Optimized scene format

This commit is contained in:
Lubos Lenco 2017-05-17 17:06:52 +02:00
parent a19f26300c
commit a759210355
9 changed files with 435 additions and 1159 deletions

View file

@ -517,36 +517,39 @@ class ConvexBreaker {
addFlatNormal(f.normal, f.c);
}
// TODO:
var paa = new kha.arrays.Float32Array(pa.length);
for (i in 0...pa.length) paa.set(i, pa[i]);
var naa = new kha.arrays.Float32Array(na.length);
for (i in 0...na.length) naa.set(i, na[i]);
var inda = new kha.arrays.Uint32Array(ind.length);
for (i in 0...ind.length) inda.set(i, ind[i]);
var pos:TVertexArray = {
attrib: "position",
size: 3,
values: pa
values: paa
};
var nor:TVertexArray = {
attrib: "normal",
size: 3,
values: na
values: naa
};
var indices:TIndexArray = {
material: 0,
size: 3,
values: ind
values: inda
};
var rawmesh:TMesh = {
primitive: "triangles",
var rawmesh:TMeshData = {
name: "TempMesh" + (meshIndex++),
vertex_arrays: [pos, nor],
index_arrays: [indices]
};
var rawmeshData:TMeshData = {
name: "TempMesh" + (meshIndex++),
mesh: rawmesh
};
var md = MeshData.newSync(rawmeshData);
var md = MeshData.newSync(rawmesh);
md.geom.calculateAABB();
return md;
}

View file

@ -29,164 +29,164 @@ class PathTracer extends Trait {
function getColorFromNode(object:MeshObject):Array<Float> {
// Hard code for now
for (c in object.materials[0].contexts[0].raw.bind_constants) {
if (c.name == "baseCol") {
return c.vec4;
}
}
// for (c in object.materials[0].contexts[0].raw.bind_constants) {
// if (c.name == "baseCol") {
// return c.vec4;
// }
// }
return null;
}
function init() {
Data.getMaterial('pt_material', '', function(b:MaterialData) {
// Data.getMaterial('pt_material', '', function(b:MaterialData) {
context = b.getContext('pt_trace_pass');
// context = b.getContext('pt_trace_pass');
context.raw.bind_constants.push(
{
name: "glossiness",
float: 0.6
}
);
// context.raw.bind_constants.push(
// {
// name: "glossiness",
// float: 0.6
// }
// );
context.raw.bind_constants.push(
{
name: "ray00",
vec3: [0.0, 0.0, 0.0]
}
);
ray00Location = context.raw.bind_constants.length - 1;
// context.raw.bind_constants.push(
// {
// name: "ray00",
// vec3: [0.0, 0.0, 0.0]
// }
// );
// ray00Location = context.raw.bind_constants.length - 1;
context.raw.bind_constants.push(
{
name: "ray01",
vec3: [0.0, 0.0, 0.0]
}
);
ray01Location = context.raw.bind_constants.length - 1;
// context.raw.bind_constants.push(
// {
// name: "ray01",
// vec3: [0.0, 0.0, 0.0]
// }
// );
// ray01Location = context.raw.bind_constants.length - 1;
context.raw.bind_constants.push(
{
name: "ray10",
vec3: [0.0, 0.0, 0.0]
}
);
ray10Location = context.raw.bind_constants.length - 1;
// context.raw.bind_constants.push(
// {
// name: "ray10",
// vec3: [0.0, 0.0, 0.0]
// }
// );
// ray10Location = context.raw.bind_constants.length - 1;
context.raw.bind_constants.push(
{
name: "ray11",
vec3: [0.0, 0.0, 0.0]
}
);
ray11Location = context.raw.bind_constants.length - 1;
// context.raw.bind_constants.push(
// {
// name: "ray11",
// vec3: [0.0, 0.0, 0.0]
// }
// );
// ray11Location = context.raw.bind_constants.length - 1;
objectLocations = [];
transformMap = new Map();
var sphereNum = 0;
var cubeNum = 0;
for (n in iron.Scene.active.meshes) {
if (n.name.split(".")[0] == "Sphere") {
context.raw.bind_constants.push(
{
name: "sphereCenter" + sphereNum,
vec3: [0.0, 0.0, 0.0]
}
);
var loc = context.raw.bind_constants.length - 1;
objectLocations.push(loc);
transformMap.set(loc, n.transform);
// objectLocations = [];
// transformMap = new Map();
// var sphereNum = 0;
// var cubeNum = 0;
// for (n in iron.Scene.active.meshes) {
// if (n.name.split(".")[0] == "Sphere") {
// context.raw.bind_constants.push(
// {
// name: "sphereCenter" + sphereNum,
// vec3: [0.0, 0.0, 0.0]
// }
// );
// var loc = context.raw.bind_constants.length - 1;
// objectLocations.push(loc);
// transformMap.set(loc, n.transform);
context.raw.bind_constants.push(
{
name: "sphereRadius" + sphereNum,
float: n.transform.size.x / 2 - 0.02
}
);
// context.raw.bind_constants.push(
// {
// name: "sphereRadius" + sphereNum,
// float: n.transform.size.x / 2 - 0.02
// }
// );
var col = getColorFromNode(n);
context.raw.bind_constants.push(
{
name: "sphereColor" + sphereNum,
vec3: [col[0], col[1], col[2]]
}
);
// var col = getColorFromNode(n);
// context.raw.bind_constants.push(
// {
// name: "sphereColor" + sphereNum,
// vec3: [col[0], col[1], col[2]]
// }
// );
sphereNum++;
}
else if (n.name.split(".")[0] == "Cube") {
context.raw.bind_constants.push(
{
name: "cubeCenter" + cubeNum,
vec3: [0.0, 0.0, 0.0]
}
);
var loc = context.raw.bind_constants.length - 1;
objectLocations.push(loc);
transformMap.set(loc, n.transform);
// sphereNum++;
// }
// else if (n.name.split(".")[0] == "Cube") {
// context.raw.bind_constants.push(
// {
// name: "cubeCenter" + cubeNum,
// vec3: [0.0, 0.0, 0.0]
// }
// );
// var loc = context.raw.bind_constants.length - 1;
// objectLocations.push(loc);
// transformMap.set(loc, n.transform);
context.raw.bind_constants.push(
{
name: "cubeSize" + cubeNum,
vec3: [n.transform.size.x / 2, n.transform.size.y / 2, n.transform.size.z / 2]
}
);
// context.raw.bind_constants.push(
// {
// name: "cubeSize" + cubeNum,
// vec3: [n.transform.size.x / 2, n.transform.size.y / 2, n.transform.size.z / 2]
// }
// );
var col = getColorFromNode(n);
context.raw.bind_constants.push(
{
name: "cubeColor" + cubeNum,
vec3: [col[0], col[1], col[2]]
}
);
// var col = getColorFromNode(n);
// context.raw.bind_constants.push(
// {
// name: "cubeColor" + cubeNum,
// vec3: [col[0], col[1], col[2]]
// }
// );
cubeNum++;
}
}
// cubeNum++;
// }
// }
notifyOnUpdate(update);
});
// notifyOnUpdate(update);
// });
}
function update() {
var camera = iron.Scene.active.camera;
var eye = camera.transform.loc;
// var camera = iron.Scene.active.camera;
// var eye = camera.transform.loc;
// var jitter = Mat4.identity();
// jitter.initTranslate(Math.random() * 2 - 1, Math.random() * 2 - 1, 0);
// jitter.multiplyScalar(1 / iron.App.w);
// jitter.multiplyScalar(1 / 400);
var mvp = Mat4.identity();
mvp.multmat2(camera.V);
mvp.multmat2(camera.P);
var inverse = Mat4.identity();
// jitter.multmat2(mvp);
// inverse.getInverse(mvp);
var matrix = inverse;
// // var jitter = Mat4.identity();
// // jitter.initTranslate(Math.random() * 2 - 1, Math.random() * 2 - 1, 0);
// // jitter.multiplyScalar(1 / iron.App.w);
// // jitter.multiplyScalar(1 / 400);
// var mvp = Mat4.identity();
// mvp.multmat2(camera.V);
// mvp.multmat2(camera.P);
// var inverse = Mat4.identity();
// // jitter.multmat2(mvp);
// // inverse.getInverse(mvp);
// var matrix = inverse;
// Set uniforms
// // Set uniforms
var v = getEyeRay(matrix, -1, -1, eye);
context.raw.bind_constants[ray00Location].vec3 = [v.x, v.y, v.z];
// var v = getEyeRay(matrix, -1, -1, eye);
// context.raw.bind_constants[ray00Location].vec3 = [v.x, v.y, v.z];
var v = getEyeRay(matrix, -1, 1, eye);
context.raw.bind_constants[ray01Location].vec3 = [v.x, v.y, v.z];
// var v = getEyeRay(matrix, -1, 1, eye);
// context.raw.bind_constants[ray01Location].vec3 = [v.x, v.y, v.z];
var v = getEyeRay(matrix, 1, -1, eye);
context.raw.bind_constants[ray10Location].vec3 = [v.x, v.y, v.z];
// var v = getEyeRay(matrix, 1, -1, eye);
// context.raw.bind_constants[ray10Location].vec3 = [v.x, v.y, v.z];
var v = getEyeRay(matrix, 1, 1, eye);
context.raw.bind_constants[ray11Location].vec3 = [v.x, v.y, v.z];
// var v = getEyeRay(matrix, 1, 1, eye);
// context.raw.bind_constants[ray11Location].vec3 = [v.x, v.y, v.z];
for (loc in objectLocations) {
var t:Transform = transformMap.get(loc);
t.buildMatrix();
var c = context.raw.bind_constants[loc];
c.vec3[0] = t.absx();
c.vec3[1] = t.absy();
c.vec3[2] = t.absz();
}
// for (loc in objectLocations) {
// var t:Transform = transformMap.get(loc);
// t.buildMatrix();
// var c = context.raw.bind_constants[loc];
// c.vec3[0] = t.absx();
// c.vec3[1] = t.absy();
// c.vec3[2] = t.absz();
// }
}
function getEyeRay(matrix:Mat4, x:Float, y:Float, eye:Vec4):Vec4 {

