armory/blender/arm/exporter.py

2609 lines
109 KiB
Python
Executable file

# Armory Scene Exporter
# http://armory3d.org/
#
# Based on Open Game Engine Exchange
# http://opengex.org/
# Export plugin for Blender by Eric Lengyel
# Copyright 2015, Terathon Software LLC
#
# This software is licensed under the Creative Commons
# Attribution-ShareAlike 3.0 Unported License:
# http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
import os
import bpy
import math
from mathutils import *
import time
import subprocess
import shutil
import arm.utils
import arm.write_probes as write_probes
import arm.assets as assets
import arm.log as log
import arm.material.make as make_material
import arm.material.mat_batch as mat_batch
import arm.make_renderpath as make_renderpath
NodeTypeNode = 0
NodeTypeBone = 1
NodeTypeMesh = 2
NodeTypeLamp = 3
NodeTypeCamera = 4
NodeTypeSpeaker = 5
NodeTypeDecal = 6
AnimationTypeSampled = 0
AnimationTypeLinear = 1
AnimationTypeBezier = 2
ExportEpsilon = 1.0e-6
structIdentifier = ["object", "bone_object", "mesh_object", "lamp_object", "camera_object", "speaker_object", "decal_object"]
subtranslationName = ["xloc", "yloc", "zloc"]
subrotationName = ["xrot", "yrot", "zrot"]
subscaleName = ["xscl", "yscl", "zscl"]
deltaSubtranslationName = ["dxloc", "dyloc", "dzloc"]
deltaSubrotationName = ["dxrot", "dyrot", "dzrot"]
deltaSubscaleName = ["dxscl", "dyscl", "dzscl"]
axisName = ["x", "y", "z"]
class Vertex:
# Based on https://github.com/Kupoman/blendergltf/blob/master/blendergltf.py
__slots__ = ("co", "normal", "uvs", "col", "loop_indices", "index", "bone_weights", "bone_indices", "bone_count", "vertex_index")
def __init__(self, mesh, loop):
self.vertex_index = loop.vertex_index
loop_idx = loop.index
self.co = mesh.vertices[self.vertex_index].co[:]
self.normal = loop.normal[:]
self.uvs = tuple(layer.data[loop_idx].uv[:] for layer in mesh.uv_layers)
self.col = [0, 0, 0]
if len(mesh.vertex_colors) > 0:
self.col = mesh.vertex_colors[0].data[loop_idx].color[:]
# self.colors = tuple(layer.data[loop_idx].color[:] for layer in mesh.vertex_colors)
self.loop_indices = [loop_idx]
# Take the four most influential groups
# groups = sorted(mesh.vertices[self.vertex_index].groups, key=lambda group: group.weight, reverse=True)
# if len(groups) > 4:
# groups = groups[:4]
# self.bone_weights = [group.weight for group in groups]
# self.bone_indices = [group.group for group in groups]
# self.bone_count = len(self.bone_weights)
self.index = 0
def __hash__(self):
return hash((self.co, self.normal, self.uvs))
def __eq__(self, other):
eq = (
(self.co == other.co) and
(self.normal == other.normal) and
(self.uvs == other.uvs) and
(self.col == other.col)
)
if eq:
indices = self.loop_indices + other.loop_indices
self.loop_indices = indices
other.loop_indices = indices
return eq
class ArmoryExporter:
'''Export to Armory format'''
def write_matrix(self, matrix):
return [matrix[0][0], matrix[0][1], matrix[0][2], matrix[0][3],
matrix[1][0], matrix[1][1], matrix[1][2], matrix[1][3],
matrix[2][0], matrix[2][1], matrix[2][2], matrix[2][3],
matrix[3][0], matrix[3][1], matrix[3][2], matrix[3][3]]
# def write_vector3d(self, vector):
# return [vector[0], vector[1], vector[2]]
def get_meshes_file_path(self, object_id, compressed=False):
index = self.filepath.rfind('/')
mesh_fp = self.filepath[:(index + 1)] + 'meshes/'
if not os.path.exists(mesh_fp):
os.makedirs(mesh_fp)
ext = '.zip' if compressed else '.arm'
return mesh_fp + object_id + ext
@staticmethod
def get_bobject_type(bobject):
if bobject.type == "MESH":
if len(bobject.data.polygons) != 0:
return NodeTypeMesh
elif bobject.type == "FONT":
return NodeTypeMesh
elif bobject.type == "META": # Metaball
return NodeTypeMesh
elif bobject.type == "LAMP":
return NodeTypeLamp
elif bobject.type == "CAMERA":
return NodeTypeCamera
elif bobject.type == "SPEAKER":
return NodeTypeSpeaker
return NodeTypeNode
@staticmethod
def get_shape_keys(mesh):
if not hasattr(mesh, 'shape_keys'): # Metaball
return None
shape_keys = mesh.shape_keys
if shape_keys and len(shape_keys.key_blocks) > 1:
return shape_keys
return None
def find_bone(self, name):
for bobject_ref in self.bobjectBoneArray.items():
if bobject_ref[0].name == name:
return bobject_ref
return None
@staticmethod
def classify_animation_curve(fcurve):
linear_count = 0
bezier_count = 0
for key in fcurve.keyframe_points:
interp = key.interpolation
if interp == "LINEAR":
linear_count += 1
elif interp == "BEZIER":
bezier_count += 1
else:
return AnimationTypeSampled
if bezier_count == 0:
return AnimationTypeLinear
elif linear_count == 0:
return AnimationTypeBezier
return AnimationTypeSampled
# @staticmethod
# def animation_keys_different(fcurve):
# key_count = len(fcurve.keyframe_points)
# if key_count > 0:
# key1 = fcurve.keyframe_points[0].co[1]
# for i in range(1, key_count):
# key2 = fcurve.keyframe_points[i].co[1]
# if math.fabs(key2 - key1) > ExportEpsilon:
# return True
# return False
# @staticmethod
# def animation_tangents_nonzero(fcurve):
# key_count = len(fcurve.keyframe_points)
# if key_count > 0:
# key = fcurve.keyframe_points[0].co[1]
# left = fcurve.keyframe_points[0].handle_left[1]
# right = fcurve.keyframe_points[0].handle_right[1]
# if (math.fabs(key - left) > ExportEpsilon) or (math.fabs(right - key) > ExportEpsilon):
# return True
# for i in range(1, key_count):
# key = fcurve.keyframe_points[i].co[1]
# left = fcurve.keyframe_points[i].handle_left[1]
# right = fcurve.keyframe_points[i].handle_right[1]
# if (math.fabs(key - left) > ExportEpsilon) or (math.fabs(right - key) > ExportEpsilon):
# return True
# return False
# @staticmethod
# def matrices_different(m1, m2):
# for i in range(4):
# for j in range(4):
# if math.fabs(m1[i][j] - m2[i][j]) > ExportEpsilon:
# return True
# return False
@staticmethod
def collect_bone_animation(armature, name):
path = "pose.bones[\"" + name + "\"]."
