TypeScript/src/compiler/binder.ts

631 lines
34 KiB
TypeScript

/// <reference path="parser.ts"/>
/* @internal */
module ts {
export let bindTime = 0;
export const enum ModuleInstanceState {
NonInstantiated = 0,
Instantiated = 1,
ConstEnumOnly = 2
}
export function getModuleInstanceState(node: Node): ModuleInstanceState {
// A module is uninstantiated if it contains only
// 1. interface declarations, type alias declarations
if (node.kind === SyntaxKind.InterfaceDeclaration || node.kind === SyntaxKind.TypeAliasDeclaration) {
return ModuleInstanceState.NonInstantiated;
}
// 2. const enum declarations
else if (isConstEnumDeclaration(node)) {
return ModuleInstanceState.ConstEnumOnly;
}
// 3. non-exported import declarations
else if ((node.kind === SyntaxKind.ImportDeclaration || node.kind === SyntaxKind.ImportEqualsDeclaration) && !(node.flags & NodeFlags.Export)) {
return ModuleInstanceState.NonInstantiated;
}
// 4. other uninstantiated module declarations.
else if (node.kind === SyntaxKind.ModuleBlock) {
let state = ModuleInstanceState.NonInstantiated;
forEachChild(node, n => {
switch (getModuleInstanceState(n)) {
case ModuleInstanceState.NonInstantiated:
// child is non-instantiated - continue searching
return false;
case ModuleInstanceState.ConstEnumOnly:
// child is const enum only - record state and continue searching
state = ModuleInstanceState.ConstEnumOnly;
return false;
case ModuleInstanceState.Instantiated:
// child is instantiated - record state and stop
state = ModuleInstanceState.Instantiated;
return true;
}
});
return state;
}
else if (node.kind === SyntaxKind.ModuleDeclaration) {
return getModuleInstanceState((<ModuleDeclaration>node).body);
}
else {
return ModuleInstanceState.Instantiated;
}
}
export function bindSourceFile(file: SourceFile): void {
let start = new Date().getTime();
bindSourceFileWorker(file);
bindTime += new Date().getTime() - start;
}
function bindSourceFileWorker(file: SourceFile): void {
let parent: Node;
let container: Node;
let blockScopeContainer: Node;
let lastContainer: Node;
let symbolCount = 0;
let Symbol = objectAllocator.getSymbolConstructor();
if (!file.locals) {
file.locals = {};
container = file;
setBlockScopeContainer(file, /*cleanLocals*/ false);
bind(file);
file.symbolCount = symbolCount;
}
function createSymbol(flags: SymbolFlags, name: string): Symbol {
symbolCount++;
return new Symbol(flags, name);
}
function setBlockScopeContainer(node: Node, cleanLocals: boolean) {
blockScopeContainer = node;
if (cleanLocals) {
blockScopeContainer.locals = undefined;
}
}
function addDeclarationToSymbol(symbol: Symbol, node: Declaration, symbolKind: SymbolFlags) {
symbol.flags |= symbolKind;
if (!symbol.declarations) symbol.declarations = [];
symbol.declarations.push(node);
if (symbolKind & SymbolFlags.HasExports && !symbol.exports) symbol.exports = {};
if (symbolKind & SymbolFlags.HasMembers && !symbol.members) symbol.members = {};
node.symbol = symbol;
if (symbolKind & SymbolFlags.Value && !symbol.valueDeclaration) symbol.valueDeclaration = node;
}
// Should not be called on a declaration with a computed property name,
// unless it is a well known Symbol.