View file

@ -76,7 +76,7 @@ class PhysicsWorld extends Trait {
dispatcher = BtCollisionDispatcher.create(collisionConfiguration);
var solver = BtSequentialImpulseConstraintSolver.create();
var gravity = iron.Scene.active.raw.gravity == null ? [0, 0, -9.81] : iron.Scene.active.raw.gravity;
var gravity = iron.Scene.active.raw.gravity == null ? gravityArray() : iron.Scene.active.raw.gravity;
#if arm_physics_soft
var softSolver = BtDefaultSoftBodySolver.create();
@ -97,6 +97,14 @@ class PhysicsWorld extends Trait {
});
}
function gravityArray():kha.arrays.Float32Array {
var ar = new kha.arrays.Float32Array(3);
ar[0] = 0.0;
ar[1] = 0.0;
ar[2] = -9.81;
return ar;
}
public function addRigidBody(body:RigidBody) {
world.addRigidBody(body.body);
rbMap.set(body.id, body);

View file

@ -15,7 +15,6 @@ import bpy
import math
from mathutils import *
import time
import ast
import subprocess
import arm.utils
import arm.write_probes as write_probes
@ -142,7 +141,7 @@ class ArmoryExporter:
def write_vector3d(self, vector):
return [vector[0], vector[1], vector[2]]
def write_vertex_array2d(self, vertexArray, attrib):
def write_va2d(self, vertexArray, attrib):
va = []
count = len(vertexArray)
k = 0
@ -166,7 +165,7 @@ class ArmoryExporter:
return va
def write_vertex_array3d(self, vertex_array, attrib):
def write_va3d(self, vertex_array, attrib):
va = []
count = len(vertex_array)
k = 0
@ -431,8 +430,8 @@ class ArmoryExporter:
face_index += 1
colorCount = len(mesh.tessface_vertex_colors)
if colorCount > 0:
color_count = len(mesh.tessface_vertex_colors)
if color_count > 0:
colorFace = mesh.tessface_vertex_colors[0].data
vertex_index = 0
face_index = 0
@ -526,7 +525,7 @@ class ArmoryExporter:
bucketCount = 1
hashTable = [[] for i in range(bucketCount)]
unifiedVertexArray = []
unifiedVA = []
for i in range(len(export_vertex_array)):
ev = export_vertex_array[i]
@ -539,13 +538,13 @@ class ArmoryExporter:
break
if index < 0:
indexTable.append(len(unifiedVertexArray))
unifiedVertexArray.append(ev)
indexTable.append(len(unifiedVA))
unifiedVA.append(ev)
hashTable[bucket].append(i)
else:
indexTable.append(indexTable[index])
return unifiedVertexArray
return unifiedVA
def export_bone(self, armature, bone, scene, o, action):
bobjectRef = self.bobjectArray.get(bone)
@ -1407,11 +1406,11 @@ class ArmoryExporter:
if subbobject.parent_type != "BONE":
self.export_object(subbobject, scene, None, o)
def export_skin_quality(self, bobject, armature, export_vertex_array, om):
def export_skin_quality(self, bobject, armature, export_vertex_array, o):
# This function exports all skinning data, which includes the skeleton
# and per-vertex bone influence data
oskin = {}
om['skin'] = oskin
o['skin'] = oskin
# Write the skin bind pose transform
otrans = {}
@ -1501,9 +1500,9 @@ class ArmoryExporter:
# Write the bone weight array. The number of entries is the sum of the bone counts for all vertices.
oskin['bone_weight_array'] = bone_weight_array
# def export_skin_fast(self, bobject, armature, vert_list, om):
# def export_skin_fast(self, bobject, armature, vert_list, o):
# oskin = {}
# om['skin'] = oskin
# o['skin'] = oskin
# otrans = {}
# oskin['transform'] = otrans
@ -1606,73 +1605,88 @@ class ArmoryExporter:
else:
self.output['mesh_datas'].append(o)
def export_mesh_fast(self, exportMesh, bobject, fp, o, om):
def make_va(self, attrib, size, values):
va = {}
va['attrib'] = attrib
va['size'] = size
va['values'] = values
return va
def export_mesh_fast(self, exportMesh, bobject, fp, o):
# Much faster export but produces slightly less efficient data
exportMesh.calc_normals_split()
exportMesh.calc_tessface()
vert_list = { Vertex(exportMesh, loop) : 0 for loop in exportMesh.loops}.keys()
num_verts = len(vert_list)
num_uv_layers = len(exportMesh.uv_layers)
has_tex = self.get_export_uvs(exportMesh) == True and num_uv_layers > 0
has_tex1 = has_tex == True and num_uv_layers > 1
num_colors = len(exportMesh.vertex_colors)
has_col = self.get_export_vcols(exportMesh) == True and num_colors > 0
has_tang = self.has_tangents(exportMesh)
vdata = [0] * num_verts * 3
ndata = [0] * num_verts * 3
if num_uv_layers > 0:
if has_tex:
t0data = [0] * num_verts * 2
if num_uv_layers > 1:
if has_tex1:
t1data = [0] * num_verts * 2
if num_colors > 0:
if has_col:
cdata = [0] * num_verts * 3
# va_stride = 3 + 3 # pos + nor
# va_name = 'pos_nor'
# if has_tex:
# va_stride += 2
# va_name += '_tex'
# if has_tex1:
# va_stride += 2
# va_name += '_tex1'
# if has_col > 0:
# va_stride += 3
# va_name += '_col'
# if has_tang:
# va_stride += 3
# va_name += '_tang'
# vdata = [0] * num_verts * va_stride
# Make arrays
for i, vtx in enumerate(vert_list):
vtx.index = i
co = vtx.co
normal = vtx.normal
for j in range(3):
vdata[(i * 3) + j] = co[j]
ndata[(i * 3) + j] = normal[j]
if num_uv_layers > 0:
if has_tex:
t0data[i * 2] = vtx.uvs[0].x
t0data[i * 2 + 1] = 1.0 - vtx.uvs[0].y # Reverse TCY
if num_uv_layers > 1:
if has_tex1:
t1data[i * 2] = vtx.uvs[1].x
t1data[i * 2 + 1] = 1.0 - vtx.uvs[1].y
if num_colors > 0:
if has_col > 0:
cdata[i * 3] = vtx.col[0]
cdata[i * 3 + 1] = vtx.col[1]
cdata[i * 3 + 2] = vtx.col[2]
# Output
om['vertex_arrays'] = []
pa = {}
pa['attrib'] = "position"
pa['size'] = 3
pa['values'] = vdata
om['vertex_arrays'].append(pa)
na = {}
na['attrib'] = "normal"
na['size'] = 3
na['values'] = ndata
om['vertex_arrays'].append(na)
o['vertex_arrays'] = []
pa = self.make_va('pos', 3, vdata)
o['vertex_arrays'].append(pa)
na = self.make_va('nor', 3, ndata)
o['vertex_arrays'].append(na)
if self.get_export_uvs(exportMesh) == True and num_uv_layers > 0:
ta = {}
ta['attrib'] = "texcoord"
ta['size'] = 2
ta['values'] = t0data
om['vertex_arrays'].append(ta)
if num_uv_layers > 1:
ta1 = {}
ta1['attrib'] = "texcoord1"
ta1['size'] = 2
ta1['values'] = t1data
om['vertex_arrays'].append(ta1)
if has_tex:
ta = self.make_va('tex', 2, t0data)
o['vertex_arrays'].append(ta)
if has_tex1:
ta1 = self.make_va('tex1', 2, t1data)
o['vertex_arrays'].append(ta1)
if self.get_export_vcols(exportMesh) == True and num_colors > 0:
ca = {}
ca['attrib'] = "color"
ca['size'] = 3
ca['values'] = cdata
om['vertex_arrays'].append(ca)
if has_col:
ca = self.make_va('col', 3, cdata)
o['vertex_arrays'].append(ca)
# Indices
prims = {ma.name if ma else '': [] for ma in exportMesh.materials}
@ -1696,7 +1710,7 @@ class ArmoryExporter:
prim += (indices[-1], indices[i], indices[i + 1])
# Write indices
om['index_arrays'] = []
o['index_arrays'] = []
for mat, prim in prims.items():
idata = [0] * len(prim)
for i, v in enumerate(prim):
@ -1712,18 +1726,19 @@ class ArmoryExporter:
(exportMesh.materials[i] == None and mat == ''): # Default material for empty slots
ia['material'] = i
break
om['index_arrays'].append(ia)
o['index_arrays'].append(ia)
# Make tangents
if self.get_export_uvs(exportMesh) == True and self.get_export_tangents(exportMesh) == True and num_uv_layers > 0:
tanga = {}
tanga['attrib'] = "tangent"
tanga['size'] = 3
tanga['values'] = self.calc_tangents(pa['values'], na['values'], ta['values'], om['index_arrays'][0]['values'])
om['vertex_arrays'].append(tanga)
if has_tang:
tanga_vals = self.calc_tangents(pa['values'], na['values'], ta['values'], o['index_arrays'][0]['values'])
tanga = self.make_va('tang', 3, tanga_vals)
o['vertex_arrays'].append(tanga)
return vert_list
def has_tangents(self, exportMesh):
return self.get_export_uvs(exportMesh) == True and self.get_export_tangents(exportMesh) == True and len(exportMesh.uv_layers) > 0
def do_export_mesh(self, objectRef, scene):
# This function exports a single mesh object
bobject = objectRef[1]["objectTable"][0]
@ -1794,19 +1809,10 @@ class ArmoryExporter:
shapeKeys.key_blocks[0].value = 1.0
mesh.update()
om = {}
# Triangles is default
# om['primitive'] = "triangles"
armature = bobject.find_armature()
apply_modifiers = not armature
# Apply all modifiers to create a new mesh with tessfaces
# We don't apply modifiers for a skinned mesh because we need the vertex positions
# before they are deformed by the armature modifier in order to export the proper
# bind pose. This does mean that modifiers preceding the armature modifier are ignored,
# but the Blender API does not provide a reasonable way to retrieve the mesh at an
# arbitrary stage in the modifier stack.
exportMesh = bobject.to_mesh(scene, apply_modifiers, "RENDER", True, False)
if exportMesh == None:
@ -1818,19 +1824,28 @@ class ArmoryExporter:
# Process meshes
if ArmoryExporter.option_optimize_mesh:
unifiedVertexArray = self.export_mesh_quality(exportMesh, bobject, fp, o, om)
vert_list = self.export_mesh_quality(exportMesh, bobject, fp, o)
if armature:
self.export_skin_quality(bobject, armature, unifiedVertexArray, om)
self.export_skin_quality(bobject, armature, vert_list, o)