curve_array = []
if armature.animation_data:
action = armature.animation_data.action
if action:
for fcurve in action.fcurves:
if fcurve.data_path.startswith(path):
curve_array.append(fcurve)
return curve_array
# @staticmethod
# def animation_present(fcurve, kind):
# if kind != AnimationTypeBezier:
# return ArmoryExporter.animation_keys_different(fcurve)
# return ((ArmoryExporter.animation_keys_different(fcurve)) or (ArmoryExporter.animation_tangents_nonzero(fcurve)))
@staticmethod
def calc_tangent(v0, v1, v2, uv0, uv1, uv2):
deltaPos1 = v1 - v0
deltaPos2 = v2 - v0
deltaUV1 = uv1 - uv0
deltaUV2 = uv2 - uv0
d = (deltaUV1.x * deltaUV2.y - deltaUV1.y * deltaUV2.x)
if d != 0:
r = 1.0 / d
else:
r = 1.0
tangent = (deltaPos1 * deltaUV2.y - deltaPos2 * deltaUV1.y) * r
# bitangent = (deltaPos2 * deltaUV1.x - deltaPos1 * deltaUV2.x) * r
return tangent
def export_bone(self, armature, bone, scene, o, action):
bobjectRef = self.bobjectBoneArray.get(bone)
if bobjectRef:
o['type'] = structIdentifier[bobjectRef["objectType"]]
o['name'] = bobjectRef["structName"]
self.export_bone_transform(armature, bone, scene, o, action)
o['children'] = []
for subbobject in bone.children:
so = {}
self.export_bone(armature, subbobject, scene, so, action)
o['children'].append(so)
def export_pose_markers(self, oanim, action):
if action.pose_markers == None:
return
oanim['marker_frames'] = []
oanim['marker_names'] = []
for m in action.pose_markers:
oanim['marker_frames'].append(m.frame)
oanim['marker_names'].append(m.name)
def export_object_sampled_animation(self, bobject, scene, o):
# This function exports animation as full 4x4 matrices for each frame
animation_flag = False
# m1 = bobject.matrix_local.copy()
# Font in
# for i in range(self.beginFrame, self.endFrame):
# scene.frame_set(i)
# m2 = bobject.matrix_local
# if ArmoryExporter.matrices_different(m1, m2):
# animation_flag = True
# break
animation_flag = bobject.animation_data != None and bobject.animation_data.action != None and bobject.type != 'ARMATURE'
# Font out
if animation_flag:
if not 'object_actions' in o:
o['object_actions'] = []
action = bobject.animation_data.action
aname = arm.utils.safestr(arm.utils.asset_name(action))
fp = self.get_meshes_file_path('action_' + aname, compressed=self.is_compress(bobject.data))
assets.add(fp)
ext = '.zip' if self.is_compress(bobject.data) else ''
o['object_actions'].append('action_' + aname + ext)
oaction = {}
oaction['sampled'] = True
oaction['name'] = action.name
oanim = {}
oaction['anim'] = oanim
tracko = {}
tracko['target'] = "transform"
tracko['frames'] = []
begin_frame, end_frame = int(action.frame_range[0]), int(action.frame_range[1])
end_frame += 1
for i in range(begin_frame, end_frame):
tracko['frames'].append(i - begin_frame)
tracko['frames'].append(end_frame)
tracko['values'] = []
for i in range(begin_frame, end_frame):
scene.frame_set(i)
tracko['values'] += self.write_matrix(bobject.matrix_local) # Continuos array of matrix transforms
oanim['tracks'] = [tracko]
self.export_pose_markers(oanim, action)
if True: #action.arm_cached == False or not os.path.exists(fp):
print('Exporting object action ' + aname)
actionf = {}
actionf['objects'] = []
actionf['objects'].append(oaction)
oaction['type'] = 'object'
oaction['name'] = aname
oaction['data_ref'] = ''
oaction['transform'] = []
arm.utils.write_arm(fp, actionf)
def export_key_frames(self, fcurve):
keyo = []
key_count = len(fcurve.keyframe_points)
for i in range(key_count):
frame = fcurve.keyframe_points[i].co[0] - self.beginFrame
keyo.append(frame)
return keyo
def export_key_frame_control_points(self, fcurve):
keyminuso = []
key_count = len(fcurve.keyframe_points)
for i in range(key_count):
ctrl = fcurve.keyframe_points[i].handle_left[0] - self.beginFrame
keyminuso.append(ctrl)
keypluso = []
for i in range(key_count):
ctrl = fcurve.keyframe_points[i].handle_right[0] - self.beginFrame
keypluso.append(ctrl)
return keyminuso, keypluso
def export_key_values(self, fcurve):
keyo = []
key_count = len(fcurve.keyframe_points)
for i in range(key_count):
value = fcurve.keyframe_points[i].co[1]
keyo.append(value)
return keyo
def export_key_value_control_points(self, fcurve):
keyminuso = []
key_count = len(fcurve.keyframe_points)
for i in range(key_count):
ctrl = fcurve.keyframe_points[i].handle_left[1]
keyminuso.append(ctrl)
keypluso = []
for i in range(key_count):
ctrl = fcurve.keyframe_points[i].handle_right[1]
keypluso.append(ctrl)
return keypluso, keypluso
def export_animation_track(self, fcurve, kind, target, newline):