function getDeclarationName(node: Declaration): string {
if (node.name) {
if (node.kind === SyntaxKind.ModuleDeclaration && node.name.kind === SyntaxKind.StringLiteral) {
return '"' + (<LiteralExpression>node.name).text + '"';
}
if (node.name.kind === SyntaxKind.ComputedPropertyName) {
let nameExpression = (<ComputedPropertyName>node.name).expression;
Debug.assert(isWellKnownSymbolSyntactically(nameExpression));
return getPropertyNameForKnownSymbolName((<PropertyAccessExpression>nameExpression).name.text);
}
return (<Identifier | LiteralExpression>node.name).text;
}
switch (node.kind) {
case SyntaxKind.ConstructorType:
case SyntaxKind.Constructor:
return "__constructor";
case SyntaxKind.FunctionType:
case SyntaxKind.CallSignature:
return "__call";
case SyntaxKind.ConstructSignature:
return "__new";
case SyntaxKind.IndexSignature:
return "__index";
case SyntaxKind.ExportDeclaration:
return "__export";
case SyntaxKind.ExportAssignment:
return (<ExportAssignment>node).isExportEquals ? "export=" : "default";
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.ClassDeclaration:
return node.flags & NodeFlags.Default ? "default" : undefined;
}
}
function getDisplayName(node: Declaration): string {
return node.name ? declarationNameToString(node.name) : getDeclarationName(node);
}
function declareSymbol(symbols: SymbolTable, parent: Symbol, node: Declaration, includes: SymbolFlags, excludes: SymbolFlags): Symbol {
Debug.assert(!hasDynamicName(node));
// The exported symbol for an export default function/class node is always named "default"
let name = node.flags & NodeFlags.Default && parent ? "default" : getDeclarationName(node);
let symbol: Symbol;
if (name !== undefined) {
symbol = hasProperty(symbols, name) ? symbols[name] : (symbols[name] = createSymbol(0, name));
if (symbol.flags & excludes) {
if (node.name) {
node.name.parent = node;
}
// Report errors every position with duplicate declaration
// Report errors on previous encountered declarations
let message = symbol.flags & SymbolFlags.BlockScopedVariable
? Diagnostics.Cannot_redeclare_block_scoped_variable_0
: Diagnostics.Duplicate_identifier_0;
forEach(symbol.declarations, declaration => {
file.bindDiagnostics.push(createDiagnosticForNode(declaration.name || declaration, message, getDisplayName(declaration)));
});
file.bindDiagnostics.push(createDiagnosticForNode(node.name || node, message, getDisplayName(node)));
symbol = createSymbol(0, name);
}
}
else {
symbol = createSymbol(0, "__missing");
}
addDeclarationToSymbol(symbol, node, includes);
symbol.parent = parent;
if ((node.kind === SyntaxKind.ClassDeclaration || node.kind === SyntaxKind.ClassExpression) && symbol.exports) {
// TypeScript 1.0 spec (April 2014): 8.4
// Every class automatically contains a static property member named 'prototype',
// the type of which is an instantiation of the class type with type Any supplied as a type argument for each type parameter.
// It is an error to explicitly declare a static property member with the name 'prototype'.
let prototypeSymbol = createSymbol(SymbolFlags.Property | SymbolFlags.Prototype, "prototype");
if (hasProperty(symbol.exports, prototypeSymbol.name)) {
if (node.name) {
node.name.parent = node;
}
file.bindDiagnostics.push(createDiagnosticForNode(symbol.exports[prototypeSymbol.name].declarations[0],
Diagnostics.Duplicate_identifier_0, prototypeSymbol.name));
}
symbol.exports[prototypeSymbol.name] = prototypeSymbol;
prototypeSymbol.parent = symbol;
}
return symbol;
}
function declareModuleMember(node: Declaration, symbolKind: SymbolFlags, symbolExcludes: SymbolFlags) {
let hasExportModifier = getCombinedNodeFlags(node) & NodeFlags.Export;
if (symbolKind & SymbolFlags.Alias) {
if (node.kind === SyntaxKind.ExportSpecifier || (node.kind === SyntaxKind.ImportEqualsDeclaration && hasExportModifier)) {
declareSymbol(container.symbol.exports, container.symbol, node, symbolKind, symbolExcludes);
}
else {
declareSymbol(container.locals, undefined, node, symbolKind, symbolExcludes);
}
}
else {
// Exported module members are given 2 symbols: A local symbol that is classified with an ExportValue,
// ExportType, or ExportContainer flag, and an associated export symbol with all the correct flags set
// on it. There are 2 main reasons:
//
// 1. We treat locals and exports of the same name as mutually exclusive within a container.
