import os import bpy import arm.assets as assets import arm.log as log from arm.material import make_shader from arm.material.parser_state import ParserState, ParserContext from arm.material.shader import ShaderContext, Shader import arm.material.cycles as cycles import arm.node_utils as node_utils import arm.utils import arm.write_probes as write_probes if arm.is_reload(__name__): arm.assets = arm.reload_module(arm.assets) arm.log = arm.reload_module(arm.log) arm.material = arm.reload_module(arm.material) arm.material.parser_state = arm.reload_module(arm.material.parser_state) from arm.material.parser_state import ParserState, ParserContext arm.material.shader = arm.reload_module(arm.material.shader) from arm.material.shader import ShaderContext, Shader cycles = arm.reload_module(cycles) node_utils = arm.reload_module(node_utils) arm.utils = arm.reload_module(arm.utils) write_probes = arm.reload_module(write_probes) else: arm.enable_reload(__name__) callback = None shader_datas = [] def build(): """Builds world shaders for all exported worlds.""" global shader_datas wrd = bpy.data.worlds['Arm'] rpdat = arm.utils.get_rp() mobile_mat = rpdat.arm_material_model == 'Mobile' or rpdat.arm_material_model == 'Solid' envpath = os.path.join(arm.utils.get_fp_build(), 'compiled', 'Assets', 'envmaps') wrd.world_defs = '' worlds = [] shader_datas = [] with write_probes.setup_envmap_render(): for scene in bpy.data.scenes: world = scene.world # Only export worlds from enabled scenes and only once per world if scene.arm_export and world is not None and world not in worlds: worlds.append(world) world.arm_envtex_name = '' create_world_shaders(world) if rpdat.arm_irradiance: # Plain background color if '_EnvCol' in world.world_defs: world_name = arm.utils.safestr(world.name) # Irradiance json file name world.arm_envtex_name = world_name world.arm_envtex_irr_name = world_name write_probes.write_color_irradiance(world_name, world.arm_envtex_color) # Render world to envmap for (ir)radiance, if no # other probes are exported elif world.arm_envtex_name == '': write_probes.render_envmap(envpath, world) filename = f'env_{arm.utils.safesrc(world.name)}' image_file = f'{filename}.jpg' image_filepath = os.path.join(envpath, image_file) world.arm_envtex_name = image_file world.arm_envtex_irr_name = os.path.basename(image_filepath).rsplit('.', 1)[0] write_radiance = rpdat.arm_radiance and not mobile_mat mip_count = write_probes.write_probes(image_filepath, True, world.arm_envtex_num_mips, write_radiance) world.arm_envtex_num_mips = mip_count if write_radiance: # Set world def, everything else is handled by write_probes() wrd.world_defs += '_Rad' def create_world_shaders(world: bpy.types.World): """Creates fragment and vertex shaders for the given world.""" global shader_datas world_name = arm.utils.safestr(world.name) pass_name = 'World_' + world_name shader_props = { 'name': world_name, 'depth_write': False, 'compare_mode': 'less', 'cull_mode': 'clockwise', 'color_attachments': ['_HDR'], 'vertex_elements': [{'name': 'pos', 'data': 'float3'}, {'name': 'nor', 'data': 'float3'}] } shader_data = {'name': world_name + '_data', 'contexts': [shader_props]} # ShaderContext expects a material, but using a world also works shader_context = ShaderContext(world, shader_data, shader_props) vert = shader_context.make_vert(custom_name="World_" + world_name) frag = shader_context.make_frag(custom_name="World_" + world_name) # Update name, make_vert() and make_frag() above need another