armory/Shaders/std/sky.glsl
2021-01-21 20:36:03 +01:00

135 lines
4.2 KiB
GLSL

/* Various sky functions
*
* Nishita model is based on https://github.com/wwwtyro/glsl-atmosphere (Unlicense License)
* Changes to the original implementation:
* - r and pSun parameters of nishita_atmosphere() are already normalized
* - Some original parameters of nishita_atmosphere() are replaced with pre-defined values
*/
#ifndef _SKY_GLSL_
#define _SKY_GLSL_
#define PI 3.141592
#define nishita_iSteps 16
#define nishita_jSteps 8
// The values here are taken from Cycles code if they
// exist there, otherwise they are taken from the example
// in the glsl-atmosphere repo
#define nishita_sun_intensity 22.0
#define nishita_atmo_radius 6420e3
#define nishita_rayleigh_scale 8e3
#define nishita_rayleigh_coeff vec3(5.5e-6, 13.0e-6, 22.4e-6)
#define nishita_mie_scale 1.2e3
#define nishita_mie_coeff 2e-5
#define nishita_mie_dir 0.76 // Aerosols anisotropy ("direction")
#define nishita_mie_dir_sq 0.5776 // Squared aerosols anisotropy
/* ray-sphere intersection that assumes
* the sphere is centered at the origin.
* No intersection when result.x > result.y */
vec2 nishita_rsi(const vec3 r0, const vec3 rd, const float sr) {
float a = dot(rd, rd);
float b = 2.0 * dot(rd, r0);
float c = dot(r0, r0) - (sr * sr);
float d = (b*b) - 4.0*a*c;
if (d < 0.0) return vec2(1e5,-1e5);
return vec2(
(-b - sqrt(d))/(2.0*a),
(-b + sqrt(d))/(2.0*a)
);
}
/*
* r: normalized ray direction
* r0: ray origin
* pSun: normalized sun direction
* rPlanet: planet radius
*/
vec3 nishita_atmosphere(const vec3 r, const vec3 r0, const vec3 pSun, const float rPlanet) {
// Calculate the step size of the primary ray.
vec2 p = nishita_rsi(r0, r, nishita_atmo_radius);
if (p.x > p.y) return vec3(0,0,0);
p.y = min(p.y, nishita_rsi(r0, r, rPlanet).x);
float iStepSize = (p.y - p.x) / float(nishita_iSteps);
// Initialize the primary ray time.
float iTime = 0.0;
// Initialize accumulators for Rayleigh and Mie scattering.
vec3 totalRlh = vec3(0,0,0);
vec3 totalMie = vec3(0,0,0);
// Initialize optical depth accumulators for the primary ray.
float iOdRlh = 0.0;
float iOdMie = 0.0;
// Calculate the Rayleigh and Mie phases.
float mu = dot(r, pSun);
float mumu = mu * mu;
float pRlh = 3.0 / (16.0 * PI) * (1.0 + mumu);
float pMie = 3.0 / (8.0 * PI) * ((1.0 - nishita_mie_dir_sq) * (mumu + 1.0)) / (pow(1.0 + nishita_mie_dir_sq - 2.0 * mu * nishita_mie_dir, 1.5) * (2.0 + nishita_mie_dir_sq));
// Sample the primary ray.
for (int i = 0; i < nishita_iSteps; i++) {
// Calculate the primary ray sample position.
vec3 iPos = r0 + r * (iTime + iStepSize * 0.5);
// Calculate the height of the sample.
float iHeight = length(iPos) - rPlanet;
// Calculate the optical depth of the Rayleigh and Mie scattering for this step.
float odStepRlh = exp(-iHeight / nishita_rayleigh_scale) * iStepSize;
float odStepMie = exp(-iHeight / nishita_mie_scale) * iStepSize;
// Accumulate optical depth.
iOdRlh += odStepRlh;
iOdMie += odStepMie;
// Calculate the step size of the secondary ray.
float jStepSize = nishita_rsi(iPos, pSun, nishita_atmo_radius).y / float(nishita_jSteps);
// Initialize the secondary ray time.
float jTime = 0.0;
// Initialize optical depth accumulators for the secondary ray.
float jOdRlh = 0.0;
float jOdMie = 0.0;
// Sample the secondary ray.
for (int j = 0; j < nishita_jSteps; j++) {
// Calculate the secondary ray sample position.
vec3 jPos = iPos + pSun * (jTime + jStepSize * 0.5);
// Calculate the height of the sample.
float jHeight = length(jPos) - rPlanet;
// Accumulate the optical depth.
jOdRlh += exp(-jHeight / nishita_rayleigh_scale) * jStepSize;
jOdMie += exp(-jHeight / nishita_mie_scale) * jStepSize;
// Increment the secondary ray time.
jTime += jStepSize;
}
// Calculate attenuation.
vec3 attn = exp(-(nishita_mie_coeff * (iOdMie + jOdMie) + nishita_rayleigh_coeff * (iOdRlh + jOdRlh)));
// Accumulate scattering.
totalRlh += odStepRlh * attn;
totalMie += odStepMie * attn;
// Increment the primary ray time.
iTime += iStepSize;
}
// Calculate and return the final color.
return nishita_sun_intensity * (pRlh * nishita_rayleigh_coeff * totalRlh + pMie * nishita_mie_coeff * totalMie);
}
#endif