// That means the binder will issue a Duplicate Identifier error if you mix locals and exports
// with the same name in the same container.
// TODO: Make this a more specific error and decouple it from the exclusion logic.
// 2. When we checkIdentifier in the checker, we set its resolved symbol to the local symbol,
// but return the export symbol (by calling getExportSymbolOfValueSymbolIfExported). That way
// when the emitter comes back to it, it knows not to qualify the name if it was found in a containing scope.
if (hasExportModifier || container.flags & NodeFlags.ExportContext) {
let exportKind = (symbolKind & SymbolFlags.Value ? SymbolFlags.ExportValue : 0) |
(symbolKind & SymbolFlags.Type ? SymbolFlags.ExportType : 0) |
(symbolKind & SymbolFlags.Namespace ? SymbolFlags.ExportNamespace : 0);
let local = declareSymbol(container.locals, undefined, node, exportKind, symbolExcludes);
local.exportSymbol = declareSymbol(container.symbol.exports, container.symbol, node, symbolKind, symbolExcludes);
node.localSymbol = local;
}
else {
declareSymbol(container.locals, undefined, node, symbolKind, symbolExcludes);
}
}
}
// All container nodes are kept on a linked list in declaration order. This list is used by the getLocalNameOfContainer function
// in the type checker to validate that the local name used for a container is unique.
function bindChildren(node: Node, symbolKind: SymbolFlags, isBlockScopeContainer: boolean) {
if (symbolKind & SymbolFlags.HasLocals) {
node.locals = {};
}
let saveParent = parent;
let saveContainer = container;
let savedBlockScopeContainer = blockScopeContainer;
parent = node;
if (symbolKind & SymbolFlags.IsContainer) {
container = node;
addToContainerChain(container);
}
if (isBlockScopeContainer) {
// in incremental scenarios we might reuse nodes that already have locals being allocated
// during the bind step these locals should be dropped to prevent using stale data.
// locals should always be dropped unless they were previously initialized by the binder
// these cases are:
// - node has locals (symbolKind & HasLocals) !== 0
// - node is a source file
setBlockScopeContainer(node, /*cleanLocals*/ (symbolKind & SymbolFlags.HasLocals) === 0 && node.kind !== SyntaxKind.SourceFile);
}
forEachChild(node, bind);
container = saveContainer;
parent = saveParent;
blockScopeContainer = savedBlockScopeContainer;
}
function addToContainerChain(node: Node) {
if (lastContainer) {
lastContainer.nextContainer = node;
}
lastContainer = node;
}
function bindDeclaration(node: Declaration, symbolKind: SymbolFlags, symbolExcludes: SymbolFlags, isBlockScopeContainer: boolean) {
switch (container.kind) {
case SyntaxKind.ModuleDeclaration:
declareModuleMember(node, symbolKind, symbolExcludes);
break;
case SyntaxKind.SourceFile:
if (isExternalModule(<SourceFile>container)) {
declareModuleMember(node, symbolKind, symbolExcludes);
break;
}
case SyntaxKind.FunctionType:
case SyntaxKind.ConstructorType:
case SyntaxKind.CallSignature:
case SyntaxKind.ConstructSignature:
case SyntaxKind.IndexSignature:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
case SyntaxKind.Constructor:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.FunctionExpression:
case SyntaxKind.ArrowFunction:
declareSymbol(container.locals, undefined, node, symbolKind, symbolExcludes);
break;
case SyntaxKind.ClassExpression:
case SyntaxKind.ClassDeclaration:
if (node.flags & NodeFlags.Static) {
declareSymbol(container.symbol.exports, container.symbol, node, symbolKind, symbolExcludes);
break;
}
case SyntaxKind.TypeLiteral:
case SyntaxKind.ObjectLiteralExpression:
case SyntaxKind.InterfaceDeclaration:
declareSymbol(container.symbol.members, container.symbol, node, symbolKind, symbolExcludes);
break;
case SyntaxKind.EnumDeclaration:
declareSymbol(container.symbol.exports, container.symbol, node, symbolKind, symbolExcludes);
break;
}
