armory/raw/forward/forward.frag.glsl
2016-05-16 12:01:12 +02:00

576 lines
15 KiB
GLSL

#version 450
#ifdef GL_ES
precision mediump float;
#endif
#define PI 3.1415926535
#define TwoPI (2.0 * PI)
#ifdef _NMTex
#define _AMTex
#endif
#ifdef _AMTex
uniform sampler2D salbedo;
#endif
uniform sampler2D shadowMap;
uniform sampler2D senvmapRadiance;
uniform sampler2D senvmapIrradiance;
uniform sampler2D senvmapBrdf;
// uniform sampler2D sltcMat;
// uniform sampler2D sltcMag;
#ifdef _NMTex
uniform sampler2D snormal;
#endif
#ifdef _OMTex
uniform sampler2D som;
#endif
#ifdef _RMTex
uniform sampler2D srm;
#else
uniform float roughness;
#endif
#ifdef _MMTex
uniform sampler2D smm;
#else
uniform float metalness;
#endif
uniform bool receiveShadow;
uniform vec3 lightColor;
uniform float lightStrength;
// LTC
uniform vec3 light;
// const float roughness = 0.25;
const vec3 dcolor = vec3(1.0, 1.0, 1.0);
const vec3 scolor = vec3(1.0, 1.0, 1.0);
const float intensity = 4.0; // 0-10
const float width = 4.0;
const float height = 4.0;
const vec2 resolution = vec2(800.0, 600.0);
const int sampleCount = 0;
const int NUM_SAMPLES = 8;
const float LUT_SIZE = 64.0;
const float LUT_SCALE = (LUT_SIZE - 1.0)/LUT_SIZE;
const float LUT_BIAS = 0.5/LUT_SIZE;
// vec2 mys[NUM_SAMPLES];
vec3 L0 = vec3(0.0);
vec3 L1 = vec3(0.0);
vec3 L2 = vec3(0.0);
vec3 L3 = vec3(0.0);
vec3 L4 = vec3(0.0);
in vec3 position;
#ifdef _AMTex
in vec2 texCoord;
#endif
in vec4 lPos;
in vec4 matColor;
in vec3 lightDir;
in vec3 eyeDir;
#ifdef _NMTex
in mat3 TBN;
#else
in vec3 normal;
#endif
// float linstep(float low, float high, float v) {
// return clamp((v - low) / (high - low), 0.0, 1.0);
// }
// float VSM(vec2 uv, float compare) {
// vec2 moments = texture(shadowMap, uv).xy;
// float p = smoothstep(compare - 0.02, compare, moments.x);
// float variance = max(moments.y - moments.x * moments.x, -0.001);
// float d = compare - moments.x;
// float p_max = linstep(0.2, 1.0, variance / (variance + d * d));
// return clamp(max(p, p_max), 0.0, 1.0);
// }
// float rand(vec2 co) {
// return fract(sin(dot(co.xy ,vec2(12.9898, 78.233))) * 43758.5453);
// }
float texture2DCompare(vec2 uv, float compare){
float depth = texture(shadowMap, uv).r * 2.0 - 1.0;
return step(compare, depth);
}
float texture2DShadowLerp(vec2 size, vec2 uv, float compare){
vec2 texelSize = vec2(1.0) / size;
vec2 f = fract(uv * size + 0.5);
vec2 centroidUV = floor(uv * size + 0.5) / size;
float lb = texture2DCompare(centroidUV + texelSize * vec2(0.0, 0.0), compare);
float lt = texture2DCompare(centroidUV + texelSize * vec2(0.0, 1.0), compare);
float rb = texture2DCompare(centroidUV + texelSize * vec2(1.0, 0.0), compare);
float rt = texture2DCompare(centroidUV + texelSize * vec2(1.0, 1.0), compare);
float a = mix(lb, lt, f.y);
float b = mix(rb, rt, f.y);
float c = mix(a, b, f.x);
return c;
}
float PCF(vec2 size, vec2 uv, float compare){
float result = 0.0;