# This function exports a single animation track. The curve types for the
# Frame and Value structures are given by the kind parameter.
tracko = {}
tracko['target'] = target
if kind != AnimationTypeBezier:
tracko['frames'] = self.export_key_frames(fcurve)
tracko['values'] = self.export_key_values(fcurve)
else:
tracko['curve'] = 'bezier'
tracko['frames'] = self.export_key_frames(fcurve)
tracko['frames_control_plus'], tracko['frames_control_minus'] = self.export_key_frame_control_points(fcurve)
tracko['values'] = self.export_key_values(fcurve)
tracko['values_control_plus'], tracko['values_control_minus'] = self.export_key_value_control_points(fcurve)
return tracko
def export_object_transform(self, bobject, scene, o):
locAnimCurve = [None, None, None]
rotAnimCurve = [None, None, None]
sclAnimCurve = [None, None, None]
locAnimKind = [0, 0, 0]
rotAnimKind = [0, 0, 0]
sclAnimKind = [0, 0, 0]
deltaPosAnimCurve = [None, None, None]
deltaRotAnimCurve = [None, None, None]
deltaSclAnimCurve = [None, None, None]
deltaPosAnimKind = [0, 0, 0]
deltaRotAnimKind = [0, 0, 0]
deltaSclAnimKind = [0, 0, 0]
locationAnimated = False
rotationAnimated = False
scaleAnimated = False
locAnimated = [False, False, False]
rotAnimated = [False, False, False]
sclAnimated = [False, False, False]
deltaPositionAnimated = False
deltaRotationAnimated = False
deltaScaleAnimated = False
deltaPosAnimated = [False, False, False]
deltaRotAnimated = [False, False, False]
deltaSclAnimated = [False, False, False]
mode = bobject.rotation_mode
sampledAnimation = ArmoryExporter.sample_animation_flag or mode == "QUATERNION" or mode == "AXIS_ANGLE"
if not sampledAnimation and bobject.animation_data and bobject.type != 'ARMATURE':
action = bobject.animation_data.action
if action:
for fcurve in action.fcurves:
kind = ArmoryExporter.classify_animation_curve(fcurve)
if kind != AnimationTypeSampled:
if fcurve.data_path == "location":
for i in range(3):
if (fcurve.array_index == i) and (not locAnimCurve[i]):
locAnimCurve[i] = fcurve
locAnimKind[i] = kind
locAnimated[i] = True
elif fcurve.data_path == "delta_location":
for i in range(3):
if (fcurve.array_index == i) and (not deltaPosAnimCurve[i]):
deltaPosAnimCurve[i] = fcurve
deltaPosAnimKind[i] = kind
deltaPosAnimated[i] = True
elif fcurve.data_path == "rotation_euler":
for i in range(3):
if (fcurve.array_index == i) and (not rotAnimCurve[i]):
rotAnimCurve[i] = fcurve
rotAnimKind[i] = kind
rotAnimated[i] = True
elif fcurve.data_path == "delta_rotation_euler":
for i in range(3):
if (fcurve.array_index == i) and (not deltaRotAnimCurve[i]):
deltaRotAnimCurve[i] = fcurve
deltaRotAnimKind[i] = kind
deltaRotAnimated[i] = True
elif fcurve.data_path == "scale":
for i in range(3):
if (fcurve.array_index == i) and (not sclAnimCurve[i]):
sclAnimCurve[i] = fcurve
sclAnimKind[i] = kind
sclAnimated[i] = True
elif fcurve.data_path == "delta_scale":
for i in range(3):
if (fcurve.array_index == i) and (not deltaSclAnimCurve[i]):
deltaSclAnimCurve[i] = fcurve
deltaSclAnimKind[i] = kind
deltaSclAnimated[i] = True
elif (fcurve.data_path == "rotation_axis_angle") or (fcurve.data_path == "rotation_quaternion") or (fcurve.data_path == "delta_rotation_quaternion"):
sampledAnimation = True
break
else:
sampledAnimation = True
break
locationAnimated = locAnimated[0] | locAnimated[1] | locAnimated[2]
rotationAnimated = rotAnimated[0] | rotAnimated[1] | rotAnimated[2]
scaleAnimated = sclAnimated[0] | sclAnimated[1] | sclAnimated[2]
deltaPositionAnimated = deltaPosAnimated[0] | deltaPosAnimated[1] | deltaPosAnimated[2]
deltaRotationAnimated = deltaRotAnimated[0] | deltaRotAnimated[1] | deltaRotAnimated[2]
deltaScaleAnimated = deltaSclAnimated[0] | deltaSclAnimated[1] | deltaSclAnimated[2]
if (sampledAnimation) or ((not locationAnimated) and (not rotationAnimated) and (not scaleAnimated) and (not deltaPositionAnimated) and (not deltaRotationAnimated) and (not deltaScaleAnimated)):