else:
vert_list = self.export_mesh_fast(exportMesh, bobject, fp, o, om)
vert_list = self.export_mesh_fast(exportMesh, bobject, fp, o)
if armature:
self.export_skin_quality(bobject, armature, vert_list, om)
# self.export_skin_fast(bobject, armature, vert_list, om)
self.export_skin_quality(bobject, armature, vert_list, o)
# self.export_skin_fast(bobject, armature, vert_list, o)
# Save aabb
for va in om['vertex_arrays']:
if va['attrib'] == 'position':
for va in o['vertex_arrays']:
if va['attrib'].startswith('pos'):
positions = va['values']
stride = 0
ar = va['attrib'].split('_')
for a in ar:
if a == 'pos' or a == 'nor' or a == 'col' or a == 'tang':
stride += 3
elif a == 'tex' or a == 'tex1':
stride += 2
elif a == 'bone' or a == 'weight':
stride += 4
aabb_min = [-0.01, -0.01, -0.01]
aabb_max = [0.01, 0.01, 0.01]
i = 0
@ -1847,7 +1862,7 @@ class ArmoryExporter:
aabb_min[1] = positions[i + 1];
if positions[i + 2] < aabb_min[2]:
aabb_min[2] = positions[i + 2];
i += 3;
i += stride;
if hasattr(bobject.data, 'mesh_aabb'):
bobject.data.mesh_aabb = [abs(aabb_min[0]) + abs(aabb_max[0]), abs(aabb_min[1]) + abs(aabb_max[1]), abs(aabb_min[2]) + abs(aabb_max[2])]
break
@ -1864,63 +1879,46 @@ class ArmoryExporter:
# Save offset data for instanced rendering
if is_instanced == True:
om['instance_offsets'] = instance_offsets
o['instance_offsets'] = instance_offsets
# Export usage
if bobject.data.dynamic_usage:
om['dynamic_usage'] = bobject.data.dynamic_usage
o['dynamic_usage'] = bobject.data.dynamic_usage
o['mesh'] = om
self.write_mesh(bobject, fp, o)
def export_mesh_quality(self, exportMesh, bobject, fp, o, om):
def export_mesh_quality(self, exportMesh, bobject, fp, o):
# Triangulate mesh and remap vertices to eliminate duplicates
material_table = []
export_vertex_array = ArmoryExporter.deindex_mesh(exportMesh, material_table)
triangleCount = len(material_table)
indexTable = []
unifiedVertexArray = ArmoryExporter.unify_vertices(export_vertex_array, indexTable)
unifiedVA = ArmoryExporter.unify_vertices(export_vertex_array, indexTable)
# Write the position array
om['vertex_arrays'] = []
pa = {}
pa['attrib'] = "position"
pa['size'] = 3
pa['values'] = self.write_vertex_array3d(unifiedVertexArray, "position")
om['vertex_arrays'].append(pa)
o['vertex_arrays'] = []
pa = self.make_va('pos', 3, self.write_va3d(unifiedVA, "position"))
o['vertex_arrays'].append(pa)
# Write the normal array
na = {}
na['attrib'] = "normal"
na['size'] = 3
na['values'] = self.write_vertex_array3d(unifiedVertexArray, "normal")
om['vertex_arrays'].append(na)
na = self.make_va('nor', 3, self.write_va3d(unifiedVA, "normal"))
o['vertex_arrays'].append(na)
# Write the color array if it exists
colorCount = len(exportMesh.tessface_vertex_colors)
if self.get_export_vcols(exportMesh) == True and colorCount > 0:
ca = {}
ca['attrib'] = "color"
ca['size'] = 3
ca['values'] = self.write_vertex_array3d(unifiedVertexArray, "color")
om['vertex_arrays'].append(ca)
color_count = len(exportMesh.tessface_vertex_colors)
if self.get_export_vcols(exportMesh) == True and color_count > 0:
ca = self.make_va('col', 3, self.write_va3d(unifiedVA, "color"))
o['vertex_arrays'].append(ca)
# Write the texcoord arrays
texcoordCount = len(exportMesh.tessface_uv_textures)
if self.get_export_uvs(exportMesh) == True and texcoordCount > 0:
ta = {}
ta['attrib'] = "texcoord"
ta['size'] = 2
ta['values'] = self.write_vertex_array2d(unifiedVertexArray, "texcoord0")
om['vertex_arrays'].append(ta)
ta = self.make_va('tex', 2, self.write_va2d(unifiedVA, "texcoord0"))
o['vertex_arrays'].append(ta)
if texcoordCount > 1:
ta2 = {}
ta2['attrib'] = "texcoord1"
ta2['size'] = 2
ta2['values'] = self.write_vertex_array2d(unifiedVertexArray, "texcoord1")
om['vertex_arrays'].append(ta2)
ta2 = self.make_va('tex1', 2, self.write_va2d(unifiedVA, "texcoord1"))
o['vertex_arrays'].append(ta2)
# If there are multiple morph targets, export them here
# if shapeKeys:
@ -1942,7 +1940,7 @@ class ArmoryExporter:
# self.IndentWrite(B"float[3]\t\t// ")
# self.IndentWrite(B"{\n", 0, True)
# self.WriteMorphPositionArray3D(unifiedVertexArray, morphMesh.vertices)
# self.WriteMorphPositionArray3D(unifiedVA, morphMesh.vertices)
# self.IndentWrite(B"}\n")
# self.indentLevel -= 1
@ -1958,7 +1956,7 @@ class ArmoryExporter:
# self.IndentWrite(B"float[3]\t\t// ")
# self.IndentWrite(B"{\n", 0, True)
# self.WriteMorphNormalArray3D(unifiedVertexArray, morphMesh.vertices, morphMesh.tessfaces)
# self.WriteMorphNormalArray3D(unifiedVA, morphMesh.vertices, morphMesh.tessfaces)
# self.IndentWrite(B"}\n")
# self.indentLevel -= 1
@ -1967,7 +1965,7 @@ class ArmoryExporter:
# bpy.data.meshes.remove(morphMesh)
# Write the index arrays
om['index_arrays'] = []
o['index_arrays'] = []
maxMaterialIndex = 0
for i in range(len(material_table)):
@ -1981,7 +1979,7 @@ class ArmoryExporter:
ia['size'] = 3
ia['values'] = self.write_triangle_array(triangleCount, indexTable)
ia['material'] = 0
om['index_arrays'].append(ia)
o['index_arrays'].append(ia)
else:
# If there are multiple material indexes, then write a separate index array for each one.
materialTriangleCount = [0 for i in range(maxMaterialIndex + 1)]
@ -2002,19 +2000,17 @@ class ArmoryExporter:
ia['size'] = 3
ia['values'] = self.write_triangle_array(materialTriangleCount[m], materialIndexTable)
ia['material'] = m
om['index_arrays'].append(ia)
o['index_arrays'].append(ia)
# Export tangents
if self.get_export_tangents(exportMesh) == True and len(exportMesh.uv_textures) > 0:
tanga = {}
tanga['attrib'] = "tangent"
tanga['size'] = 3
tanga['values'] = self.calc_tangents(pa['values'], na['values'], ta['values'], om['index_arrays'][0]['values'])
om['vertex_arrays'].append(tanga)
if self.has_tangents(exportMesh):
tanga_vals = self.calc_tangents(pa['values'], na['values'], ta['values'], o['index_arrays'][0]['values'])
tanga = make_va('tang', 3, tanga_vals)
o['vertex_arrays'].append(tanga)
# Delete the new mesh that we made earlier
bpy.data.meshes.remove(exportMesh)
return unifiedVertexArray
return unifiedVA
def export_lamp(self, objectRef):
# This function exports a single lamp object
@ -2572,7 +2568,7 @@ class ArmoryExporter:
if n.instanced_children == True:
is_instanced = True
# Save offset data
instance_offsets = [0, 0, 0] # Include parent
instance_offsets = [0.0, 0.0, 0.0] # Include parent
for sn in n.children:
# Child hidden
if sn.game_export == False or (sn.hide_render and ArmoryExporter.option_export_hide_render == False):
@ -2785,7 +2781,7 @@ class ArmoryExporter:
if len(t.my_paramstraitlist) > 0:
x['parameters'] = []
for pt in t.my_paramstraitlist: # Append parameters
x['parameters'].append(ast.literal_eval(pt.name))
x['parameters'].append(pt.name)
o['traits'].append(x)
# Rigid body trait
@ -2814,14 +2810,14 @@ class ArmoryExporter:
x = {}
x['type'] = 'Script'
x['class_name'] = 'armory.trait.internal.RigidBody'
x['parameters'] = [body_mass, shape, rb.friction, rb.restitution]
x['parameters'] = [str(body_mass), str(shape), str(rb.friction), str(rb.restitution)]
if rb.use_margin:
x['parameters'].append(rb.collision_margin)
x['parameters'].append(str(rb.collision_margin))
else:
x['parameters'].append(0.0)
x['parameters'].append(rb.linear_damping)
x['parameters'].append(rb.angular_damping)
x['parameters'].append(rb.type == 'PASSIVE')
x['parameters'].append('0.0')
x['parameters'].append(str(rb.linear_damping))
x['parameters'].append(str(rb.angular_damping))
x['parameters'].append(str(rb.type == 'PASSIVE').lower())
o['traits'].append(x)
# Soft bodies modifier
@ -2846,7 +2842,7 @@ class ArmoryExporter:
bend = soft_mod.settings.bending_stiffness
elif soft_type == 1:
bend = (soft_mod.settings.bend + 1.0) * 10
cloth_trait['parameters'] = [soft_type, bend, soft_mod.settings.mass, bobject.soft_body_margin]
cloth_trait['parameters'] = [str(soft_type), str(bend), str(soft_mod.settings.mass), str(bobject.soft_body_margin)]
o['traits'].append(cloth_trait)
if soft_type == 0 and soft_mod.settings.use_pin_cloth:
self.add_hook_trait(o, bobject, '', soft_mod.settings.vertex_group_mass)
@ -2883,7 +2879,7 @@ class ArmoryExporter:
navigation_trait = {}
navigation_trait['type'] = 'Script'
navigation_trait['class_name'] = 'armory.trait.WalkNavigation'
navigation_trait['parameters'] = [arm.utils.get_ease_viewport_camera()]
navigation_trait['parameters'] = [str(arm.utils.get_ease_viewport_camera()).lower()]
o['traits'].append(navigation_trait)
# Map objects to materials, can be used in later stages
@ -2930,7 +2926,7 @@ class ArmoryExporter:
verts.append(v.co.x)
verts.append(v.co.y)
verts.append(v.co.z)
hook_trait['parameters'] = [target_name, verts]
hook_trait['parameters'] = [target_name, str(verts)]
o['traits'].append(hook_trait)
def post_export_world(self, world, o):

