armory/Shaders/std/brdf.glsl
2017-06-21 19:51:38 +02:00

94 lines
3.3 KiB
GLSL
Executable file

// http://xlgames-inc.github.io/posts/improvedibl/
// http://blog.selfshadow.com/publications/s2013-shading-course/
vec3 f_schlick(const vec3 f0, const float vh) {
return f0 + (1.0 - f0) * exp2((-5.55473 * vh - 6.98316) * vh);
}
float v_smithschlick(const float nl, const float nv, const float a) {
return 1.0 / ((nl * (1.0 - a) + a) * (nv * (1.0 - a) + a));
}
float d_ggx(const float nh, const float a) {
float a2 = a * a;
float denom = pow(nh * nh * (a2 - 1.0) + 1.0, 2.0);
return a2 * (1.0 / 3.1415926535) / denom;
}
vec3 specularBRDF(const vec3 f0, const float roughness, const float nl, const float nh, const float nv, const float vh) {
float a = roughness * roughness;
return d_ggx(nh, a) * clamp(v_smithschlick(nl, nv, a), 0.0, 1.0) * f_schlick(f0, vh) / 4.0;
}
// John Hable - Optimizing GGX Shaders
// http://filmicworlds.com/blog/optimizing-ggx-shaders-with-dotlh/
vec3 specularBRDFb(const vec3 f0, const float roughness, const float dotNL, const float dotNH, const float dotLH) {
// D
const float pi = 3.1415926535;
float alpha = roughness * roughness;
float alphaSqr = alpha * alpha;
float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0;
float D = alphaSqr / (pi * denom * denom);
// F
const float F_a = 1.0;
float F_b = pow(1.0 - dotLH, 5.0);
// V
float vis;
float k = alpha / 2.0;
float k2 = k * k;
float invK2 = 1.0 - k2;
vis = 1.0 / (dotLH * dotLH * invK2 + k2);
vec2 FV_helper = vec2((F_a - F_b) * vis, F_b * vis);
vec3 FV = f0 * FV_helper.x + FV_helper.y;
vec3 specular = clamp(dotNL, 0.0, 1.0) * D * FV;
return specular / 4.0; // TODO: get rid of / 4.0
}
vec3 orenNayarDiffuseBRDF(const vec3 albedo, const float roughness, const float nv, const float nl, const float vh) {
float a = roughness * roughness;
float s = a;
float s2 = s * s;
float vl = 2.0 * vh * vh - 1.0; // Double angle identity
float Cosri = vl - nv * nl;
float C1 = 1.0 - 0.5 * s2 / (s2 + 0.33);
float test = 1.0;
if (Cosri >= 0.0) test = (1.0 / (max(nl, nv)));
float C2 = 0.45 * s2 / (s2 + 0.09) * Cosri * test;
return albedo * max(0.0, nl) * (C1 + C2) * (1.0 + roughness * 0.5);
}
vec3 lambertDiffuseBRDF(const vec3 albedo, const float nl) {
return albedo * max(0.0, nl);
}
vec3 surfaceAlbedo(const vec3 baseColor, const float metalness) {
return mix(baseColor, vec3(0.0), metalness);
}
vec3 surfaceF0(const vec3 baseColor, const float metalness) {
return mix(vec3(0.04), baseColor, metalness);
}
float getMipFromRoughness(const float roughness, const float numMipmaps) {
// First mipmap level = roughness 0, last = roughness = 1
return roughness * numMipmaps;
}
float wardSpecular(vec3 N, vec3 H, float dotNL, float dotNV, float dotNH, vec3 fiberDirection, float shinyParallel, float shinyPerpendicular) {
if(dotNL < 0.0 || dotNV < 0.0) {
return 0.0;
}
// fiberDirection - parse from rotation
// shinyParallel - roughness
// shinyPerpendicular - anisotropy
vec3 fiberParallel = normalize(fiberDirection);
vec3 fiberPerpendicular = normalize(cross(N, fiberDirection));
float dotXH = dot(fiberParallel, H);
float dotYH = dot(fiberPerpendicular, H);
const float PI = 3.1415926535;
float coeff = sqrt(dotNL/dotNV) / (4.0 * PI * shinyParallel * shinyPerpendicular);
float theta = (pow(dotXH/shinyParallel, 2.0) + pow(dotYH/shinyPerpendicular, 2.0)) / (1.0 + dotNH);
return clamp(coeff * exp(-2.0 * theta), 0.0, 1.0);
}