# If there's no keyframe animation at all, then write the object transform as a single 4x4 matrix.
# We might still be exporting sampled animation below.
o['transform'] = {}
if sampledAnimation:
o['transform']['target'] = "transform"
o['transform']['values'] = self.write_matrix(bobject.matrix_local)
if sampledAnimation:
self.export_object_sampled_animation(bobject, scene, o)
else: # Animated
structFlag = False
o['transform'] = {}
o['transform']['values'] = self.write_matrix(bobject.matrix_local)
if not 'object_actions' in o:
o['object_actions'] = []
action = bobject.animation_data.action
aname = arm.utils.safestr(arm.utils.asset_name(action))
fp = self.get_meshes_file_path('action_' + aname, compressed=self.is_compress(bobject.data))
assets.add(fp)
ext = '.zip' if self.is_compress(bobject.data) else ''
o['object_actions'].append('action_' + aname + ext)
oaction = {}
oaction['name'] = action.name
# Export the animation tracks
oanim = {}
oaction['anim'] = oanim
oanim['begin'] = (action.frame_range[0] - self.beginFrame)
oanim['end'] = (action.frame_range[1] - self.beginFrame)
oanim['tracks'] = []
self.export_pose_markers(oanim, action)
if locationAnimated:
for i in range(3):
if locAnimated[i]:
tracko = self.export_animation_track(locAnimCurve[i], locAnimKind[i], subtranslationName[i], structFlag)
oanim['tracks'].append(tracko)
structFlag = True
if rotationAnimated:
for i in range(3):
if rotAnimated[i]:
tracko = self.export_animation_track(rotAnimCurve[i], rotAnimKind[i], subrotationName[i], structFlag)
oanim['tracks'].append(tracko)
structFlag = True
if scaleAnimated:
for i in range(3):
if sclAnimated[i]:
tracko = self.export_animation_track(sclAnimCurve[i], sclAnimKind[i], subscaleName[i], structFlag)
oanim['tracks'].append(tracko)
structFlag = True
if deltaPositionAnimated:
for i in range(3):
if deltaPosAnimated[i]:
tracko = self.export_animation_track(deltaPosAnimCurve[i], deltaPosAnimKind[i], deltaSubtranslationName[i], structFlag)
oanim['tracks'].append(tracko)
oanim['has_delta'] = True
structFlag = True
if deltaRotationAnimated:
for i in range(3):
if deltaRotAnimated[i]:
tracko = self.export_animation_track(deltaRotAnimCurve[i], deltaRotAnimKind[i], deltaSubrotationName[i], structFlag)
oanim['tracks'].append(tracko)
oanim['has_delta'] = True
structFlag = True
if deltaScaleAnimated:
for i in range(3):
if deltaSclAnimated[i]:
tracko = self.export_animation_track(deltaSclAnimCurve[i], deltaSclAnimKind[i], deltaSubscaleName[i], structFlag)
oanim['tracks'].append(tracko)
oanim['has_delta'] = True
structFlag = True
if True: #action.arm_cached == False or not os.path.exists(fp):
print('Exporting object action ' + aname)
actionf = {}
actionf['objects'] = []
actionf['objects'].append(oaction)
oaction['type'] = 'object'
oaction['name'] = aname
oaction['data_ref'] = ''
oaction['transform'] = []
arm.utils.write_arm(fp, actionf)
def process_bone(self, bone):
if ArmoryExporter.export_all_flag or bone.select:
self.bobjectBoneArray[bone] = {"objectType" : NodeTypeBone, "structName" : bone.name}
for subbobject in bone.children:
self.process_bone(subbobject)
def process_bobject(self, bobject):
if ArmoryExporter.export_all_flag or bobject.select:
btype = ArmoryExporter.get_bobject_type(bobject)
if ArmoryExporter.option_mesh_only and btype != NodeTypeMesh:
return
self.bobjectArray[bobject] = {"objectType" : btype, "structName" : arm.utils.asset_name(bobject)}
if bobject.type == "ARMATURE":
skeleton = bobject.data
if skeleton:
for bone in skeleton.bones:
if not bone.parent:
self.process_bone(bone)
if bobject.type != 'MESH' or bobject.arm_instanced == False:
for subbobject in bobject.children:
self.process_bobject(subbobject)
def process_skinned_meshes(self):
for bobjectRef in self.bobjectArray.items():
if bobjectRef[1]["objectType"] == NodeTypeMesh:
armature = bobjectRef[0].find_armature()
if armature:
for bone in armature.data.bones:
boneRef = self.find_bone(bone.name)
if boneRef:
# If an object is used as a bone, then we force its type to be a bone
boneRef[1]["objectType"] = NodeTypeBone
def export_bone_transform(self, armature, bone, scene, o, action):
curve_array = self.collect_bone_animation(armature, bone.name)
animation = len(curve_array) != 0 or ArmoryExporter.sample_animation_flag
transform = bone.matrix_local.copy()
parent_bone = bone.parent
if parent_bone:
transform = parent_bone.matrix_local.inverted() * transform
pose_bone = armature.pose.bones.get(bone.name)
if pose_bone:
transform = pose_bone.matrix.copy()
parent_pose_bone = pose_bone.parent
if parent_pose_bone:
transform = parent_pose_bone.matrix.inverted() * transform
o['transform'] = {}
o['transform']['values'] = self.write_matrix(transform)
if animation and pose_bone:
begin_frame, end_frame = int(action.frame_range[0]), int(action.frame_range[1])
# animation_flag = False
# m1 = pose_bone.matrix.copy()
# for i in range(begin_frame, end_frame):
# scene.frame_set(i)
# m2 = pose_bone.matrix
# if ArmoryExporter.matrices_different(m1, m2):
# animation_flag = True
# break
# if animation_flag:
o['anim'] = {}
tracko = {}
o['anim']['tracks'] = [tracko]
tracko['target'] = "transform"
tracko['frames'] = []
for i in range(begin_frame, end_frame + 1):
tracko['frames'].append(i - begin_frame)
tracko['values'] = []
self.bone_tracks.append((tracko['values'], pose_bone))
def use_default_material(self, bobject, o):
if arm.utils.export_bone_data(bobject):
o['material_refs'].append('armdefaultskin')
self.defaultSkinMaterialObjects.append(bobject)
else:
o['material_refs'].append('armdefault')
self.defaultMaterialObjects.append(bobject)
def export_material_ref(self, bobject, material, index, o):
if material == None: # Use default for empty mat slots
self.use_default_material(bobject, o)
return
if not material in self.materialArray:
self.materialArray[material] = {"structName" : arm.utils.asset_name(material)}
o['material_refs'].append(self.materialArray[material]["structName"])
def export_particle_system_ref(self, psys, index, o):
if psys.settings in self.particleSystemArray: # or not modifier.show_render:
return
if psys.settings.dupli_object == None or psys.settings.render_type != 'OBJECT':
return
self.particleSystemArray[psys.settings] = {"structName" : psys.settings.name}
pref = {}
pref['name'] = psys.name
pref['seed'] = psys.seed
pref['particle'] = psys.settings.name
o['particle_refs'].append(pref)
def get_view3d_area(self):
screen = bpy.context.window.screen
for area in screen.areas:
if area.type == 'VIEW_3D':
return area
return None
def get_viewport_view_matrix(self):
if self.play_area == None:
self.play_area = self.get_view3d_area()
if self.play_area == None:
return None
for space in self.play_area.spaces:
if space.type == 'VIEW_3D':
return space.region_3d.view_matrix
return None
def get_viewport_projection_matrix(self):
if self.play_area == None:
self.play_area = self.get_view3d_area()
if self.play_area == None:
return None, False
for space in self.play_area.spaces:
if space.type == 'VIEW_3D':
# return space.region_3d.perspective_matrix # pesp = window * view
return space.region_3d.window_matrix, space.region_3d.is_perspective
return None, False
def get_viewport_panels_w(self):
w = 0
screen = bpy.context.window.screen
for area in screen.areas:
if area.type == 'VIEW_3D':
for region in area.regions:
if region.type == 'TOOLS' or region.type == 'UI':
if region.width > 1:
w += region.width
return w
def get_viewport_w(self):
screen = bpy.context.window.screen
for area in screen.areas:
if area.type == 'VIEW_3D':
for region in area.regions:
if region.type == 'HEADER': # Use header to report full width, panels included
return region.width
return 0
def write_bone_matrices(self, scene, action):
begin_frame, end_frame = int(action.frame_range[0]), int(action.frame_range[1])
if len(self.bone_tracks) > 0:
for i in range(begin_frame, end_frame + 1):
scene.frame_set(i)
for track in self.bone_tracks:
values, pose_bone = track[0], track[1]
parent = pose_bone.parent
if parent:
values += self.write_matrix(parent.matrix.inverted() * pose_bone.matrix)
else:
values += self.write_matrix(pose_bone.matrix)
def export_object(self, bobject, scene, parento=None):