150
blender/arm/lib/armpack.py Executable file
View file

@ -0,0 +1,150 @@
# Msgpack parser with typed arrays
# Based on u-msgpack-python v2.4.1 - v at sergeev.io
# https://github.com/vsergeev/u-msgpack-python
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
import struct
import io
def _pack_integer(obj, fp):
if obj < 0:
if obj >= -32:
fp.write(struct.pack("b", obj))
elif obj >= -2**(8 - 1):
fp.write(b"\xd0" + struct.pack("b", obj))
elif obj >= -2**(16 - 1):
fp.write(b"\xd1" + struct.pack(">h", obj))
elif obj >= -2**(32 - 1):
fp.write(b"\xd2" + struct.pack(">i", obj))
elif obj >= -2**(64 - 1):
fp.write(b"\xd3" + struct.pack(">q", obj))
else:
raise Exception("huge signed int")
else:
if obj <= 127:
fp.write(struct.pack("B", obj))
elif obj <= 2**8 - 1:
fp.write(b"\xcc" + struct.pack("B", obj))
elif obj <= 2**16 - 1:
fp.write(b"\xcd" + struct.pack(">H", obj))
elif obj <= 2**32 - 1:
fp.write(b"\xce" + struct.pack(">I", obj))
elif obj <= 2**64 - 1:
fp.write(b"\xcf" + struct.pack(">Q", obj))
else:
raise Exception("huge unsigned int")
def _pack_nil(obj, fp):
fp.write(b"\xc0")
def _pack_boolean(obj, fp):
fp.write(b"\xc3" if obj else b"\xc2")
def _pack_float(obj, fp):
# NOTE: forced 32-bit floats for Armory
# fp.write(b"\xcb" + struct.pack(">d", obj)) # Double
fp.write(b"\xca" + struct.pack(">f", obj))
def _pack_string(obj, fp):
obj = obj.encode('utf-8')
if len(obj) <= 31:
fp.write(struct.pack("B", 0xa0 | len(obj)) + obj)
elif len(obj) <= 2**8 - 1:
fp.write(b"\xd9" + struct.pack("B", len(obj)) + obj)
elif len(obj) <= 2**16 - 1:
fp.write(b"\xda" + struct.pack(">H", len(obj)) + obj)
elif len(obj) <= 2**32 - 1:
fp.write(b"\xdb" + struct.pack(">I", len(obj)) + obj)
else:
raise Exception("huge string")
def _pack_binary(obj, fp):
if len(obj) <= 2**8 - 1:
fp.write(b"\xc4" + struct.pack("B", len(obj)) + obj)
elif len(obj) <= 2**16 - 1:
fp.write(b"\xc5" + struct.pack(">H", len(obj)) + obj)
elif len(obj) <= 2**32 - 1:
fp.write(b"\xc6" + struct.pack(">I", len(obj)) + obj)
else:
raise Exception("huge binary string")
def _pack_array(obj, fp):
if len(obj) <= 15:
fp.write(struct.pack("B", 0x90 | len(obj)))
elif len(obj) <= 2**16 - 1:
fp.write(b"\xdc" + struct.pack(">H", len(obj)))
elif len(obj) <= 2**32 - 1:
fp.write(b"\xdd" + struct.pack(">I", len(obj)))
else:
raise Exception("huge array")
# Float32
if len(obj) > 0 and isinstance(obj[0], float):
fp.write(b"\xca")
for e in obj:
fp.write(struct.pack(">f", e))
# Int32
elif len(obj) > 0 and isinstance(obj[0], int):
fp.write(b"\xd2")
for e in obj:
fp.write(struct.pack(">i", e))
# Regular
else:
for e in obj:
pack(e, fp)
def _pack_map(obj, fp):
if len(obj) <= 15:
fp.write(struct.pack("B", 0x80 | len(obj)))
elif len(obj) <= 2**16 - 1:
fp.write(b"\xde" + struct.pack(">H", len(obj)))
elif len(obj) <= 2**32 - 1:
fp.write(b"\xdf" + struct.pack(">I", len(obj)))
else:
raise Exception("huge array")
for k, v in obj.items():
pack(k, fp)
pack(v, fp)
def pack(obj, fp):
if obj is None:
_pack_nil(obj, fp)
elif isinstance(obj, bool):
_pack_boolean(obj, fp)
elif isinstance(obj, int):
_pack_integer(obj, fp)
elif isinstance(obj, float):
_pack_float(obj, fp)
elif isinstance(obj, str):
_pack_string(obj, fp)
elif isinstance(obj, bytes):
_pack_binary(obj, fp)
elif isinstance(obj, list) or isinstance(obj, tuple):
_pack_array(obj, fp)
elif isinstance(obj, dict):
_pack_map(obj, fp)
else:
raise Exception("unsupported type: %s" % str(type(obj)))
def packb(obj):
fp = io.BytesIO()
pack(obj, fp)
return fp.getvalue()

