TypeScript/tests/cases/compiler/recursiveConditionalTypes.ts
Anders Hejlsberg cd30534327
Recursive conditional types (#40002)
* Support recursive conditional types

* Accept new API baselines

* Accept new baselines

* Simplify recursive type tracking in type inference

* Accept new baselines

* Add tests

* Accept new baselines

* Revise recursion tracking in type inference

* Revise tests

* Accept new baselines

* Add more tests

* Accept new baselines
2020-08-15 18:22:30 -07:00

122 lines
3.6 KiB
TypeScript

// @strict: true
// @declaration: true
// @target: esnext
// Awaiting promises
type Awaited<T> =
T extends null | undefined ? T :
T extends PromiseLike<infer U> ? Awaited<U> :
T;
type MyPromise<T> = {
then<U>(f: ((value: T) => U | PromiseLike<U>) | null | undefined): MyPromise<U>;
}
type InfinitePromise<T> = Promise<InfinitePromise<T>>;
type P0 = Awaited<Promise<string | Promise<MyPromise<number> | null> | undefined>>;
type P1 = Awaited<any>;
type P2 = Awaited<InfinitePromise<number>>; // Error
function f11<T, U extends T>(tx: T, ta: Awaited<T>, ux: U, ua: Awaited<U>) {
ta = ua;
ua = ta; // Error
ta = tx; // Error
tx = ta; // Error
}
// Flattening arrays
type Flatten<T extends readonly unknown[]> = T extends unknown[] ? _Flatten<T>[] : readonly _Flatten<T>[];
type _Flatten<T> = T extends readonly (infer U)[] ? _Flatten<U> : T;
type InfiniteArray<T> = InfiniteArray<T>[];
type B0 = Flatten<string[][][]>;
type B1 = Flatten<string[][] | readonly (number[] | boolean[][])[]>;
type B2 = Flatten<InfiniteArray<string>>;
type B3 = B2[0]; // Error
// Repeating tuples
type TupleOf<T, N extends number> = N extends N ? number extends N ? T[] : _TupleOf<T, N, []> : never;
type _TupleOf<T, N extends number, R extends unknown[]> = R['length'] extends N ? R : _TupleOf<T, N, [T, ...R]>;
type TT0 = TupleOf<string, 4>;
type TT1 = TupleOf<number, 0 | 2 | 4>;
type TT2 = TupleOf<number, number>;
type TT3 = TupleOf<number, any>;
type TT4 = TupleOf<number, 100>; // Depth error
function f22<N extends number, M extends N>(tn: TupleOf<number, N>, tm: TupleOf<number, M>) {
tn = tm;
tm = tn;
}
declare function f23<T>(t: TupleOf<T, 3>): T;
f23(['a', 'b', 'c']); // string
// Inference to recursive type
interface Box<T> { value: T };
type RecBox<T> = T | Box<RecBox<T>>;
type InfBox<T> = Box<InfBox<T>>;
declare function unbox<T>(box: RecBox<T>): T
type T1 = Box<string>;
type T2 = Box<T1>;
type T3 = Box<T2>;
type T4 = Box<T3>;
type T5 = Box<T4>;
type T6 = Box<T5>;
declare let b1: Box<Box<Box<Box<Box<Box<string>>>>>>;
declare let b2: T6;
declare let b3: InfBox<string>;
declare let b4: { value: { value: { value: typeof b4 }}};
unbox(b1); // string
unbox(b2); // string
unbox(b3); // InfBox<string>
unbox({ value: { value: { value: { value: { value: { value: 5 }}}}}}); // number
unbox(b4); // { value: { value: typeof b4 }}
unbox({ value: { value: { get value() { return this; } }}}); // { readonly value: ... }
// Inference from nested instantiations of same generic types
type Box1<T> = { value: T };
type Box2<T> = { value: T };
declare function foo<T>(x: Box1<Box1<T>>): T;
declare let z: Box2<Box2<string>>;
foo(z); // unknown, but ideally would be string (requires unique recursion ID for each type reference)
// Intersect tuple element types
type Intersect<U extends any[], R = unknown> = U extends [infer H, ...infer T] ? Intersect<T, R & H> : R;
type QQ = Intersect<[string[], number[], 7]>;
// Infer between structurally identical recursive conditional types
type Unpack1<T> = T extends (infer U)[] ? Unpack1<U> : T;
type Unpack2<T> = T extends (infer U)[] ? Unpack2<U> : T;
function f20<T, U extends T>(x: Unpack1<T>, y: Unpack2<T>) {
x = y;
y = x;
f20(y, x);
}
type Grow1<T extends unknown[], N extends number> = T['length'] extends N ? T : Grow1<[number, ...T], N>;
type Grow2<T extends unknown[], N extends number> = T['length'] extends N ? T : Grow2<[string, ...T], N>;
function f21<T extends number>(x: Grow1<[], T>, y: Grow2<[], T>) {
f21(y, x); // Error
}