# This function exports a single object in the scene and includes its name,
# object reference, material references (for meshes), and transform.
# Subobjects are then exported recursively.
if self.preprocess_object(bobject) == False:
return
bobjectRef = self.bobjectArray.get(bobject)
if bobjectRef:
type = bobjectRef["objectType"]
# Linked object, not present in scene
if bobject not in self.objectToArmObjectDict:
o = {}
o['traits'] = []
o['spawn'] = False
self.objectToArmObjectDict[bobject] = o
o = self.objectToArmObjectDict[bobject]
o['type'] = structIdentifier[type]
o['name'] = bobjectRef["structName"]
if bobject.parent_type == "BONE":
o['parent_bone'] = bobject.parent_bone
if bobject.hide_render:
o['visible'] = False
if not bobject.cycles_visibility.camera:
o['visible_mesh'] = False
if not bobject.cycles_visibility.shadow:
o['visible_shadow'] = False
if bobject.arm_spawn == False:
o['spawn'] = False
if bobject.arm_mobile == False:
o['mobile'] = False
if bobject.dupli_type == 'GROUP' and bobject.dupli_group != None:
o['group_ref'] = bobject.dupli_group.name
if bobject.users_group != None and len(bobject.users_group) > 0:
o['groups'] = []
for g in bobject.users_group:
o['groups'].append(g.name)
if bobject.arm_tilesheet != '':
o['tilesheet_ref'] = bobject.arm_tilesheet
o['tilesheet_action_ref'] = bobject.arm_tilesheet_action
layer_found = False
for l in self.active_layers:
if bobject.layers[l] == True:
layer_found = True
break
if bpy.app.version >= (2, 80, 1): # 2.8 Spawn all layers for now
layer_found = True
if layer_found == False:
o['spawn'] = False
# Export the object reference and material references
objref = bobject.data
if objref != None:
objname = arm.utils.asset_name(objref)
# Lods
if bobject.type == 'MESH' and hasattr(objref, 'arm_lodlist') and len(objref.arm_lodlist) > 0:
o['lods'] = []
for l in objref.arm_lodlist:
if l.enabled_prop == False:
continue
lod = {}
lod['object_ref'] = l.name
lod['screen_size'] = l.screen_size_prop
o['lods'].append(lod)
if objref.arm_lod_material:
o['lod_material'] = True
if type == NodeTypeMesh:
if not objref in self.meshArray:
self.meshArray[objref] = {"structName" : objname, "objectTable" : [bobject]}
else:
self.meshArray[objref]["objectTable"].append(bobject)
oid = arm.utils.safestr(self.meshArray[objref]["structName"])
if ArmoryExporter.option_mesh_per_file:
ext = ''
if self.is_compress(objref):
ext = '.zip'
o['data_ref'] = 'mesh_' + oid + ext + '/' + oid
else:
o['data_ref'] = oid
o['material_refs'] = []
for i in range(len(bobject.material_slots)):
self.export_material_ref(bobject, bobject.material_slots[i].material, i, o)
if bobject.material_slots[i].material != None and bobject.material_slots[i].material.arm_decal:
o['type'] = 'decal_object'
# No material, mimic cycles and assign default
if len(o['material_refs']) == 0:
self.use_default_material(bobject, o)
num_psys = len(bobject.particle_systems)
if num_psys > 0:
o['particle_refs'] = []
for i in range(0, num_psys):
self.export_particle_system_ref(bobject.particle_systems[i], i, o)
o['dimensions'] = [0, 0, 0]
for i in range(0, 3):
if bobject.scale[i] != 0:
o['dimensions'][i] = bobject.dimensions[i] / bobject.scale[i]
# Origin not in geometry center
if hasattr(bobject.data, 'arm_aabb'):
dx = bobject.data.arm_aabb[0]
dy = bobject.data.arm_aabb[1]
dz = bobject.data.arm_aabb[2]
if dx > o['dimensions'][0]:
o['dimensions'][0] = dx
if dy > o['dimensions'][1]:
o['dimensions'][1] = dy
if dz > o['dimensions'][2]:
o['dimensions'][2] = dz
#shapeKeys = ArmoryExporter.get_shape_keys(objref)
#if shapeKeys:
# self.ExportMorphWeights(bobject, shapeKeys, scene, o)
elif type == NodeTypeLamp:
if not objref in self.lampArray:
self.lampArray[objref] = {"structName" : objname, "objectTable" : [bobject]}
else:
self.lampArray[objref]["objectTable"].append(bobject)
o['data_ref'] = self.lampArray[objref]["structName"]
elif type == NodeTypeCamera:
if 'spawn' in o and o['spawn'] == False:
self.camera_spawned = False
else:
self.camera_spawned = True
if not objref in self.cameraArray:
self.cameraArray[objref] = {"structName" : objname, "objectTable" : [bobject]}
else:
self.cameraArray[objref]["objectTable"].append(bobject)
o['data_ref'] = self.cameraArray[objref]["structName"]
elif type == NodeTypeSpeaker:
if not objref in self.speakerArray:
self.speakerArray[objref] = {"structName" : objname, "objectTable" : [bobject]}
else:
self.speakerArray[objref]["objectTable"].append(bobject)
o['data_ref'] = self.speakerArray[objref]["structName"]
# Export the transform. If object is animated, then animation tracks are exported here
if bobject.type != 'ARMATURE' and bobject.animation_data != None:
action = bobject.animation_data.action
export_actions = [action]
for track in bobject.animation_data.nla_tracks:
if track.strips == None:
continue
for strip in track.strips:
if strip.action == None or strip.action in export_actions:
continue
export_actions.append(strip.action)
orig_action = action
for a in export_actions:
bobject.animation_data.action = a
self.export_object_transform(bobject, scene, o)
if len(export_actions) >= 2 and export_actions[0] == None: # No action assigned
o['object_actions'].insert(0, 'null')
bobject.animation_data.action = orig_action
else:
self.export_object_transform(bobject, scene, o)
# If the object is parented to a bone and is not relative, then undo the bone's transform
if bobject.parent_type == "BONE":
armature = bobject.parent.data
bone = armature.bones[bobject.parent_bone]
if not bone.use_relative_parent:
bone_translation = Vector((0, bone.length, 0)) + bone.head
o['parent_bone_tail'] = [bone_translation[0], bone_translation[1], bone_translation[2]]
