armory/raw/deferred/mesh.frag.glsl
2016-10-12 17:52:27 +02:00

275 lines
9.4 KiB
GLSL

#version 450
#ifdef GL_ES
precision mediump float;
#endif
// #ifdef _HeightTex
// #define _NorTex
// #endif
// #ifdef _NorTex
// #define _Tex
// #endif
uniform float mask;
#ifdef _BaseTex
uniform sampler2D sbase;
#endif
#ifdef _NorTex
uniform sampler2D snormal;
#endif
#ifdef _NorStr
uniform float normalStrength;
#endif
#ifdef _OccTex
uniform sampler2D socclusion;
#else
uniform float occlusion;
#endif
#ifdef _RoughTex
uniform sampler2D srough;
#else
uniform float roughness;
#endif
#ifdef _RoughStr
uniform float roughnessStrength;
#endif
#ifdef _MetTex
uniform sampler2D smetal;
#else
uniform float metalness;
#endif
// #ifdef _HeightTex
// uniform sampler2D sheight;
// uniform float heightStrength;
// #endif
#ifdef _Probes
uniform int probeID;
uniform float probeBlending;
uniform float probeStrength;
uniform vec3 probeVolumeCenter;
uniform vec3 probeVolumeSize;
#endif
in vec4 matColor;
#ifdef _Tex
in vec2 texCoord;
#endif
#ifdef _NorTex
in mat3 TBN;
#else
in vec3 normal;
#endif
// #ifdef _HeightTex
// in vec3 tanLightDir;
// in vec3 tanEyeDir;
// #endif
#ifdef _Probes
in vec4 wpos;
#endif
#ifdef _Veloc
in vec4 wvppos;
in vec4 prevwvppos;
#endif
#ifdef _Veloc
out vec4[3] fragColor;
#else
out vec4[2] fragColor;
#endif
float packFloat(float f1, float f2) {
float index = floor(f1 * 1000.0); // Temporary
float alpha = clamp(f2, 0.0, 1.0 - 0.001);
return index + alpha;
}
vec2 octahedronWrap(vec2 v) {
return (1.0 - abs(v.yx)) * (vec2(v.x >= 0.0 ? 1.0 : -1.0, v.y >= 0.0 ? 1.0 : -1.0));
}
#ifdef _Probes
float distanceBox(vec3 point, vec3 center, vec3 halfExtents) {
vec3 d = abs(point - center) - halfExtents;
return min(max(d.x, max(d.y, d.z)), 0.0) + length(max(d, 0.0));
}
#endif
// #ifdef _HeightTex
// float parallaxHeight;
// const float minLayers = 20;
// const float maxLayers = 30;
// vec2 parallaxMapping(vec3 V, vec2 T) {
// float parallaxScale = -0.06 * heightStrength;
// // PM
// // float initialHeight = texture(sheight, texCoord).r;
// // vec2 texCoordOffset = 0.03 * V.xy / V.z * initialHeight;
// // vec2 texCoordOffset = 0.03 * V.xy * initialHeight;
// // return texCoord + texCoordOffset;
// // POM
// float numLayers = mix(maxLayers, minLayers, abs(dot(vec3(0, 0, 1), V)));
// float layerHeight = 1.0 / numLayers;
// float curLayerHeight = 0;
// vec2 dtex = parallaxScale * V.xy / V.z / numLayers;
// vec2 currentTextureCoords = T;
// float heightFromTexture = texture(sheight, currentTextureCoords).r;
// // while (heightFromTexture > curLayerHeight) {
// // curLayerHeight += layerHeight;
// // currentTextureCoords -= dtex;
// // heightFromTexture = texture(sheight, currentTextureCoords).r;
// // Waiting for loops
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// if (heightFromTexture > curLayerHeight) { curLayerHeight += layerHeight; currentTextureCoords -= dtex; heightFromTexture = texture(sheight, currentTextureCoords).r; }
// // }
// vec2 texStep = dtex;
// vec2 prevTCoords = currentTextureCoords + texStep;
// // Heights for linear interpolation
// float nextH = heightFromTexture - curLayerHeight;
// float prevH = texture(sheight, prevTCoords).r - curLayerHeight + layerHeight;
// float weight = nextH / (nextH - prevH);
// // Interpolation of texture coordinates
// vec2 finalTexCoords = prevTCoords * weight + currentTextureCoords * (1.0 - weight);
// // Interpolation of depth values
// parallaxHeight = curLayerHeight + prevH * weight + nextH * (1.0 - weight);