bindChildren(node, symbolKind, isBlockScopeContainer);
}
function isAmbientContext(node: Node): boolean {
while (node) {
if (node.flags & NodeFlags.Ambient) return true;
node = node.parent;
}
return false;
}
function hasExportDeclarations(node: ModuleDeclaration | SourceFile): boolean {
var body = node.kind === SyntaxKind.SourceFile ? node : (<ModuleDeclaration>node).body;
if (body.kind === SyntaxKind.SourceFile || body.kind === SyntaxKind.ModuleBlock) {
for (let stat of (<Block>body).statements) {
if (stat.kind === SyntaxKind.ExportDeclaration || stat.kind === SyntaxKind.ExportAssignment) {
return true;
}
}
}
return false;
}
function setExportContextFlag(node: ModuleDeclaration | SourceFile) {
// A declaration source file or ambient module declaration that contains no export declarations (but possibly regular
// declarations with export modifiers) is an export context in which declarations are implicitly exported.
if (isAmbientContext(node) && !hasExportDeclarations(node)) {
node.flags |= NodeFlags.ExportContext;
}
else {
node.flags &= ~NodeFlags.ExportContext;
}
}
function bindModuleDeclaration(node: ModuleDeclaration) {
setExportContextFlag(node);
if (node.name.kind === SyntaxKind.StringLiteral) {
bindDeclaration(node, SymbolFlags.ValueModule, SymbolFlags.ValueModuleExcludes, /*isBlockScopeContainer*/ true);
}
else {
let state = getModuleInstanceState(node);
if (state === ModuleInstanceState.NonInstantiated) {
bindDeclaration(node, SymbolFlags.NamespaceModule, SymbolFlags.NamespaceModuleExcludes, /*isBlockScopeContainer*/ true);
}
else {
bindDeclaration(node, SymbolFlags.ValueModule, SymbolFlags.ValueModuleExcludes, /*isBlockScopeContainer*/ true);
let currentModuleIsConstEnumOnly = state === ModuleInstanceState.ConstEnumOnly;
if (node.symbol.constEnumOnlyModule === undefined) {
// non-merged case - use the current state
node.symbol.constEnumOnlyModule = currentModuleIsConstEnumOnly;
}
else {
// merged case: module is const enum only if all its pieces are non-instantiated or const enum
node.symbol.constEnumOnlyModule = node.symbol.constEnumOnlyModule && currentModuleIsConstEnumOnly;
}
}
}
}
function bindFunctionOrConstructorType(node: SignatureDeclaration) {
// For a given function symbol "<...>(...) => T" we want to generate a symbol identical
// to the one we would get for: { <...>(...): T }
//
// We do that by making an anonymous type literal symbol, and then setting the function
// symbol as its sole member. To the rest of the system, this symbol will be indistinguishable
// from an actual type literal symbol you would have gotten had you used the long form.
let symbol = createSymbol(SymbolFlags.Signature, getDeclarationName(node));
addDeclarationToSymbol(symbol, node, SymbolFlags.Signature);
bindChildren(node, SymbolFlags.Signature, /*isBlockScopeContainer:*/ false);
let typeLiteralSymbol = createSymbol(SymbolFlags.TypeLiteral, "__type");
addDeclarationToSymbol(typeLiteralSymbol, node, SymbolFlags.TypeLiteral);
typeLiteralSymbol.members = {};
typeLiteralSymbol.members[node.kind === SyntaxKind.FunctionType ? "__call" : "__new"] = symbol
}
function bindAnonymousDeclaration(node: Declaration, symbolKind: SymbolFlags, name: string, isBlockScopeContainer: boolean) {
let symbol = createSymbol(symbolKind, name);
addDeclarationToSymbol(symbol, node, symbolKind);
bindChildren(node, symbolKind, isBlockScopeContainer);
}
function bindCatchVariableDeclaration(node: CatchClause) {
bindChildren(node, /*symbolKind:*/ 0, /*isBlockScopeContainer:*/ true);
}
function bindBlockScopedDeclaration(node: Declaration, symbolKind: SymbolFlags, symbolExcludes: SymbolFlags) {
switch (blockScopeContainer.kind) {
case SyntaxKind.ModuleDeclaration:
declareModuleMember(node, symbolKind, symbolExcludes);
break;
case SyntaxKind.SourceFile:
if (isExternalModule(<SourceFile>container)) {
declareModuleMember(node, symbolKind, symbolExcludes);
break;
}
// fall through.