name # to work shader_context.data['name'] = pass_name vert.add_out('vec3 normal') vert.add_uniform('mat4 SMVP', link="_skydomeMatrix") frag.add_include('compiled.inc') frag.add_in('vec3 normal') frag.add_out('vec4 fragColor') frag.write_attrib('vec3 n = normalize(normal);') vert.write('''normal = nor; vec4 position = SMVP * vec4(pos, 1.0); gl_Position = vec4(position);''') build_node_tree(world, frag, vert, shader_context) # TODO: Rework shader export so that it doesn't depend on materials # to prevent workaround code like this rel_path = os.path.join(arm.utils.build_dir(), 'compiled', 'Shaders') full_path = os.path.join(arm.utils.get_fp(), rel_path) if not os.path.exists(full_path): os.makedirs(full_path) # Output: World_[world_name].[frag/vert].glsl make_shader.write_shader(rel_path, shader_context.vert, 'vert', world_name, 'World') make_shader.write_shader(rel_path, shader_context.frag, 'frag', world_name, 'World') # Write shader data file shader_data_file = pass_name + '_data.arm' arm.utils.write_arm(os.path.join(full_path, shader_data_file), {'contexts': [shader_context.data]}) shader_data_path = os.path.join(arm.utils.get_fp_build(), 'compiled', 'Shaders', shader_data_file) assets.add_shader_data(shader_data_path) assets.add_shader_pass(pass_name) assets.shader_passes_assets[pass_name] = shader_context.data shader_datas.append({'contexts': [shader_context.data], 'name': pass_name}) def build_node_tree(world: bpy.types.World, frag: Shader, vert: Shader, con: ShaderContext): """Generates the shader code for the given world.""" world_name = arm.utils.safestr(world.name) world.world_defs = '' rpdat = arm.utils.get_rp() wrd = bpy.data.worlds['Arm'] if callback is not None: callback() # film_transparent, do not render if bpy.context.scene is not None and bpy.context.scene.render.film_transparent: world.world_defs += '_EnvCol' frag.add_uniform('vec3 backgroundCol', link='_backgroundCol') frag.write('fragColor.rgb = backgroundCol;') return parser_state = ParserState(ParserContext.WORLD, world) parser_state.con = con parser_state.curshader = frag parser_state.frag = frag parser_state.vert = vert cycles.state = parser_state # Traverse world node tree is_parsed = False if world.node_tree is not None: output_node = node_utils.get_node_by_type(world.node_tree, 'OUTPUT_WORLD') if output_node is not None: is_parsed = parse_world_output(world, output_node, frag) # No world nodes/no output node, use background color if not is_parsed: solid_mat = rpdat.arm_material_model == 'Solid' if rpdat.arm_irradiance and not solid_mat: world.world_defs += '_Irr' col = world.color world.arm_envtex_color = [col[0], col[1], col[2], 1.0] world.arm_envtex_strength = 1.0 world.world_defs += '_EnvCol' # Clouds enabled if rpdat.arm_clouds and world.arm_use_clouds: world.world_defs += '_EnvClouds' # Also set this flag globally so that the required textures are # included wrd.world_defs += '_EnvClouds' frag_write_clouds(world, frag) if '_EnvSky' in world.world_defs or '_EnvTex' in world.world_defs or '_EnvImg' in world.world_defs or '_EnvClouds' in world.world_defs: frag.add_uniform('float envmapStrength', link='_envmapStrength') # Clear background color if '_EnvCol' in world.world_defs: frag.write('fragColor.rgb = backgroundCol;') elif '_EnvTex' in world.world_defs and '_EnvLDR' in world.world_defs: frag.write('fragColor.rgb = pow(fragColor.rgb, vec3(2.2));') if '_EnvClouds' in world.world_defs: frag.write('if (pos.z > 0.0) fragColor.rgb = mix(fragColor.rgb, traceClouds(fragColor.rgb, pos), clamp(pos.z * 5.0, 0, 1));') if '_EnvLDR' in world.world_defs: frag.write('fragColor.rgb = pow(fragColor.rgb, vec3(1.0 / 2.2));') # Mark as non-opaque frag.write('fragColor.a = 0.0;') finalize(frag, vert) def finalize(frag: Shader, vert: Shader): """Checks the given fragment shader for completeness and adds variable initializations if required. TODO: Merge with make_finalize? """ if frag.contains('pos') and not frag.contains('vec3 pos'): frag.write_attrib('vec3 pos = -n;') if frag.contains('vVec') and not frag.contains('vec3 vVec'): # For worlds, the camera seems to be always at origin in # Blender, so we can just use the normals as the incoming vector frag.write_attrib('vec3 vVec = n;') for var in ('bposition', 'mposition', 'wposition'): if (frag.contains(var) and not frag.contains(f'vec3 {var}')) or vert.contains(var): frag.add_in(f'vec3 {var}') vert.add_out(f'vec3 {var}') vert.write(f'{var} = pos;') if frag.contains('wtangent') and not frag.contains('vec3 wtangent'): frag.write_attrib('vec3 wtangent = vec3(0.0);') if frag.contains('texCoord') and not frag.contains('vec2 texCoord'): frag.add_in('vec2 texCoord') vert.add_out('vec2 texCoord') # World has no UV map vert.write('texCoord = vec2(1.0, 1.0);') def parse_world_output(world: bpy.types.World, node_output: bpy.types.Node, frag: Shader) -> bool: """Parse the world's output node. Return `False` when the node has no connected surface input.""" surface_node = node_utils.find_node_by_link(world.node_tree, node_output, node_output.inputs[0]) if surface_node is None: return False parse_surface(world, surface_node, frag) return True def parse_surface(world: bpy.types.World, node_surface: bpy.types.Node, frag: Shader): wrd = bpy.data.worlds['Arm'] rpdat = arm.utils.get_rp() solid_mat = rpdat.arm_material_model == 'Solid' if node_surface.type in ('BACKGROUND', 'EMISSION'): # Append irradiance define if rpdat.arm_irradiance and not solid_mat: wrd.world_defs += '_Irr' # Extract environment strength # Todo: follow/parse strength input world.arm_envtex_strength = node_surface.inputs[1].default_value # Color out = cycles.parse_vector_input(node_surface.inputs[0]) frag.write(f'fragColor.rgb = {out};') if not node_surface.inputs[0].is_linked: solid_mat = rpdat.arm_material_model == 'Solid' if rpdat.arm_irradiance and not solid_mat: world.world_defs += '_Irr' world.arm_envtex_color = node_surface.inputs[0].default_value world.arm_envtex_strength = 1.0 else: log.warn(f'World node type {node_surface.type} must not be connected to the world output node!') # Invalidate the parser state for subsequent executions cycles.state = None def frag_write_clouds(world: bpy.types.World, frag: Shader): """References: GPU PRO 7 - Real-time Volumetric Cloudscapes https://www.guerrilla-games.com/read/the-real-time-volumetric-cloudscapes-of-horizon-zero-dawn https://github.com/sebh/TileableVolumeNoise """ frag.add_uniform('sampler3D scloudsBase', link='$clouds_base.raw') frag.add_uniform('sampler3D scloudsDetail', link='$clouds_detail.raw') frag.add_uniform('sampler2D scloudsMap', link='$clouds_map.png') frag.add_uniform('float time', link='_time') frag.add_const('float', 'cloudsLower', str(round(world.arm_clouds_lower * 100) / 100)) frag.add_const('float', 'cloudsUpper', str(round(world.arm_clouds_upper * 100) / 100)) frag.add_const('vec2', 'cloudsWind', 'vec2(' + str(round(world.arm_clouds_wind[0] * 100) / 100) + ',' + str(round(world.arm_clouds_wind[1] * 100) / 100) + ')') frag.add_const('float', 