// for (int x = -1; x <= 1; x++){
// for(int y = -1; y <= 1; y++){
// vec2 off = vec2(x, y) / size;
// result += texture2DShadowLerp(size, uv + off, compare);
vec2 off = vec2(-1, -1) / size;
result += texture2DShadowLerp(size, uv + off, compare);
off = vec2(-1, 0) / size;
result += texture2DShadowLerp(size, uv + off, compare);
off = vec2(-1, 1) / size;
result += texture2DShadowLerp(size, uv + off, compare);
off = vec2(0, -1) / size;
result += texture2DShadowLerp(size, uv + off, compare);
off = vec2(0, 0) / size;
result += texture2DShadowLerp(size, uv + off, compare);
off = vec2(0, 1) / size;
result += texture2DShadowLerp(size, uv + off, compare);
off = vec2(1, -1) / size;
result += texture2DShadowLerp(size, uv + off, compare);
off = vec2(1, 0) / size;
result += texture2DShadowLerp(size, uv + off, compare);
off = vec2(1, 1) / size;
result += texture2DShadowLerp(size, uv + off, compare);
// }
// }
return result / 9.0;
}
float shadowTest(vec4 lPos) {
vec4 lPosH = lPos / lPos.w;
lPosH.x = (lPosH.x + 1.0) / 2.0;
lPosH.y = 1.0 - ((-lPosH.y + 1.0) / (2.0));
const float bias = 0.008;
return PCF(vec2(2048.0, 2048.0), lPosH.st, lPosH.z - bias);
// return VSM(lPosH.st, lPosH.z);
// shadow2DSampler
// return texture(shadowMap, vec3(lPosH.st, (lPosH.z - 0.005) / lPosH.w));
// Basic
// float distanceFromLight = texture(shadowMap, lPosH.st).r;
// float bias = 0.0;
// return float(distanceFromLight > lPosH.z - bias);
}
vec2 envMapEquirect(vec3 normal) {
float phi = acos(normal.z);
float theta = atan(-normal.y, normal.x) + PI;
return vec2(theta / TwoPI, phi / PI);
}
vec2 LightingFuncGGX_FV(float dotLH, float roughness) {
float alpha = roughness*roughness;
// F
float F_a, F_b;
float dotLH5 = pow(1.0 - dotLH, 5.0);
F_a = 1.0;
F_b = dotLH5;
// V
float vis;
float k = alpha / 2.0;
float k2 = k * k;
float invK2 = 1.0 - k2;
//vis = rcp(dotLH * dotLH * invK2 + k2);
vis = inversesqrt(dotLH * dotLH * invK2 + k2);
return vec2(F_a * vis, F_b * vis);
}
float LightingFuncGGX_D(float dotNH, float roughness) {
float alpha = roughness * roughness;
float alphaSqr = alpha * alpha;
float pi = 3.14159;
float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0;
float D = alphaSqr / (pi * denom * denom);
return D;
}
// John Hable - Optimizing GGX Shaders
// http://www.filmicworlds.com/2014/04/21/optimizing-ggx-shaders-with-dotlh/
float LightingFuncGGX_OPT3(float dotNL, float dotLH, float dotNH, float roughness, float F0) {
// vec3 H = normalize(V + L);
// float dotNL = clamp(dot(N, L), 0.0, 1.0);
// float dotLH = clamp(dot(L, H), 0.0, 1.0);
// float dotNH = clamp(dot(N, H), 0.0, 1.0);
float D = LightingFuncGGX_D(dotNH, roughness);
vec2 FV_helper = LightingFuncGGX_FV(dotLH, roughness);
float FV = F0 * FV_helper.x + (1.0 - F0) * FV_helper.y;
float specular = dotNL * D * FV;
return specular;
}
vec3 f_schlick(vec3 f0, float vh) {
return f0 + (1.0-f0)*exp2((-5.55473 * vh - 6.98316)*vh);
}