default:
if (!blockScopeContainer.locals) {
blockScopeContainer.locals = {};
addToContainerChain(blockScopeContainer);
}
declareSymbol(blockScopeContainer.locals, undefined, node, symbolKind, symbolExcludes);
}
bindChildren(node, symbolKind, /*isBlockScopeContainer*/ false);
}
function bindBlockScopedVariableDeclaration(node: Declaration) {
bindBlockScopedDeclaration(node, SymbolFlags.BlockScopedVariable, SymbolFlags.BlockScopedVariableExcludes);
}
function getDestructuringParameterName(node: Declaration) {
return "__" + indexOf((<SignatureDeclaration>node.parent).parameters, node);
}
function bind(node: Node) {
node.parent = parent;
switch (node.kind) {
case SyntaxKind.TypeParameter:
bindDeclaration(<Declaration>node, SymbolFlags.TypeParameter, SymbolFlags.TypeParameterExcludes, /*isBlockScopeContainer*/ false);
break;
case SyntaxKind.Parameter:
bindParameter(<ParameterDeclaration>node);
break;
case SyntaxKind.VariableDeclaration:
case SyntaxKind.BindingElement:
if (isBindingPattern((<Declaration>node).name)) {
bindChildren(node, 0, /*isBlockScopeContainer*/ false);
}
else if (isBlockOrCatchScoped(<Declaration>node)) {
bindBlockScopedVariableDeclaration(<Declaration>node);
}
else if (isParameterDeclaration(<VariableLikeDeclaration>node)) {
// It is safe to walk up parent chain to find whether the node is a destructing parameter declaration
// because its parent chain has already been set up, since parents are set before descending into children.
//
// If node is a binding element in parameter declaration, we need to use ParameterExcludes.
// Using ParameterExcludes flag allows the compiler to report an error on duplicate identifiers in Parameter Declaration
// For example:
// function foo([a,a]) {} // Duplicate Identifier error
// function bar(a,a) {} // Duplicate Identifier error, parameter declaration in this case is handled in bindParameter
// // which correctly set excluded symbols
bindDeclaration(<Declaration>node, SymbolFlags.FunctionScopedVariable, SymbolFlags.ParameterExcludes, /*isBlockScopeContainer*/ false);
}
else {
bindDeclaration(<Declaration>node, SymbolFlags.FunctionScopedVariable, SymbolFlags.FunctionScopedVariableExcludes, /*isBlockScopeContainer*/ false);
}
break;
case SyntaxKind.PropertyDeclaration:
case SyntaxKind.PropertySignature:
bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.Property | ((<PropertyDeclaration>node).questionToken ? SymbolFlags.Optional : 0), SymbolFlags.PropertyExcludes, /*isBlockScopeContainer*/ false);
break;
case SyntaxKind.PropertyAssignment:
case SyntaxKind.ShorthandPropertyAssignment:
bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.Property, SymbolFlags.PropertyExcludes, /*isBlockScopeContainer*/ false);
break;
case SyntaxKind.EnumMember:
bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.EnumMember, SymbolFlags.EnumMemberExcludes, /*isBlockScopeContainer*/ false);
break;
case SyntaxKind.CallSignature:
case SyntaxKind.ConstructSignature:
case SyntaxKind.IndexSignature:
bindDeclaration(<Declaration>node, SymbolFlags.Signature, 0, /*isBlockScopeContainer*/ false);
break;
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
// If this is an ObjectLiteralExpression method, then it sits in the same space
// as other properties in the object literal. So we use SymbolFlags.PropertyExcludes
// so that it will conflict with any other object literal members with the same
// name.
bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.Method | ((<MethodDeclaration>node).questionToken ? SymbolFlags.Optional : 0),
isObjectLiteralMethod(node) ? SymbolFlags.PropertyExcludes : SymbolFlags.MethodExcludes, /*isBlockScopeContainer*/ true);
break;
case SyntaxKind.FunctionDeclaration:
bindDeclaration(<Declaration>node, SymbolFlags.Function, SymbolFlags.FunctionExcludes, /*isBlockScopeContainer*/ true);
break;
case SyntaxKind.Constructor:
bindDeclaration(<Declaration>node, SymbolFlags.Constructor, /*symbolExcludes:*/ 0, /*isBlockScopeContainer:*/ true);
break;
case SyntaxKind.GetAccessor:
bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.GetAccessor, SymbolFlags.GetAccessorExcludes, /*isBlockScopeContainer*/ true);
break;
case SyntaxKind.SetAccessor:
bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.SetAccessor, SymbolFlags.SetAccessorExcludes, /*isBlockScopeContainer*/ true);
break;
case SyntaxKind.FunctionType:
case SyntaxKind.ConstructorType:
bindFunctionOrConstructorType(<SignatureDeclaration>node);
break;
case SyntaxKind.TypeLiteral:
bindAnonymousDeclaration(<TypeLiteralNode>node, SymbolFlags.TypeLiteral, "__type", /*isBlockScopeContainer*/ false);
break;
case SyntaxKind.ObjectLiteralExpression:
bindAnonymousDeclaration(<ObjectLiteralExpression>node, SymbolFlags.ObjectLiteral, "__object", /*isBlockScopeContainer*/ false);
break;
case SyntaxKind.FunctionExpression:
case SyntaxKind.ArrowFunction:
bindAnonymousDeclaration(<FunctionExpression>node, SymbolFlags.Function, "__function", /*isBlockScopeContainer*/ true);
break;
case SyntaxKind.ClassExpression:
bindAnonymousDeclaration(<ClassExpression>node, SymbolFlags.Class, "__class", /*isBlockScopeContainer*/ false);
break;
case SyntaxKind.CatchClause:
bindCatchVariableDeclaration(<CatchClause>node);
break;
case SyntaxKind.ClassDeclaration:
bindBlockScopedDeclaration(<Declaration>node, SymbolFlags.Class, SymbolFlags.ClassExcludes);
break;
case SyntaxKind.InterfaceDeclaration:
bindBlockScopedDeclaration(<Declaration>node, SymbolFlags.Interface, SymbolFlags.InterfaceExcludes);
break;
case SyntaxKind.TypeAliasDeclaration:
bindBlockScopedDeclaration(<Declaration>node, SymbolFlags.TypeAlias, SymbolFlags.TypeAliasExcludes);
break;
case SyntaxKind.EnumDeclaration:
if (isConst(node)) {
bindBlockScopedDeclaration(<Declaration>node, SymbolFlags.ConstEnum, SymbolFlags.ConstEnumExcludes);
}
else {
bindBlockScopedDeclaration(<Declaration>node, SymbolFlags.RegularEnum, SymbolFlags.RegularEnumExcludes);
}
break;
case SyntaxKind.ModuleDeclaration:
bindModuleDeclaration(<ModuleDeclaration>node);
break;
case SyntaxKind.ImportEqualsDeclaration:
case SyntaxKind.NamespaceImport:
case SyntaxKind.ImportSpecifier:
case SyntaxKind.ExportSpecifier:
bindDeclaration(<Declaration>node, SymbolFlags.Alias, SymbolFlags.AliasExcludes, /*isBlockScopeContainer*/ false);
break;
case SyntaxKind.ImportClause:
if ((<ImportClause>node).name) {
bindDeclaration(<Declaration>node, SymbolFlags.Alias, SymbolFlags.AliasExcludes, /*isBlockScopeContainer*/ false);
}
else {
bindChildren(node, 0, /*isBlockScopeContainer*/ false);
}
break;
case SyntaxKind.ExportDeclaration:
if (!(<ExportDeclaration>node).exportClause) {