View file

@ -1,881 +0,0 @@
# u-msgpack-python v2.1 - vsergeev at gmail
# https://github.com/vsergeev/u-msgpack-python
#
# u-msgpack-python is a lightweight MessagePack serializer and deserializer
# module, compatible with both Python 2 and 3, as well CPython and PyPy
# implementations of Python. u-msgpack-python is fully compliant with the
# latest MessagePack specification.com/msgpack/msgpack/blob/master/spec.md). In
# particular, it supports the new binary, UTF-8 string, and application ext
# types.
#
# MIT License
#
# Copyright (c) 2013-2014 Ivan A. Sergeev
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
"""
u-msgpack-python v2.1 - vsergeev at gmail
https://github.com/vsergeev/u-msgpack-python
u-msgpack-python is a lightweight MessagePack serializer and deserializer
module, compatible with both Python 2 and 3, as well CPython and PyPy
implementations of Python. u-msgpack-python is fully compliant with the
latest MessagePack specification.com/msgpack/msgpack/blob/master/spec.md). In
particular, it supports the new binary, UTF-8 string, and application ext
types.
License: MIT
"""
__version__ = "2.1"
"Module version string"
version = (2,1)
"Module version tuple"
import struct
import collections
import sys
import io
################################################################################
### Ext Class
################################################################################
# Extension type for application-defined types and data
class Ext:
"""
The Ext class facilitates creating a serializable extension object to store
an application-defined type and data byte array.
"""
def __init__(self, type, data):
"""
Construct a new Ext object.
Args:
type: application-defined type integer from 0 to 127
data: application-defined data byte array
Raises:
TypeError:
Specified ext type is outside of 0 to 127 range.
Example:
>>> foo = umsgpack.Ext(0x05, b"\x01\x02\x03")
>>> umsgpack.packb({u"special stuff": foo, u"awesome": True})
'\x82\xa7awesome\xc3\xadspecial stuff\xc7\x03\x05\x01\x02\x03'
>>> bar = umsgpack.unpackb(_)
>>> print(bar["special stuff"])
Ext Object (Type: 0x05, Data: 01 02 03)
>>>
"""
# Application ext type should be 0 <= type <= 127
if not isinstance(type, int) or not (type >= 0 and type <= 127):
raise TypeError("ext type out of range")
# Check data is type bytes
elif sys.version_info[0] == 3 and not isinstance(data, bytes):
raise TypeError("ext data is not type \'bytes\'")
elif sys.version_info[0] == 2 and not isinstance(data, str):
raise TypeError("ext data is not type \'str\'")
self.type = type
self.data = data
def __eq__(self, other):
"""
Compare this Ext object with another for equality.
"""
return (isinstance(other, self.__class__) and
self.type == other.type and
self.data == other.data)
def __ne__(self, other):
"""
Compare this Ext object with another for inequality.
"""
return not self.__eq__(other)
def __str__(self):
"""
String representation of this Ext object.
"""
s = "Ext Object (Type: 0x%02x, Data: " % self.type
for i in range(min(len(self.data), 8)):
if i > 0:
s += " "
if isinstance(self.data[i], int):
s += "%02x" % (self.data[i])
else:
s += "%02x" % ord(self.data[i])
if len(self.data) > 8:
s += " ..."
s += ")"
return s
################################################################################
### Exceptions
################################################################################
# Base Exception classes
class PackException(Exception):
"Base class for exceptions encountered during packing."
pass
class UnpackException(Exception):
"Base class for exceptions encountered during unpacking."
pass
# Packing error
class UnsupportedTypeException(PackException):
"Object type not supported for packing."
pass
# Unpacking error
class InsufficientDataException(UnpackException):
"Insufficient data to unpack the encoded object."
pass
class InvalidStringException(UnpackException):
"Invalid UTF-8 string encountered during unpacking."
pass
class ReservedCodeException(UnpackException):
"Reserved code encountered during unpacking."
pass
class UnhashableKeyException(UnpackException):
"""
Unhashable key encountered during map unpacking.
The serialized map cannot be deserialized into a Python dictionary.
"""
pass
class DuplicateKeyException(UnpackException):
"Duplicate key encountered during map unpacking."
pass
# Backwards compatibility
KeyNotPrimitiveException = UnhashableKeyException
KeyDuplicateException = DuplicateKeyException
################################################################################
### Exported Functions and Globals
################################################################################
# Exported functions and variables, set up in __init()
pack = None
packb = None
unpack = None
unpackb = None
dump = None
dumps = None
load = None
loads = None
compatibility = False
"""
Compatibility mode boolean.
When compatibility mode is enabled, u-msgpack-python will serialize both
unicode strings and bytes into the old "raw" msgpack type, and deserialize the
"raw" msgpack type into bytes. This provides backwards compatibility with the
old MessagePack specification.
Example:
>>> umsgpack.compatibility = True
>>>
>>> umsgpack.packb([u"some string", b"some bytes"])
b'\x92\xabsome string\xaasome bytes'
>>> umsgpack.unpackb(_)
[b'some string', b'some bytes']
>>>
"""
################################################################################
### Packing
################################################################################
# You may notice struct.pack("B", obj) instead of the simpler chr(obj) in the
# code below. This is to allow for seamless Python 2 and 3 compatibility, as
# chr(obj) has a str return type instead of bytes in Python 3, and
# struct.pack(...) has the right return type in both versions.
def _pack_integer(obj, fp):
if obj < 0:
if obj >= -32:
fp.write(struct.pack("b", obj))
elif obj >= -2**(8-1):
fp.write(b"\xd0" + struct.pack("b", obj))
elif obj >= -2**(16-1):
fp.write(b"\xd1" + struct.pack(">h", obj))
elif obj >= -2**(32-1):
fp.write(b"\xd2" + struct.pack(">i", obj))
elif obj >= -2**(64-1):
fp.write(b"\xd3" + struct.pack(">q", obj))
else:
raise UnsupportedTypeException("huge signed int")
else:
if obj <= 127:
fp.write(struct.pack("B", obj))
elif obj <= 2**8-1:
fp.write(b"\xcc" + struct.pack("B", obj))
elif obj <= 2**16-1:
fp.write(b"\xcd" + struct.pack(">H", obj))
elif obj <= 2**32-1:
fp.write(b"\xce" + struct.pack(">I", obj))
elif obj <= 2**64-1:
fp.write(b"\xcf" + struct.pack(">Q", obj))
else:
raise UnsupportedTypeException("huge unsigned int")
def _pack_nil(obj, fp):
fp.write(b"\xc0")
def _pack_boolean(obj, fp):
fp.write(b"\xc3" if obj else b"\xc2")
def _pack_float(obj, fp):
if _float_size == 64:
fp.write(b"\xcb" + struct.pack(">d", obj))
else:
fp.write(b"\xca" + struct.pack(">f", obj))
def _pack_string(obj, fp):
obj = obj.encode('utf-8')
if len(obj) <= 31:
fp.write(struct.pack("B", 0xa0 | len(obj)) + obj)
elif len(obj) <= 2**8-1:
fp.write(b"\xd9" + struct.pack("B", len(obj)) + obj)
elif len(obj) <= 2**16-1:
fp.write(b"\xda" + struct.pack(">H", len(obj)) + obj)
elif len(obj) <= 2**32-1:
fp.write(b"\xdb" + struct.pack(">I", len(obj)) + obj)
else:
raise UnsupportedTypeException("huge string")
def _pack_binary(obj, fp):
if len(obj) <= 2**8-1:
fp.write(b"\xc4" + struct.pack("B", len(obj)) + obj)
elif len(obj) <= 2**16-1:
fp.write(b"\xc5" + struct.pack(">H", len(obj)) + obj)
elif len(obj) <= 2**32-1:
fp.write(b"\xc6" + struct.pack(">I", len(obj)) + obj)
else:
raise UnsupportedTypeException("huge binary string")
def _pack_oldspec_raw(obj, fp):
if len(obj) <= 31:
fp.write(struct.pack("B", 0xa0 | len(obj)) + obj)
elif len(obj) <= 2**16-1:
fp.write(b"\xda" + struct.pack(">H", len(obj)) + obj)
elif len(obj) <= 2**32-1:
fp.write(b"\xdb" + struct.pack(">I", len(obj)) + obj)
else:
raise UnsupportedTypeException("huge raw string")
def _pack_ext(obj, fp):