float v_smithschlick(float nl, float nv, float a) {
return 1.0 / ( (nl*(1.0-a)+a) * (nv*(1.0-a)+a) );
}
float d_ggx(float nh, float a) {
float a2 = a*a;
float denom = pow(nh*nh * (a2-1.0) + 1.0, 2.0);
return a2 * (1.0 / 3.1415926535) / denom;
}
vec3 specularBRDF(vec3 f0, float roughness, float nl, float nh, float nv, float vh, float lh) {
float a = roughness * roughness;
return d_ggx(nh, a) * clamp(v_smithschlick(nl, nv, a), 0.0, 1.0) * f_schlick(f0, vh) / 4.0;
//return vec3(LightingFuncGGX_OPT3(nl, lh, nh, roughness, f0[0]));
}
vec3 lambert(vec3 albedo, float nl) {
return albedo * max(0.0, nl);
}
vec3 burley(vec3 albedo, float roughness, float NoV, float NoL, float VoH) {
float FD90 = 0.5 + 2 * VoH * VoH * roughness;
float FdV = 1 + (FD90 - 1) * pow( 1 - NoV, 5 );
float FdL = 1 + (FD90 - 1) * pow( 1 - NoL, 5 );
return albedo * ( (1.0 / 3.1415926535) * FdV * FdL );
}
vec3 orenNayar(vec3 albedo, float roughness, float NoV, float NoL, float VoH ) {
float pi = 3.1415926535;
float a = roughness * roughness;
float s = a;// / ( 1.29 + 0.5 * a );
float s2 = s * s;
float VoL = 2.0 * VoH * VoH - 1.0; // double angle identity
float Cosri = VoL - NoV * NoL;
float C1 = 1.0 - 0.5 * s2 / (s2 + 0.33);
float test = 1.0;
if (Cosri >= 0.0) test = (1.0 / ( max( NoL, NoV ) ));
float C2 = 0.45 * s2 / (s2 + 0.09) * Cosri * test;
return albedo / pi * ( C1 + C2 ) * ( 1.0 + roughness * 0.5 );
}
vec3 diffuseBRDF(vec3 albedo, float roughness, float nv, float nl, float vh, float lv) {
return lambert(albedo, nl);
//return burley(albedo, roughness, nv, nl, vh);
//return orenNayar(albedo, roughness, lv, nl, nv);
}
vec3 surfaceAlbedo(vec3 baseColor, float metalness) {
return mix(baseColor, vec3(0.0), metalness);
}
vec3 surfaceF0(vec3 baseColor, float metalness) {
return mix(vec3(0.04), baseColor, metalness);
}
float getMipLevelFromRoughness(float roughness) {
// First mipmap level = roughness 0, last = roughness = 1
// 6 mipmaps + base
return roughness * 7.0;
}
// Linearly Transformed Cosines
vec3 mul(mat3 m, vec3 v) {
return m * v;
}
mat3 mul(mat3 m1, mat3 m2) {
return m1 * m2;
}
mat3 transpose2(mat3 v) {
mat3 tmp;
tmp[0] = vec3(v[0].x, v[1].x, v[2].x);
tmp[1] = vec3(v[0].y, v[1].y, v[2].y);
tmp[2] = vec3(v[0].z, v[1].z, v[2].z);
return tmp;
}
float IntegrateEdge(vec3 v1, vec3 v2) {
float cosTheta = dot(v1, v2);
cosTheta = clamp(cosTheta, -0.9999, 0.9999);
float theta = acos(cosTheta);
float res = cross(v1, v2).z * theta / sin(theta);
return res;
}
int ClipQuadToHorizon(/*inout vec3 L[5], out int n*/) {
// detect clipping config
int config = 0;
if (L0.z > 0.0) config += 1;
if (L1.z > 0.0) config += 2;
if (L2.z > 0.0) config += 4;
if (L3.z > 0.0) config += 8;
// clip
int n = 0;
if (config == 0) {
// clip all
}
else if (config == 1) { // V1 clip V2 V3 V4
n = 3;
L1 = -L1.z * L0 + L0.z * L1;
L2 = -L3.z * L0 + L0.z * L3;
}
else if (config == 2) { // V2 clip V1 V3 V4
n = 3;
L0 = -L0.z * L1 + L1.z * L0;
