/* Various sky functions * ===================== * * Nishita model is based on https://github.com/wwwtyro/glsl-atmosphere(Unlicense License) * * Changes to the original implementation: * - r and pSun parameters of nishita_atmosphere() are already normalized * - Some original parameters of nishita_atmosphere() are replaced with pre-defined values * - Implemented air and dust density node parameters (see Blender source) */ #ifndef _SKY_GLSL_ #define _SKY_GLSL_ #define PI 3.141592 #define nishita_iSteps 16 #define nishita_jSteps 8 // The values here are taken from Cycles code if they // exist there, otherwise they are taken from the example // in the glsl-atmosphere repo #define nishita_sun_intensity 22.0 #define nishita_atmo_radius 6420e3 #define nishita_rayleigh_scale 8e3 #define nishita_rayleigh_coeff vec3(5.5e-6, 13.0e-6, 22.4e-6) #define nishita_mie_scale 1.2e3 #define nishita_mie_coeff 2e-5 #define nishita_mie_dir 0.76 // Aerosols anisotropy ("direction") #define nishita_mie_dir_sq 0.5776 // Squared aerosols anisotropy /* ray-sphere intersection that assumes * the sphere is centered at the origin. * No intersection when result.x > result.y */ vec2 nishita_rsi(const vec3 r0, const vec3 rd, const float sr) { float a = dot(rd, rd); float b = 2.0 * dot(rd, r0); float c = dot(r0, r0) - (sr * sr); float d = (b*b) - 4.0*a*c; if (d < 0.0) return vec2(1e5,-1e5); return vec2( (-b - sqrt(d))/(2.0*a), (-b + sqrt(d))/(2.0*a) ); } /* * r: normalized ray direction * r0: ray origin * pSun: normalized sun direction * rPlanet: planet radius * density: (air density, dust density) */ vec3 nishita_atmosphere(const vec3 r, const vec3 r0, const vec3 pSun, const float rPlanet, const vec2 density) { // Calculate the step size of the primary ray. vec2 p = nishita_rsi(r0, r, nishita_atmo_radius); if (p.x > p.y) return vec3(0,0,0); p.y = min(p.y, nishita_rsi(r0, r, rPlanet).x); float iStepSize = (p.y - p.x) / float(nishita_iSteps); // Initialize the primary ray time. float iTime = 0.0; // Initialize accumulators for Rayleigh and Mie scattering. vec3 totalRlh = vec3(0,0,0); vec3 totalMie = vec3(0,0,0); // Initialize optical depth accumulators for the primary ray. float iOdRlh = 0.0; float iOdMie = 0.0; // Calculate the Rayleigh and Mie phases. float mu = dot(r, pSun); float mumu = mu * mu; float pRlh = 3.0 / (16.0 * PI) * (1.0 + mumu); float pMie = 3.0 / (8.0 * PI) * ((1.0 - nishita_mie_dir_sq) * (mumu + 1.0)) / (pow(1.0 + nishita_mie_dir_sq - 2.0 * mu * nishita_mie_dir, 1.5) * (2.0 + nishita_mie_dir_sq)); // Sample the primary ray. for (int i = 0; i < nishita_iSteps; i++) { // Calculate the primary ray sample position. vec3 iPos = r0 + r * (iTime + iStepSize * 0.5); // Calculate the height of the sample. float iHeight = length(iPos) - rPlanet; // Calculate the optical depth of the Rayleigh and Mie scattering for this step. float odStepRlh = exp(-iHeight / nishita_rayleigh_scale) * density.x * iStepSize; float odStepMie = exp(-iHeight / nishita_mie_scale) * density.y * iStepSize; // Accumulate optical depth. iOdRlh += odStepRlh; iOdMie += odStepMie; // Calculate the step size of the secondary ray. float jStepSize = nishita_rsi(iPos, pSun, nishita_atmo_radius).y / float(nishita_jSteps); // Initialize the secondary ray time. float jTime = 0.0; // Initialize optical depth accumulators for the secondary ray. float jOdRlh = 0.0; float jOdMie = 0.0; // Sample the secondary ray. for (int j = 0; j < nishita_jSteps; j++) { // Calculate the secondary ray sample position. vec3 jPos = iPos + pSun * (jTime + jStepSize * 0.5); // Calculate the height of the sample. float jHeight = length(jPos) - rPlanet; // Accumulate the optical depth. jOdRlh += exp(-jHeight / nishita_rayleigh_scale) * density.x * jStepSize; jOdMie += exp(-jHeight / nishita_mie_scale) * density.y * jStepSize; // Increment the secondary ray time. jTime += jStepSize; } // Calculate attenuation. vec3 attn = exp(-(nishita_mie_coeff * (iOdMie + jOdMie) + nishita_rayleigh_coeff * (iOdRlh + jOdRlh))); // Accumulate scattering. totalRlh += odStepRlh * attn; totalMie += odStepMie * attn; // Increment the primary ray time. iTime += iStepSize; } // Calculate and return the final color. return nishita_sun_intensity * (pRlh * nishita_rayleigh_coeff * totalRlh + pMie * nishita_mie_coeff * totalMie); } #endif