumDeclaration

exportopt AmbientModuleDeclaration

exportopt ImportDeclaration

AmbientExternalModuleDeclaration:

module StringLiteral { AmbientExternalModuleBody }

AmbientExternalModuleBody:

AmbientExternalModuleElementsopt

AmbientExternalModuleElements:

AmbientExternalModuleElement

AmbientExternalModuleElements AmbientExternalModuleElement

AmbientExternalModuleElement:

AmbientModuleElement

ExportAssignment

exportopt ExternalImportDeclaration