L2 = -L2.z * L1 + L1.z * L2;
}
else if (config == 3) { // V1 V2 clip V3 V4
n = 4;
L2 = -L2.z * L1 + L1.z * L2;
L3 = -L3.z * L0 + L0.z * L3;
}
else if (config == 4) { // V3 clip V1 V2 V4
n = 3;
L0 = -L3.z * L2 + L2.z * L3;
L1 = -L1.z * L2 + L2.z * L1;
}
else if (config == 5) { // V1 V3 clip V2 V4) impossible
n = 0;
}
else if (config == 6) { // V2 V3 clip V1 V4
n = 4;
L0 = -L0.z * L1 + L1.z * L0;
L3 = -L3.z * L2 + L2.z * L3;
}
else if (config == 7) { // V1 V2 V3 clip V4
n = 5;
L4 = -L3.z * L0 + L0.z * L3;
L3 = -L3.z * L2 + L2.z * L3;
}
else if (config == 8) { // V4 clip V1 V2 V3
n = 3;
L0 = -L0.z * L3 + L3.z * L0;
L1 = -L2.z * L3 + L3.z * L2;
L2 = L3;
}
else if (config == 9) { // V1 V4 clip V2 V3
n = 4;
L1 = -L1.z * L0 + L0.z * L1;
L2 = -L2.z * L3 + L3.z * L2;
}
else if (config == 10) { // V2 V4 clip V1 V3) impossible
n = 0;
}
else if (config == 11) { // V1 V2 V4 clip V3
n = 5;
L4 = L3;
L3 = -L2.z * L3 + L3.z * L2;
L2 = -L2.z * L1 + L1.z * L2;
}
else if (config == 12) { // V3 V4 clip V1 V2
n = 4;
L1 = -L1.z * L2 + L2.z * L1;
L0 = -L0.z * L3 + L3.z * L0;
}
else if (config == 13) { // V1 V3 V4 clip V2
n = 5;
L4 = L3;
L3 = L2;
L2 = -L1.z * L2 + L2.z * L1;
L1 = -L1.z * L0 + L0.z * L1;
}
else if (config == 14) { // V2 V3 V4 clip V1
n = 5;
L4 = -L0.z * L3 + L3.z * L0;
L0 = -L0.z * L1 + L1.z * L0;
}
else if (config == 15) { // V1 V2 V3 V4
n = 4;
}
if (n == 3)
L3 = L0;
if (n == 4)
L4 = L0;
return n;
}
vec3 LTC_Evaluate(vec3 N, vec3 V, vec3 P, mat3 Minv, vec3 points0, vec3 points1, vec3 points2, vec3 points3, bool twoSided) {
// construct orthonormal basis around N
vec3 T1, T2;
T1 = normalize(V - N*dot(V, N));
T2 = cross(N, T1);
// rotate area light in (T1, T2, R) basis
Minv = mul(Minv, transpose2(mat3(T1, T2, N)));
// polygon (allocate 5 vertices for clipping)
// vec3 L[5];
L0 = mul(Minv, points0 - P);
L1 = mul(Minv, points1 - P);
L2 = mul(Minv, points2 - P);
L3 = mul(Minv, points3 - P);
int n = ClipQuadToHorizon(/*L, n*/);
if (n == 0) {
return vec3(0, 0, 0);
}
// project onto sphere
L0 = normalize(L0);
L1 = normalize(L1);
L2 = normalize(L2);
L3 = normalize(L3);
L4 = normalize(L4);
// integrate
float sum = 0.0;
sum += IntegrateEdge(L0, L1);
sum += IntegrateEdge(L1, L2);
sum += IntegrateEdge(L2, L3);
if (n >= 4) {
sum += IntegrateEdge(L3, L4);
}
if (n == 5) {
sum += IntegrateEdge(L4, L0);
}
sum = twoSided ? abs(sum) : max(0.0, -sum);
vec3 Lo_i = vec3(sum, sum, sum);
return Lo_i;
}
void main() {
#ifdef _NMTex
vec3 n = (texture(snormal, texCoord).rgb * 2.0 - 1.0);
n = normalize(TBN * normalize(n));
// vec3 nn = normalize(normal);
// vec3 dp1 = dFdx( position );
// vec3 dp2 = dFdy( position );
// vec2 duv1 = dFdx( texCoord );
// vec2 duv2 = dFdy( texCoord );
// vec3 dp2perp = cross( dp2, nn );
// vec3 dp1perp = cross( nn, dp1 );
// vec3 T = dp2perp * duv1.x + dp1perp * duv2.x;
// vec3 B = dp2perp * duv1.y + dp1perp * duv2.y;
// float invmax = inversesqrt( max( dot(T,T), dot(B,B) ) );