# Viewport Camera - overwrite active camera matrix with viewport matrix
if type == NodeTypeCamera and bpy.data.worlds['Arm'].arm_play_camera != 'Scene' and self.scene.camera != None and bobject.name == self.scene.camera.name:
viewport_matrix = self.get_viewport_view_matrix()
if viewport_matrix != None:
o['transform']['values'] = self.write_matrix(viewport_matrix.inverted())
# Do not apply parent matrix
o['local_transform_only'] = True
if bobject.type == 'ARMATURE' and bobject.data != None:
bdata = bobject.data # Armature data
action = None # Reference start action
adata = bobject.animation_data
# Active action
if adata != None:
action = adata.action
if action == None:
log.warn('Object ' + bobject.name + ' - No action assigned, setting to pose')
bobject.animation_data_create()
actions = bpy.data.actions
action = actions.get('armorypose')
if action == None:
action = actions.new(name='armorypose')
# Export actions
export_actions = [action]
# hasattr - armature modifier may reference non-parent armature object to deform with
if hasattr(adata, 'nla_tracks') and adata.nla_tracks != None:
for track in adata.nla_tracks:
if track.strips == None:
continue
for strip in track.strips:
if strip.action == None:
continue
if strip.action.name == action.name:
continue
export_actions.append(strip.action)
armatureid = arm.utils.safestr(arm.utils.asset_name(bdata))
ext = '.zip' if self.is_compress(bdata) else ''
o['bone_actions'] = []
for action in export_actions:
aname = arm.utils.safestr(arm.utils.asset_name(action))
o['bone_actions'].append('action_' + armatureid + '_' + aname + ext)
orig_action = bobject.animation_data.action
for action in export_actions:
aname = arm.utils.safestr(arm.utils.asset_name(action))
bobject.animation_data.action = action
fp = self.get_meshes_file_path('action_' + armatureid + '_' + aname, compressed=self.is_compress(bdata))
assets.add(fp)
if bdata.arm_cached == False or not os.path.exists(fp):
print('Exporting armature action ' + aname)
bones = []
self.bone_tracks = []
for bone in bdata.bones:
if not bone.parent:
boneo = {}
self.export_bone(bobject, bone, scene, boneo, action)
bones.append(boneo)
self.write_bone_matrices(scene, action)
if len(bones) > 0 and 'anim' in bones[0]:
self.export_pose_markers(bones[0]['anim'], action)
# Save action separately
action_obj = {}
action_obj['name'] = aname
action_obj['objects'] = bones
arm.utils.write_arm(fp, action_obj)
bobject.animation_data.action = orig_action
# TODO: cache per action
bdata.arm_cached = True
if parento == None:
self.output['objects'].append(o)
else:
parento['children'].append(o)
self.post_export_object(bobject, o, type)
if not hasattr(o, 'children') and len(bobject.children) > 0:
o['children'] = []
if bobject.type != 'MESH' or bobject.arm_instanced == False:
for subbobject in bobject.children:
self.export_object(subbobject, scene, o)
def export_skin(self, bobject, armature, vert_list, o):
# This function exports all skinning data, which includes the skeleton
# and per-vertex bone influence data
oskin = {}
o['skin'] = oskin
# Write the skin bind pose transform
otrans = {}
oskin['transform'] = otrans
otrans['values'] = self.write_matrix(bobject.matrix_world)
# Export the skeleton, which includes an array of bone object references
# and and array of per-bone bind pose transforms
oskel = {}
oskin['skeleton'] = oskel
# Write the bone object reference array
oskel['bone_ref_array'] = []
bone_array = armature.data.bones
bone_count = len(bone_array)
max_bones = bpy.data.worlds['Arm'].arm_skin_max_bones
if bone_count > max_bones:
log.warn(bobject.name + ' - ' + str(bone_count) + ' bones found, exceeds maximum of ' + str(max_bones) + ' bones defined - raise the value in Camera Data - Armory Render Props - Max Bones')
for i in range(bone_count):
boneRef = self.find_bone(bone_array[i].name)
if boneRef:
oskel['bone_ref_array'].append(boneRef[1]["structName"])
else:
oskel['bone_ref_array'].append("null")
# Write the bind pose transform array
oskel['transformsI'] = []
if bpy.data.worlds['Arm'].arm_skin == 'CPU':
for i in range(bone_count):
skeletonI = (armature.matrix_world * bone_array[i].matrix_local).inverted()
oskel['transformsI'].append(self.write_matrix(skeletonI))
else:
for i in range(bone_count):
skeletonI = (armature.matrix_world * bone_array[i].matrix_local).inverted()
skeletonI = skeletonI * bobject.matrix_world
oskel['transformsI'].append(self.write_matrix(skeletonI))
# Export the per-vertex bone influence data
group_remap = []
for group in bobject.vertex_groups:
group_name = group.name
for i in range(bone_count):
if bone_array[i].name == group_name:
group_remap.append(i)
break
else:
group_remap.append(-1)
bone_count_array = []
bone_index_array = []
bone_weight_array = []
warn_bones = False
vertices = bobject.data.vertices
for v in vert_list:
bone_count = 0
total_weight = 0.0
bone_values = []
for g in vertices[v.vertex_index].groups:
bone_index = group_remap[g.group]
bone_weight = g.weight
if bone_index >= 0 and bone_weight != 0.0:
bone_values.append((bone_weight, bone_index))
total_weight += bone_weight
bone_count += 1
# Take highest weights
bone_values.sort()
bone_values.reverse();
if bone_count > 4: # Four bones max
bone_count = 4
bone_values = bone_values[:4]
warn_bones = True
bone_count_array.append(bone_count)
for bv in bone_values:
bone_weight_array.append(bv[0])
bone_index_array.append(bv[1])
if total_weight != 0.0:
normalizer = 1.0 / total_weight
for i in range(-bone_count, 0):
bone_weight_array[i] *= normalizer
if warn_bones:
log.warn(bobject.name + ' - more than 4 bones influence single vertex - taking highest weights')