if len(obj.data) == 1:
fp.write(b"\xd4" + struct.pack("B", obj.type & 0xff) + obj.data)
elif len(obj.data) == 2:
fp.write(b"\xd5" + struct.pack("B", obj.type & 0xff) + obj.data)
elif len(obj.data) == 4:
fp.write(b"\xd6" + struct.pack("B", obj.type & 0xff) + obj.data)
elif len(obj.data) == 8:
fp.write(b"\xd7" + struct.pack("B", obj.type & 0xff) + obj.data)
elif len(obj.data) == 16:
fp.write(b"\xd8" + struct.pack("B", obj.type & 0xff) + obj.data)
elif len(obj.data) <= 2**8-1:
fp.write(b"\xc7" + struct.pack("BB", len(obj.data), obj.type & 0xff) + obj.data)
elif len(obj.data) <= 2**16-1:
fp.write(b"\xc8" + struct.pack(">HB", len(obj.data), obj.type & 0xff) + obj.data)
elif len(obj.data) <= 2**32-1:
fp.write(b"\xc9" + struct.pack(">IB", len(obj.data), obj.type & 0xff) + obj.data)
else:
raise UnsupportedTypeException("huge ext data")
def _pack_array(obj, fp):
if len(obj) <= 15:
fp.write(struct.pack("B", 0x90 | len(obj)))
elif len(obj) <= 2**16-1:
fp.write(b"\xdc" + struct.pack(">H", len(obj)))
elif len(obj) <= 2**32-1:
fp.write(b"\xdd" + struct.pack(">I", len(obj)))
else:
raise UnsupportedTypeException("huge array")
for e in obj:
pack(e, fp)
def _pack_map(obj, fp):
if len(obj) <= 15:
fp.write(struct.pack("B", 0x80 | len(obj)))
elif len(obj) <= 2**16-1:
fp.write(b"\xde" + struct.pack(">H", len(obj)))
elif len(obj) <= 2**32-1:
fp.write(b"\xdf" + struct.pack(">I", len(obj)))
else:
raise UnsupportedTypeException("huge array")
for k,v in obj.items():
pack(k, fp)
pack(v, fp)
########################################
# Pack for Python 2, with 'unicode' type, 'str' type, and 'long' type
def _pack2(obj, fp):
"""
Serialize a Python object into MessagePack bytes.
Args:
obj: a Python object
fp: a .write()-supporting file-like object
Returns:
None.
Raises:
UnsupportedType(PackException):
Object type not supported for packing.
Example:
>>> f = open('test.bin', 'wb')
>>> umsgpack.pack({u"compact": True, u"schema": 0}, f)
>>>
"""
global compatibility
if obj is None:
_pack_nil(obj, fp)
elif isinstance(obj, bool):
_pack_boolean(obj, fp)
elif isinstance(obj, int) or isinstance(obj, long):
_pack_integer(obj, fp)
elif isinstance(obj, float):
_pack_float(obj, fp)
elif compatibility and isinstance(obj, unicode):
_pack_oldspec_raw(bytes(obj), fp)
elif compatibility and isinstance(obj, bytes):
_pack_oldspec_raw(obj, fp)
elif isinstance(obj, unicode):
_pack_string(obj, fp)
elif isinstance(obj, str):
_pack_binary(obj, fp)
elif isinstance(obj, list) or isinstance(obj, tuple):
_pack_array(obj, fp)
elif isinstance(obj, dict):
_pack_map(obj, fp)
elif isinstance(obj, Ext):
_pack_ext(obj, fp)
else:
raise UnsupportedTypeException("unsupported type: %s" % str(type(obj)))
# Pack for Python 3, with unicode 'str' type, 'bytes' type, and no 'long' type
def _pack3(obj, fp):
"""
Serialize a Python object into MessagePack bytes.
Args:
obj: a Python object
fp: a .write()-supporting file-like object
Returns:
None.
Raises:
UnsupportedType(PackException):
Object type not supported for packing.
Example:
>>> f = open('test.bin', 'wb')
>>> umsgpack.pack({u"compact": True, u"schema": 0}, f)
>>>
"""
global compatibility
if obj is None:
_pack_nil(obj, fp)
elif isinstance(obj, bool):
_pack_boolean(obj, fp)
elif isinstance(obj, int):
_pack_integer(obj, fp)
elif isinstance(obj, float):
_pack_float(obj, fp)
elif compatibility and isinstance(obj, str):
_pack_oldspec_raw(obj.encode('utf-8'), fp)
elif compatibility and isinstance(obj, bytes):
_pack_oldspec_raw(obj, fp)
elif isinstance(obj, str):
_pack_string(obj, fp)
elif isinstance(obj, bytes):
_pack_binary(obj, fp)
elif isinstance(obj, list) or isinstance(obj, tuple):
_pack_array(obj, fp)
elif isinstance(obj, dict):
_pack_map(obj, fp)
elif isinstance(obj, Ext):
_pack_ext(obj, fp)
else:
raise UnsupportedTypeException("unsupported type: %s" % str(type(obj)))
def _packb2(obj):
"""
Serialize a Python object into MessagePack bytes.
Args:
obj: a Python object
Returns:
A 'str' containing serialized MessagePack bytes.
Raises:
UnsupportedType(PackException):
Object type not supported for packing.
Example:
>>> umsgpack.packb({u"compact": True, u"schema": 0})
'\x82\xa7compact\xc3\xa6schema\x00'
>>>
"""
fp = io.BytesIO()
_pack2(obj, fp)
return fp.getvalue()
def _packb3(obj):
"""
Serialize a Python object into MessagePack bytes.
Args:
obj: a Python object
Returns:
A 'bytes' containing serialized MessagePack bytes.
Raises:
UnsupportedType(PackException):
Object type not supported for packing.
Example:
>>> umsgpack.packb({u"compact": True, u"schema": 0})
b'\x82\xa7compact\xc3\xa6schema\x00'
>>>
"""
fp = io.BytesIO()
_pack3(obj, fp)
return fp.getvalue()
################################################################################
### Unpacking
################################################################################
def _read_except(fp, n):
data = fp.read(n)
if len(data) < n:
raise InsufficientDataException()
return data
def _unpack_integer(code, fp):
if (ord(code) & 0xe0) == 0xe0:
return struct.unpack("b", code)[0]
elif code == b'\xd0':
return struct.unpack("b", _read_except(fp, 1))[0]
elif code == b'\xd1':
return struct.unpack(">h", _read_except(fp, 2))[0]
elif code == b'\xd2':
return struct.unpack(">i", _read_except(fp, 4))[0]
elif code == b'\xd3':
return struct.unpack(">q", _read_except(fp, 8))[0]
elif (ord(code) & 0x80) == 0x00:
return struct.unpack("B", code)[0]
elif code == b'\xcc':
return struct.unpack("B", _read_except(fp, 1))[0]
elif code == b'\xcd':
return struct.unpack(">H", _read_except(fp, 2))[0]
elif code == b'\xce':
return struct.unpack(">I", _read_except(fp, 4))[0]
elif code == b'\xcf':
return struct.unpack(">Q", _read_except(fp, 8))[0]
raise Exception("logic error, not int: 0x%02x" % ord(code))
def _unpack_reserved(code, fp):
if code == b'\xc1':
raise ReservedCodeException("encountered reserved code: 0x%02x" % ord(code))
raise Exception("logic error, not reserved code: 0x%02x" % ord(code))
def _unpack_nil(code, fp):
if code == b'\xc0':
return None
raise Exception("logic error, not nil: 0x%02x" % ord(code))
def _unpack_boolean(code, fp):
if code == b'\xc2':
return False
elif code == b'\xc3':
return True
raise Exception("logic error, not boolean: 0x%02x" % ord(code))
def _unpack_float(code, fp):
if code == b'\xca':
return struct.unpack(">f", _read_except(fp, 4))[0]
elif code == b'\xcb':
return struct.unpack(">d", _read_except(fp, 8))[0]
raise Exception("logic error, not float: 0x%02x" % ord(code))
def _unpack_string(code, fp):
if (ord(code) & 0xe0) == 0xa0:
length = ord(code) & ~0xe0
elif code == b'\xd9':
length = struct.unpack("B", _read_except(fp, 1))[0]
elif code == b'\xda':
length = struct.unpack(">H", _read_except(fp, 2))[0]
elif code == b'\xdb':
length = struct.unpack(">I", _read_except(fp, 4))[0]
else:
raise Exception("logic error, not string: 0x%02x" % ord(code))
# Always return raw bytes in compatibility mode
global compatibility
if compatibility:
return _read_except(fp, length)
try:
return bytes.decode(_read_except(fp, length), 'utf-8')
except UnicodeDecodeError:
raise InvalidStringException("unpacked string is not utf-8")
def _unpack_binary(code, fp):
if code == b'\xc4':
length = struct.unpack("B", _read_except(fp, 1))[0]
elif code == b'\xc5':
length = struct.unpack(">H", _read_except(fp, 2))[0]
elif code == b'\xc6':
length = struct.unpack(">I", _read_except(fp, 4))[0]
else:
raise Exception("logic error, not binary: 0x%02x" % ord(code))
return _read_except(fp, length)
def _unpack_ext(code, fp):
if code == b'\xd4':
length = 1
elif code == b'\xd5':
length = 2
elif code == b'\xd6':
length = 4
elif code == b'\xd7':
length = 8
elif code == b'\xd8':
length = 16
elif code == b'\xc7':
length = struct.unpack("B", _read_except(fp, 1))[0]
elif code == b'\xc8':
length = struct.unpack(">H", _read_except(fp, 2))[0]
elif code == b'\xc9':
length = struct.unpack(">I", _read_except(fp, 4))[0]
else:
raise Exception("logic error, not ext: 0x%02x" % ord(code))
return Ext(ord(_read_except(fp, 1)), _read_except(fp, length))
def _unpack_array(code, fp):
if (ord(code) & 0xf0) == 0x90:
length = (ord(code) & ~0xf0)
elif code == b'\xdc':
length = struct.unpack(">H", _read_except(fp, 2))[0]
elif code == b'\xdd':
length = struct.unpack(">I", _read_except(fp, 4))[0]
else:
raise Exception("logic error, not array: 0x%02x" % ord(code))
return [_unpack(fp) for i in xrange(length)]
def _deep_list_to_tuple(obj):
if isinstance(obj, list):
return tuple([_deep_list_to_tuple(e) for e in obj])
return obj
def _unpack_map(code, fp):
if (ord(code) & 0xf0) == 0x80:
length = (ord(code) & ~0xf0)
elif code == b'\xde':
length = struct.unpack(">H", _read_except(fp, 2))[0]
elif code == b'\xdf':
length = struct.unpack(">I", _read_except(fp, 4))[0]
else:
raise Exception("logic error, not map: 0x%02x" % ord(code))
d = {}
for i in xrange(length):
# Unpack key
k = _unpack(fp)
if isinstance(k, list):
# Attempt to convert list into a hashable tuple
k = _deep_list_to_tuple(k)
elif not isinstance(k, collections.Hashable):
raise UnhashableKeyException("encountered unhashable key: %s, %s" % (str(k), str(type(k))))
elif k in d:
raise DuplicateKeyException("encountered duplicate key: %s, %s" % (str(k), str(type(k))))
# Unpack value
v = _unpack(fp)
try:
d[k] = v
except TypeError:
raise UnhashableKeyException("encountered unhashable key: %s" % str(k))
return d
def _unpack(fp):
code = _read_except(fp, 1)
return _unpack_dispatch_table[code](code, fp)
########################################
def _unpack2(fp):
"""
Deserialize MessagePack bytes into a Python object.
Args:
fp: a .read()-supporting file-like object
Returns:
A Python object.
Raises:
InsufficientDataException(UnpackException):
Insufficient data to unpack the encoded object.
InvalidStringException(UnpackException):
Invalid UTF-8 string encountered during unpacking.
ReservedCodeException(UnpackException):
Reserved code encountered during unpacking.
UnhashableKeyException(UnpackException):
Unhashable key encountered during map unpacking.
The serialized map cannot be deserialized into a Python dictionary.
DuplicateKeyException(UnpackException):
Duplicate key encountered during map unpacking.
Example:
>>> f = open('test.bin', 'rb')
>>> umsgpack.unpackb(f)
{u'compact': True, u'schema': 0}
>>>
"""
return _unpack(fp)
def _unpack3(fp):
"""
Deserialize MessagePack bytes into a Python object.
Args:
fp: a .read()-supporting file-like object
Returns:
A Python object.
Raises:
InsufficientDataException(UnpackException):
Insufficient data to unpack the encoded object.
InvalidStringException(UnpackException):
Invalid UTF-8 string encountered during unpacking.
ReservedCodeException(UnpackException):
Reserved code encountered during unpacking.
UnhashableKeyException(UnpackException):
Unhashable key encountered during map unpacking.
The serialized map cannot be deserialized into a Python dictionary.
DuplicateKeyException(UnpackException):
Duplicate key encountered during map unpacking.
Example:
>>> f = open('test.bin', 'rb')
>>> umsgpack.unpackb(f)
{'compact': True, 'schema': 0}
>>>
"""
return _unpack(fp)
# For Python 2, expects a str object
def _unpackb2(s):
"""
Deserialize MessagePack bytes into a Python object.
Args:
s: a 'str' containing serialized MessagePack bytes
Returns:
A Python object.
Raises:
TypeError:
Packed data is not type 'str'.
InsufficientDataException(UnpackException):
Insufficient data to unpack the encoded object.
InvalidStringException(UnpackException):
Invalid UTF-8 string encountered during unpacking.
ReservedCodeException(UnpackException):
Reserved code encountered during unpacking.
UnhashableKeyException(UnpackException):
Unhashable key encountered during map unpacking.
The serialized map cannot be deserialized into a Python dictionary.
DuplicateKeyException(UnpackException):
Duplicate key encountered during map unpacking.
Example:
>>> umsgpack.unpackb(b'\x82\xa7compact\xc3\xa6schema\x00')
{u'compact': True, u'schema': 0}
>>>
"""
if not isinstance(s, str):
raise TypeError("packed data is not type 'str'")
return _unpack(io.BytesIO(s))
# For Python 3, expects a bytes object
def _unpackb3(s):
"""
Deserialize MessagePack bytes into a Python object.
Args:
s: a 'bytes' containing serialized MessagePack bytes
Returns:
A Python object.
Raises:
TypeError:
Packed data is not type 'bytes'.
InsufficientDataException(UnpackException):
Insufficient data to unpack the encoded object.
InvalidStringException(UnpackException):
Invalid UTF-8 string encountered during unpacking.
ReservedCodeException(UnpackException):
Reserved code encountered during unpacking.
UnhashableKeyException(UnpackException):
Unhashable key encountered during map unpacking.
The serialized map cannot be deserialized into a Python dictionary.
DuplicateKeyException(UnpackException):
Duplicate key encountered during map unpacking.
Example:
>>> umsgpack.unpackb(b'\x82\xa7compact\xc3\xa6schema\x00')
{'compact': True, 'schema': 0}
>>>
"""
if not isinstance(s, bytes):
raise TypeError("packed data is not type 'bytes'")
return _unpack(io.BytesIO(s))
################################################################################
### Module Initialization
################################################################################
def __init():
global pack
global packb
global unpack
global unpackb
global dump
global dumps
global load
global loads
global compatibility
global _float_size
global _unpack_dispatch_table
global xrange
# Compatibility mode for handling strings/bytes with the old specification
compatibility = False
# Auto-detect system float precision
if sys.float_info.mant_dig == 53:
_float_size = 64
else:
_float_size = 32
# Map packb and unpackb to the appropriate version
if sys.version_info[0] == 3:
pack = _pack3
packb = _packb3
dump = _pack3
dumps = _packb3
unpack = _unpack3
unpackb = _unpackb3
load = _unpack3
loads = _unpackb3
xrange = range
else:
pack = _pack2
packb = _packb2
dump = _pack2
dumps = _packb2
unpack = _unpack2
unpackb = _unpackb2
load = _unpack2
loads = _unpackb2
# Build a dispatch table for fast lookup of unpacking function
_unpack_dispatch_table = {}
# Fix uint
for code in range(0, 0x7f+1):
_unpack_dispatch_table[struct.pack("B", code)] = _unpack_integer
# Fix map
for code in range(0x80, 0x8f+1):
_unpack_dispatch_table[struct.pack("B", code)] = _unpack_map
# Fix array
for code in range(0x90, 0x9f+1):
_unpack_dispatch_table[struct.pack("B", code)] = _unpack_array
# Fix str
for code in range(0xa0, 0xbf+1):
_unpack_dispatch_table[struct.pack("B", code)] = _unpack_string
# Nil
_unpack_dispatch_table[b'\xc0'] = _unpack_nil
# Reserved
_unpack_dispatch_table[b'\xc1'] = _unpack_reserved
# Boolean
_unpack_dispatch_table[b'\xc2'] = _unpack_boolean
_unpack_dispatch_table[b'\xc3'] = _unpack_boolean
# Bin
for code in range(0xc4, 0xc6+1):
_unpack_dispatch_table[struct.pack("B", code)] = _unpack_binary
# Ext
for code in range(0xc7, 0xc9+1):
_unpack_dispatch_table[struct.pack("B", code)] = _unpack_ext
# Float
_unpack_dispatch_table[b'\xca'] = _unpack_float
_unpack_dispatch_table[b'\xcb'] = _unpack_float
# Uint
for code in range(0xcc, 0xcf+1):
_unpack_dispatch_table[struct.pack("B", code)] = _unpack_integer
# Int
for code in range(0xd0, 0xd3+1):
_unpack_dispatch_table[struct.pack("B", code)] = _unpack_integer
# Fixext
for code in range(0xd4, 0xd8+1):
_unpack_dispatch_table[struct.pack("B", code)] = _unpack_ext
# String
for code in range(0xd9, 0xdb+1):
_unpack_dispatch_table[struct.pack("B", code)] = _unpack_string
# Array
_unpack_dispatch_table[b'\xdc'] = _unpack_array
_unpack_dispatch_table[b'\xdd'] = _unpack_array
# Map
_unpack_dispatch_table[b'\xde'] = _unpack_map
_unpack_dispatch_table[b'\xdf'] = _unpack_map
# Negative fixint
for code in range(0xe0, 0xff+1):
_unpack_dispatch_table[struct.pack("B", code)] = _unpack_integer
__init()