// mat3 TBN = mat3(T * invmax, B * invmax, nn);
// vec3 n = normalize(TBN * nn);
#else
vec3 n = normalize(normal);
#endif
vec3 l = normalize(lightDir);
float dotNL = max(dot(n, l), 0.0);
float visibility = 1.0;
if (receiveShadow) {
if (lPos.w > 0.0) {
visibility = shadowTest(lPos);
// visibility = 1.0;
}
}
#ifdef _AMTex
vec4 texel = texture(salbedo, texCoord);
#ifdef _AlphaTest
if(texel.a < 0.4)
discard;
#endif
vec3 baseColor = texel.rgb;
baseColor = pow(baseColor.rgb, vec3(2.2));
#else
vec3 baseColor = matColor.rgb;
#endif
vec4 outColor;
vec3 v = normalize(eyeDir);
vec3 h = normalize(v + l);
float dotNV = max(dot(n, v), 0.0);
float dotNH = max(dot(n, h), 0.0);
float dotVH = max(dot(v, h), 0.0);
float dotLV = max(dot(l, v), 0.0);
float dotLH = max(dot(l, h), 0.0);
#ifdef _MMTex
float metalness = texture(smm, texCoord).r;
#endif
vec3 albedo = surfaceAlbedo(baseColor, metalness);
vec3 f0 = surfaceF0(baseColor, metalness);
#ifdef _RMTex
float roughness = texture(srm, texCoord).r;
#endif
// LTC
// const float rectSizeX = 2.5;
// const float rectSizeY = 1.2;
// vec3 ex = vec3(1, 0, 0)*rectSizeX;
// vec3 ey = vec3(0, 0, 1)*rectSizeY;
// vec3 p1 = light - ex + ey;
// vec3 p2 = light + ex + ey;
// vec3 p3 = light + ex - ey;
// vec3 p4 = light - ex - ey;
// float theta = acos(dotNV);
// vec2 tuv = vec2(roughness, theta/(0.5*PI));
// tuv = tuv*LUT_SCALE + LUT_BIAS;
// vec4 t = texture(sltcMat, tuv);
// mat3 Minv = mat3(
// vec3( 1, t.y, 0),
// vec3( 0, 0, t.z),
// vec3(t.w, 0, t.x)
// );
// vec3 ltcspec = LTC_Evaluate(n, v, position, Minv, p1, p2, p3, p4, true);
// ltcspec *= texture(sltcMag, tuv).a;
// vec3 ltcdiff = LTC_Evaluate(n, v, position, mat3(1), p1, p2, p3, p4, true);
// vec3 ltccol = ltcspec + ltcdiff * albedo;
// ltccol /= 2.0*PI;
// Direct
vec3 direct = diffuseBRDF(albedo, roughness, dotNV, dotNL, dotVH, dotLV) + specularBRDF(f0, roughness, dotNL, dotNH, dotNV, dotVH, dotLH);
direct = direct * lightColor * lightStrength;
// Indirect
vec3 indirectDiffuse = texture(senvmapIrradiance, envMapEquirect(n)).rgb;
indirectDiffuse = pow(indirectDiffuse, vec3(2.2)) * albedo;
vec3 reflectionWorld = reflect(-v, n);
float lod = getMipLevelFromRoughness(roughness);// + 1.0;
vec3 prefilteredColor = textureLod(senvmapRadiance, envMapEquirect(reflectionWorld), lod).rgb;
prefilteredColor = pow(prefilteredColor, vec3(2.2));
vec2 envBRDF = texture(senvmapBrdf, vec2(roughness, 1.0 - dotNV)).xy;
vec3 indirectSpecular = prefilteredColor * (f0 * envBRDF.x + envBRDF.y);
vec3 indirect = indirectDiffuse + indirectSpecular;
indirect = indirect * lightColor * lightStrength;
outColor = vec4(vec3(direct * visibility + indirect), 1.0);
#ifdef _OMTex
vec3 occlusion = texture(som, texCoord).rgb;
outColor.rgb *= occlusion;
#endif
// LTC
// outColor.rgb = ltccol * 10.0 * visibility + indirect / 14.0;
gl_FragColor = vec4(pow(outColor.rgb, vec3(1.0 / 2.2)), outColor.a);
}