# Write the bone count array. There is one entry per vertex.
oskin['bone_count_array'] = bone_count_array
# Write the bone index array. The number of entries is the sum of the bone counts for all vertices.
oskin['bone_index_array'] = bone_index_array
# Write the bone weight array. The number of entries is the sum of the bone counts for all vertices.
oskin['bone_weight_array'] = bone_weight_array
# def export_skin_fast(self, bobject, armature, vert_list, o):
# oskin = {}
# o['skin'] = oskin
# otrans = {}
# oskin['transform'] = otrans
# otrans['values'] = self.write_matrix(bobject.matrix_world)
# oskel = {}
# oskin['skeleton'] = oskel
# oskel['bone_ref_array'] = []
# bone_array = armature.data.bones
# bone_count = len(bone_array)
# for i in range(bone_count):
# boneRef = self.find_bone(bone_array[i].name)
# if boneRef:
# oskel['bone_ref_array'].append(boneRef[1]["structName"])
# else:
# oskel['bone_ref_array'].append("null")
# oskel['transforms'] = []
# for i in range(bone_count):
# oskel['transforms'].append(self.write_matrix(armature.matrix_world * bone_array[i].matrix_local))
# bone_count_array = []
# bone_index_array = []
# bone_weight_array = []
# for vtx in vert_list:
# bone_count_array.append(vtx.bone_count)
# bone_index_array += vtx.bone_indices
# bone_weight_array += vtx.bone_weights
# oskin['bone_count_array'] = bone_count_array
# oskin['bone_index_array'] = bone_index_array
# oskin['bone_weight_array'] = bone_weight_array
def calc_tangents(self, posa, nora, uva, ia):
triangle_count = int(len(ia) / 3)
vertex_count = int(len(posa) / 3)
tangents = [0] * vertex_count * 3
# bitangents = [0] * vertex_count * 3
for i in range(0, triangle_count):
i0 = ia[i * 3 + 0]
i1 = ia[i * 3 + 1]
i2 = ia[i * 3 + 2]
# TODO: Slow
v0 = Vector((posa[i0 * 3 + 0], posa[i0 * 3 + 1], posa[i0 * 3 + 2]))
v1 = Vector((posa[i1 * 3 + 0], posa[i1 * 3 + 1], posa[i1 * 3 + 2]))
v2 = Vector((posa[i2 * 3 + 0], posa[i2 * 3 + 1], posa[i2 * 3 + 2]))
uv0 = Vector((uva[i0 * 2 + 0], uva[i0 * 2 + 1]))
uv1 = Vector((uva[i1 * 2 + 0], uva[i1 * 2 + 1]))
uv2 = Vector((uva[i2 * 2 + 0], uva[i2 * 2 + 1]))
tangent = ArmoryExporter.calc_tangent(v0, v1, v2, uv0, uv1, uv2)
tangents[i0 * 3 + 0] += tangent.x
tangents[i0 * 3 + 1] += tangent.y
tangents[i0 * 3 + 2] += tangent.z
tangents[i1 * 3 + 0] += tangent.x
tangents[i1 * 3 + 1] += tangent.y
tangents[i1 * 3 + 2] += tangent.z
tangents[i2 * 3 + 0] += tangent.x
tangents[i2 * 3 + 1] += tangent.y
tangents[i2 * 3 + 2] += tangent.z
# bitangents[i0 * 3 + 0] += bitangent.x
# bitangents[i0 * 3 + 1] += bitangent.y
# bitangents[i0 * 3 + 2] += bitangent.z
# bitangents[i1 * 3 + 0] += bitangent.x
# bitangents[i1 * 3 + 1] += bitangent.y
# bitangents[i1 * 3 + 2] += bitangent.z
# bitangents[i2 * 3 + 0] += bitangent.x
# bitangents[i2 * 3 + 1] += bitangent.y
# bitangents[i2 * 3 + 2] += bitangent.z
# Orthogonalize
for i in range(0, vertex_count):
# Slow
t = Vector((tangents[i * 3], tangents[i * 3 + 1], tangents[i * 3 + 2]))
# b = Vector((bitangents[i * 3], bitangents[i * 3 + 1], bitangents[i * 3 + 2]))
n = Vector((nora[i * 3], nora[i * 3 + 1], nora[i * 3 + 2]))
v = t - n * n.dot(t)
v.normalize()
# Calculate handedness
# cnv = n.cross(v)
# if cnv.dot(b) < 0.0:
# v = v * -1.0
tangents[i * 3] = v.x
tangents[i * 3 + 1] = v.y
tangents[i * 3 + 2] = v.z
return tangents
def write_mesh(self, bobject, fp, o):
# One mesh data per file
if ArmoryExporter.option_mesh_per_file:
mesh_obj = {}
mesh_obj['mesh_datas'] = [o]
arm.utils.write_arm(fp, mesh_obj)
bobject.data.arm_cached = True
bobject.arm_cached = True
if bobject.type != 'FONT' and bobject.type != 'META':
bobject.data.arm_cached_verts = len(bobject.data.vertices)
bobject.data.arm_cached_edges = len(bobject.data.edges)
else:
self.output['mesh_datas'].append(o)
def make_va(self, attrib, size, values):
va = {}
va['attrib'] = attrib
va['size'] = size
va['values'] = values
return va
def export_mesh_data(self, exportMesh, bobject, fp, o):
# Much faster export but produces slightly less efficient data
exportMesh.calc_normals_split()