View file

@ -73,7 +73,7 @@ def make_set_target(stage, node_group, node, currentNode=None, target_index=1, v
# First param is viewport scale
if len(stage['params']) == 0:
stage['params'].append(viewport_scale)
stage['params'].append(str(viewport_scale))
currentNode = nodes.find_node_by_link(node_group, currentNode, currentNode.inputs[target_index])

View file

@ -142,7 +142,7 @@ def init_properties():
bpy.types.World.arm_minimize = BoolProperty(name="Minimize Data", description="Export scene data in binary", default=True, update=assets.invalidate_compiled_data)
bpy.types.World.arm_optimize_mesh = BoolProperty(name="Optimize Meshes", description="Export more efficient geometry indices, can prolong build times", default=False, update=assets.invalidate_mesh_data)
bpy.types.World.arm_sampled_animation = BoolProperty(name="Sampled Animation", description="Export object animation as raw matrices", default=False, update=assets.invalidate_compiled_data)
bpy.types.World.arm_deinterleaved_buffers = BoolProperty(name="Deinterleaved Buffers", description="Use deinterleaved vertex buffers", default=False)
bpy.types.World.arm_deinterleaved_buffers = BoolProperty(name="Deinterleaved Buffers", description="Use deinterleaved vertex buffers", default=True)
bpy.types.World.arm_export_tangents = BoolProperty(name="Export Tangents", description="Precompute tangents for normal mapping, otherwise computed in shader", default=True, update=assets.invalidate_compiled_data)
bpy.types.World.arm_batch_meshes = BoolProperty(name="Batch Meshes", description="Group meshes by materials to speed up rendering", default=False)
bpy.types.World.arm_batch_materials = BoolProperty(name="Batch Materials", description="Marge similar materials into single pipeline state", default=False, update=assets.invalidate_shader_cache)

View file

@ -5,19 +5,19 @@ import glob
import platform
import zipfile
import re
import arm.lib.umsgpack
import arm.lib.armpack
def write_arm(filepath, output):
if filepath.endswith('.zip'):
with zipfile.ZipFile(filepath, 'w', zipfile.ZIP_DEFLATED) as zip_file:
if bpy.data.worlds['Arm'].arm_minimize:
zip_file.writestr('data.arm', arm.lib.umsgpack.dumps(output))
zip_file.writestr('data.arm', arm.lib.armpack.packb(output))
else:
zip_file.writestr('data.arm', json.dumps(output, sort_keys=True, indent=4))
else:
if bpy.data.worlds['Arm'].arm_minimize:
with open(filepath, 'wb') as f:
f.write(arm.lib.umsgpack.dumps(output))
f.write(arm.lib.armpack.packb(output))
else:
with open(filepath, 'w') as f:
f.write(json.dumps(output, sort_keys=True, indent=4))