'cloudsPrecipitation', str(round(world.arm_clouds_precipitation * 100) / 100)) frag.add_const('float', 'cloudsSecondary', str(round(world.arm_clouds_secondary * 100) / 100)) frag.add_const('float', 'cloudsSteps', str(round(world.arm_clouds_steps * 100) / 100)) frag.add_function('''float remap(float old_val, float old_min, float old_max, float new_min, float new_max) { \treturn new_min + (((old_val - old_min) / (old_max - old_min)) * (new_max - new_min)); }''') frag.add_function('''float getDensityHeightGradientForPoint(float height, float cloud_type) { \tconst vec4 stratusGrad = vec4(0.02f, 0.05f, 0.09f, 0.11f); \tconst vec4 stratocumulusGrad = vec4(0.02f, 0.2f, 0.48f, 0.625f); \tconst vec4 cumulusGrad = vec4(0.01f, 0.0625f, 0.78f, 1.0f); \tfloat stratus = 1.0f - clamp(cloud_type * 2.0f, 0, 1); \tfloat stratocumulus = 1.0f - abs(cloud_type - 0.5f) * 2.0f; \tfloat cumulus = clamp(cloud_type - 0.5f, 0, 1) * 2.0f; \tvec4 cloudGradient = stratusGrad * stratus + stratocumulusGrad * stratocumulus + cumulusGrad * cumulus; \treturn smoothstep(cloudGradient.x, cloudGradient.y, height) - smoothstep(cloudGradient.z, cloudGradient.w, height); }''') frag.add_function('''float sampleCloudDensity(vec3 p) { \tfloat cloud_base = textureLod(scloudsBase, p, 0).r * 40; // Base noise \tvec3 weather_data = textureLod(scloudsMap, p.xy, 0).rgb; // Weather map \tcloud_base *= getDensityHeightGradientForPoint(p.z, weather_data.b); // Cloud type \tcloud_base = remap(cloud_base, weather_data.r, 1.0, 0.0, 1.0); // Coverage \tcloud_base *= weather_data.r; \tfloat cloud_detail = textureLod(scloudsDetail, p, 0).r * 2; // Detail noise \tfloat cloud_detail_mod = mix(cloud_detail, 1.0 - cloud_detail, clamp(p.z * 10.0, 0, 1)); \tcloud_base = remap(cloud_base, cloud_detail_mod * 0.2, 1.0, 0.0, 1.0); \treturn cloud_base; }''') func_cloud_radiance = 'float cloudRadiance(vec3 p, vec3 dir) {\n' if '_EnvSky' in world.world_defs: # Nishita sky if 'vec3 sunDir' in frag.uniforms: func_cloud_radiance += '\tvec3 sun_dir = sunDir;\n' # Hosek else: func_cloud_radiance += '\tvec3 sun_dir = hosekSunDirection;\n' else: func_cloud_radiance += '\tvec3 sun_dir = vec3(0, 0, -1);\n' func_cloud_radiance += '''\tconst int steps = 8; \tfloat step_size = 0.5 / float(steps); \tfloat d = 0.0; \tp += sun_dir * step_size; \tfor(int i = 0; i < steps; ++i) { \t\td += sampleCloudDensity(p + sun_dir * float(i) * step_size); \t} \treturn 1.0 - d; }''' frag.add_function(func_cloud_radiance) func_trace_clouds = '''vec3 traceClouds(vec3 sky, vec3 dir) { \tconst float step_size = 0.5 / float(cloudsSteps); \tfloat T = 1.0; \tfloat C = 0.0; \tvec2 uv = dir.xy / dir.z * 0.4 * cloudsLower + cloudsWind * time * 0.02; \tfor (int i = 0; i < cloudsSteps; ++i) { \t\tfloat h = float(i) / float(cloudsSteps); \t\tvec3 p = vec3(uv * 0.04, h); \t\tfloat d = sampleCloudDensity(p); \t\tif (d > 0) { \t\t\t// float radiance = cloudRadiance(p, dir); \t\t\tC += T * exp(h) * d * step_size * 0.6 * cloudsPrecipitation; \t\t\tT *= exp(-d * step_size); \t\t\tif (T < 0.01) break; \t\t} \t\tuv += (dir.xy / dir.z) * step_size * cloudsUpper; \t} ''' if world.arm_darken_clouds: func_trace_clouds += '\t// Darken clouds when the sun is low\n' # Nishita sky if 'vec3 sunDir' in frag.uniforms: func_trace_clouds += '\tC *= smoothstep(-0.02, 0.25, sunDir.z);\n' # Hosek else: func_trace_clouds += '\tC *= smoothstep(0.04, 0.32, hosekSunDirection.z);\n' func_trace_clouds += '\treturn vec3(C) + sky * T;\n}' frag.add_function(func_trace_clouds)