// return finalTexCoords;
// }
// float parallaxShadow(vec3 L, vec2 initialTexCoord, float initialHeight) {
// float parallaxScale = -0.06 * heightStrength;
// float shadowMultiplier = 1.0;
// // Calculate lighting only for surface oriented to the light source
// if (dot(vec3(0, 0, 1), L) > 0) {
// shadowMultiplier = 0;
// float numSamplesUnderSurface = 0;
// float numLayers = mix(maxLayers, minLayers, abs(dot(vec3(0, 0, 1), L)));
// float layerHeight = initialHeight / numLayers;
// vec2 texStep = parallaxScale * L.xy / L.z / numLayers;
// float currentLayerHeight = initialHeight - layerHeight;
// vec2 currentTextureCoords = initialTexCoord + texStep;
// float heightFromTexture = texture(sheight, currentTextureCoords).r;
// int stepIndex = 1;
// // while(currentLayerHeight > 0) {
// if (currentLayerHeight > 0) {
// if(heightFromTexture < currentLayerHeight) {
// numSamplesUnderSurface += 1;
// float newShadowMultiplier = (currentLayerHeight - heightFromTexture) * (1.0 - stepIndex / numLayers);
// shadowMultiplier = max(shadowMultiplier, newShadowMultiplier);
// }
// stepIndex += 1;
// currentLayerHeight -= layerHeight;
// currentTextureCoords += texStep;
// heightFromTexture = texture(sheight, currentTextureCoords).r;
// }
// // ...
// // Shadowing factor should be 1 if there were no points under the surface
// if (numSamplesUnderSurface < 1) shadowMultiplier = 1;
// else shadowMultiplier = 1.0 - shadowMultiplier;
// }
// return shadowMultiplier;
// }
// #endif
void main() {
#ifdef _Tex
vec2 newCoord = texCoord;
#endif
// #ifdef _HeightTex
// vec3 tanv = normalize(tanEyeDir);
// vec3 tanl = normalize(tanLightDir);
// newCoord = parallaxMapping(tanv, texCoord);
// float shadowMultiplier = 1.0;//parallaxShadow(tanl, newCoord, parallaxHeight - 0.001);
// #endif
#ifdef _NorTex
vec3 n = (texture(snormal, newCoord).rgb * 2.0 - 1.0);
n = normalize(TBN * normalize(n));
#else
vec3 n = normalize(normal);
#endif
#ifdef _NorStr
n *= normalStrength;
#endif
vec3 baseColor = matColor.rgb;
#ifdef _BaseTex
vec4 texel = texture(sbase, newCoord);
#ifdef _AlphaTest
if(texel.a < 0.4)
discard;
#endif
texel.rgb = pow(texel.rgb, vec3(2.2)); // Variant 1
baseColor *= texel.rgb;
#endif
// baseColor = pow(baseColor, vec3(2.2)); // Variant 2
#ifdef _MetTex
float metalness = texture(smetal, newCoord).r;
#endif
#ifdef _RoughTex
float roughness = texture(srough, newCoord).r;
#endif
#ifdef _RoughStr
roughness *= roughnessStrength;
#endif
#ifdef _OccTex
float occ = texture(socclusion, newCoord).r;
#else
float occ = occlusion;
#endif
// #ifdef _HeightTex
// occ *= shadowMultiplier;
// #endif
// Pack normal
n /= (abs(n.x) + abs(n.y) + abs(n.z));
n.xy = n.z >= 0.0 ? n.xy : octahedronWrap(n.xy);
#ifdef _Probes
float mask_probe;
if (probeID > 0) { // Non-global probe attached
// Distance of vertex located inside probe to probe bounds
float dist = distanceBox(wpos.xyz, probeVolumeCenter, probeVolumeSize);
if (dist > 0) mask_probe = 0;
else {
// Blend local probe with global probe
const float eps = 0.00001;
float clampres = clamp(probeBlending + dist, 0.0, 1.0 - eps);
mask_probe = probeID + clampres;
}
}
fragColor[0] = vec4(n.xy, packFloat(metalness, roughness), mask_probe);
#else
fragColor[0] = vec4(n.xy, packFloat(metalness, roughness), mask);
#endif
fragColor[1] = vec4(baseColor.rgb, occ);
#ifdef _Veloc
vec2 posa = (wvppos.xy / wvppos.w) * 0.5 + 0.5;
vec2 posb = (prevwvppos.xy / prevwvppos.w) * 0.5 + 0.5;
fragColor[2].rg = vec2(posa - posb);
#endif
}