/* Various sky functions * ===================== * * Nishita model is based on https://github.com/wwwtyro/glsl-atmosphere (Unlicense License) * * Changes to the original implementation: * - r and pSun parameters of nishita_atmosphere() are already normalized * - Some original parameters of nishita_atmosphere() are replaced with pre-defined values * - Implemented air, dust and ozone density node parameters (see Blender source) * - Replaced the inner integral calculation with a LUT lookup * * Reference for the sun's limb darkening and ozone calculations: * [Hill] Sebastien Hillaire. Physically Based Sky, Atmosphere and Cloud Rendering in Frostbite * (https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/s2016-pbs-frostbite-sky-clouds-new.pdf) * * Cycles code used for reference: blender/intern/sky/source/sky_nishita.cpp * (https://github.com/blender/blender/blob/4429b4b77ef6754739a3c2b4fabd0537999e9bdc/intern/sky/source/sky_nishita.cpp) */ #ifndef _SKY_GLSL_ #define _SKY_GLSL_ uniform sampler2D nishitaLUT; uniform vec2 nishitaDensity; #ifndef PI #define PI 3.141592 #endif #ifndef HALF_PI #define HALF_PI 1.570796 #endif #define nishita_iSteps 16 // These values are taken from Cycles code if they // exist there, otherwise they are taken from the example // in the glsl-atmosphere repo #define nishita_sun_intensity 22.0 #define nishita_atmo_radius 6420e3 #define nishita_rayleigh_scale 8e3 #define nishita_rayleigh_coeff vec3(5.5e-6, 13.0e-6, 22.4e-6) #define nishita_mie_scale 1.2e3 #define nishita_mie_coeff 2e-5 #define nishita_mie_dir 0.76 // Aerosols anisotropy ("direction") #define nishita_mie_dir_sq 0.5776 // Squared aerosols anisotropy // Values from [Hill: 60] #define sun_limb_darkening_col vec3(0.397, 0.503, 0.652) float random(vec2 coords) { // Returned value is in [0, 1] return fract(sin(dot(coords.xy, vec2(12.9898,78.233))) * 43758.5453); } vec3 nishita_lookupLUT(const float height, const float sunTheta) { vec2 coords = vec2( sqrt(height * (1 / nishita_atmo_radius)), 0.5 + 0.5 * sign(sunTheta - HALF_PI) * sqrt(abs(sunTheta * (1 / HALF_PI) - 1)) ); return textureLod(nishitaLUT, coords, 0.0).rgb; } /* See raySphereIntersection() in armory/Sources/renderpath/Nishita.hx */ vec2 nishita_rsi(const vec3 r0, const vec3 rd, const float sr) { float a = dot(rd, rd); float b = 2.0 * dot(rd, r0); float c = dot(r0, r0) - (sr * sr); float d = (b*b) - 4.0*a*c; // If d < 0.0 the ray does not intersect the sphere return (d < 0.0) ? vec2(1e5,-1e5) : vec2((-b - sqrt(d))/(2.0*a), (-b + sqrt(d))/(2.0*a)); } /* * r: normalized ray direction * r0: ray origin * pSun: normalized sun direction * rPlanet: planet radius */ vec3 nishita_atmosphere(const vec3 r, const vec3 r0, const vec3 pSun, const float rPlanet) { // Calculate the step size of the primary ray vec2 p = nishita_rsi(r0, r, nishita_atmo_radius); if (p.x > p.y) return vec3(0.0); p.y = min(p.y, nishita_rsi(r0, r, rPlanet).x); float iStepSize = (p.y - p.x) / float(nishita_iSteps); // Primary ray time float iTime = 0.0; // Accumulators for Rayleigh and Mie scattering. vec3 totalRlh = vec3(0,0,0); vec3 totalMie = vec3(0,0,0); // Optical depth accumulators for the primary ray float iOdRlh = 0.0; float iOdMie = 0.0; // Calculate the Rayleigh and Mie phases float mu = dot(r, pSun); float mumu = mu * mu; float pRlh = 3.0 / (16.0 * PI) * (1.0 + mumu); float pMie = 3.0 / (8.0 * PI) * ((1.0 - nishita_mie_dir_sq) * (mumu + 1.0)) / (pow(1.0 + nishita_mie_dir_sq - 2.0 * mu * nishita_mie_dir, 1.5) * (2.0 + nishita_mie_dir_sq)); // Sample the primary ray for (int i = 0; i < nishita_iSteps; i++) { // Calculate the primary ray sample position and height vec3 iPos = r0 + r * (iTime + iStepSize * 0.5); float iHeight = length(iPos) - rPlanet; // Calculate the optical depth of the Rayleigh and Mie scattering for this step float odStepRlh = exp(-iHeight / nishita_rayleigh_scale) * nishitaDensity.x * iStepSize; float odStepMie = exp(-iHeight / nishita_mie_scale) * nishitaDensity.y * iStepSize; // Accumulate optical depth iOdRlh += odStepRlh; iOdMie += odStepMie; // Idea behind this: "Rotate" everything by iPos (-> iPos is the new zenith) and then all calculations for the // inner integral only depend on the sample height (iHeight) and sunTheta (angle between sun and new zenith). float sunTheta = acos(dot(normalize(iPos), normalize(pSun))); vec3 jAttn = nishita_lookupLUT(iHeight, sunTheta); // Calculate attenuation vec3 iAttn = exp(-( nishita_mie_coeff * iOdMie + nishita_rayleigh_coeff * iOdRlh // + 0 for ozone )); vec3 attn = iAttn * jAttn; // Apply dithering to reduce visible banding attn *= 0.98 + random(r.xy) * 0.04; // Accumulate scattering totalRlh += odStepRlh * attn; totalMie += odStepMie * attn; iTime += iStepSize; } return nishita_sun_intensity * (pRlh * nishita_rayleigh_coeff * totalRlh + pMie * nishita_mie_coeff * totalMie); } vec3 sun_disk(const vec3 n, const vec3 light_dir, const float disk_size, const float intensity) { // Normalized SDF float dist = distance(n, light_dir) / disk_size; // Darken the edges of the sun // [Hill: 28, 60] (according to [Nec96]) float invDist = 1.0 - dist; float mu = sqrt(invDist * invDist); vec3 limb_darkening = 1.0 - (1.0 - pow(vec3(mu), sun_limb_darkening_col)); return 1 + (1.0 - step(1.0, dist)) * nishita_sun_intensity * intensity * limb_darkening; } #endif