// All export * declarations are collected in an __export symbol
declareSymbol(container.symbol.exports, container.symbol, <Declaration>node, SymbolFlags.ExportStar, 0);
}
bindChildren(node, 0, /*isBlockScopeContainer*/ false);
break;
case SyntaxKind.ExportAssignment:
if ((<ExportAssignment>node).expression.kind === SyntaxKind.Identifier) {
// An export default clause with an identifier exports all meanings of that identifier
declareSymbol(container.symbol.exports, container.symbol, <Declaration>node, SymbolFlags.Alias, SymbolFlags.PropertyExcludes | SymbolFlags.AliasExcludes);
}
else {
// An export default clause with an expression exports a value
declareSymbol(container.symbol.exports, container.symbol, <Declaration>node, SymbolFlags.Property, SymbolFlags.PropertyExcludes | SymbolFlags.AliasExcludes);
}
bindChildren(node, 0, /*isBlockScopeContainer*/ false);
break;
case SyntaxKind.SourceFile:
setExportContextFlag(<SourceFile>node);
if (isExternalModule(<SourceFile>node)) {
bindAnonymousDeclaration(<SourceFile>node, SymbolFlags.ValueModule, '"' + removeFileExtension((<SourceFile>node).fileName) + '"', /*isBlockScopeContainer*/ true);
break;
}
case SyntaxKind.Block:
// do not treat function block a block-scope container
// all block-scope locals that reside in this block should go to the function locals.
// Otherwise this won't be considered as redeclaration of a block scoped local:
// function foo() {
// let x;
// let x;
// }
// 'let x' will be placed into the function locals and 'let x' - into the locals of the block
bindChildren(node, 0, /*isBlockScopeContainer*/ !isFunctionLike(node.parent));
break;
case SyntaxKind.CatchClause:
case SyntaxKind.ForStatement:
case SyntaxKind.ForInStatement:
case SyntaxKind.ForOfStatement:
case SyntaxKind.CaseBlock:
bindChildren(node, 0, /*isBlockScopeContainer*/ true);
break;
default:
let saveParent = parent;
parent = node;
forEachChild(node, bind);
parent = saveParent;
}
}
function bindParameter(node: ParameterDeclaration) {
if (isBindingPattern(node.name)) {
bindAnonymousDeclaration(node, SymbolFlags.FunctionScopedVariable, getDestructuringParameterName(node), /*isBlockScopeContainer*/ false);
}
else {
bindDeclaration(node, SymbolFlags.FunctionScopedVariable, SymbolFlags.ParameterExcludes, /*isBlockScopeContainer*/ false);
}
// If this is a property-parameter, then also declare the property symbol into the
// containing class.
if (node.flags & NodeFlags.AccessibilityModifier &&
node.parent.kind === SyntaxKind.Constructor &&
(node.parent.parent.kind === SyntaxKind.ClassDeclaration || node.parent.parent.kind === SyntaxKind.ClassExpression)) {
let classDeclaration = <ClassLikeDeclaration>node.parent.parent;
declareSymbol(classDeclaration.symbol.members, classDeclaration.symbol, node, SymbolFlags.Property, SymbolFlags.PropertyExcludes);
}
}
function bindPropertyOrMethodOrAccessor(node: Declaration, symbolKind: SymbolFlags, symbolExcludes: SymbolFlags, isBlockScopeContainer: boolean) {
if (hasDynamicName(node)) {
bindAnonymousDeclaration(node, symbolKind, "__computed", isBlockScopeContainer);
}
else {
bindDeclaration(node, symbolKind, symbolExcludes, isBlockScopeContainer);
}
}
}
}