exportMesh.calc_tessface()
vert_list = { Vertex(exportMesh, loop) : 0 for loop in exportMesh.loops}.keys()
num_verts = len(vert_list)
num_uv_layers = len(exportMesh.uv_layers)
has_tex = self.get_export_uvs(exportMesh) == True and num_uv_layers > 0
has_tex1 = has_tex == True and num_uv_layers > 1
num_colors = len(exportMesh.vertex_colors)
has_col = self.get_export_vcols(exportMesh) == True and num_colors > 0
has_tang = self.has_tangents(exportMesh)
vdata = [0] * num_verts * 3
ndata = [0] * num_verts * 3
if has_tex:
t0data = [0] * num_verts * 2
if has_tex1:
t1data = [0] * num_verts * 2
if has_col:
cdata = [0] * num_verts * 3
# va_stride = 3 + 3 # pos + nor
# va_name = 'pos_nor'
# if has_tex:
# va_stride += 2
# va_name += '_tex'
# if has_tex1:
# va_stride += 2
# va_name += '_tex1'
# if has_col > 0:
# va_stride += 3
# va_name += '_col'
# if has_tang:
# va_stride += 3
# va_name += '_tang'
# vdata = [0] * num_verts * va_stride
# Make arrays
for i, vtx in enumerate(vert_list):
vtx.index = i
co = vtx.co
normal = vtx.normal
for j in range(3):
vdata[(i * 3) + j] = co[j]
ndata[(i * 3) + j] = normal[j]
if has_tex:
t0data[i * 2] = vtx.uvs[0][0]
t0data[i * 2 + 1] = 1.0 - vtx.uvs[0][1] # Reverse TCY
if has_tex1:
t1data[i * 2] = vtx.uvs[1][0]
t1data[i * 2 + 1] = 1.0 - vtx.uvs[1][1]
if has_col > 0:
cdata[i * 3] = pow(vtx.col[0], 2.2)
cdata[i * 3 + 1] = pow(vtx.col[1], 2.2)
cdata[i * 3 + 2] = pow(vtx.col[2], 2.2)
# Output
o['vertex_arrays'] = []
pa = self.make_va('pos', 3, vdata)
o['vertex_arrays'].append(pa)
na = self.make_va('nor', 3, ndata)
o['vertex_arrays'].append(na)
if has_tex:
ta = self.make_va('tex', 2, t0data)
o['vertex_arrays'].append(ta)
if has_tex1:
ta1 = self.make_va('tex1', 2, t1data)
o['vertex_arrays'].append(ta1)
if has_col:
ca = self.make_va('col', 3, cdata)
o['vertex_arrays'].append(ca)
# Indices
prims = {ma.name if ma else '': [] for ma in exportMesh.materials}
if not prims:
prims = {'': []}
vert_dict = {i : v for v in vert_list for i in v.loop_indices}
for poly in exportMesh.polygons:
first = poly.loop_start
if len(exportMesh.materials) == 0:
prim = prims['']
else:
mat = exportMesh.materials[min(poly.material_index, len(exportMesh.materials) - 1)]
prim = prims[mat.name if mat else '']
indices = [vert_dict[i].index for i in range(first, first+poly.loop_total)]
if poly.loop_total == 3:
prim += indices
elif poly.loop_total > 3:
for i in range(poly.loop_total-2):
prim += (indices[-1], indices[i], indices[i + 1])
# Write indices
o['index_arrays'] = []
for mat, prim in prims.items():
idata = [0] * len(prim)
for i, v in enumerate(prim):
idata[i] = v
ia = {}
ia['size'] = 3
ia['values'] = idata
ia['material'] = 0
# Find material index for multi-mat mesh
if len(exportMesh.materials) > 1:
for i in range(0, len(exportMesh.materials)):
if (exportMesh.materials[i] != None and mat == exportMesh.materials[i].name) or \
(exportMesh.materials[i] == None and mat == ''): # Default material for empty slots
ia['material'] = i
break
o['index_arrays'].append(ia)
# Make tangents
if has_tang:
tanga_vals = self.calc_tangents(pa['values'], na['values'], ta['values'], o['index_arrays'][0]['values'])
tanga = self.make_va('tang', 3, tanga_vals)
o['vertex_arrays'].append(tanga)
return vert_list
def has_tangents(self, exportMesh):
return self.get_export_uvs(exportMesh) == True and self.get_export_tangents(exportMesh) == True and len(exportMesh.uv_layers) > 0
def export_mesh(self, objectRef, scene):
# This function exports a single mesh object
table = objectRef[1]["objectTable"]
bobject = table[0]
oid = arm.utils.safestr(objectRef[1]["structName"])
# No export necessary
if ArmoryExporter.option_mesh_per_file:
fp = self.get_meshes_file_path('mesh_' + oid, compressed=self.is_compress(bobject.data))
assets.add(fp)
# if hasattr(bobject.data, 'arm_sdfgen') and bobject.data.arm_sdfgen:
# sdf_path = fp.replace('/mesh_', '/sdf_')
# assets.add(sdf_path)
if self.is_mesh_cached(bobject) == True and os.path.exists(fp):
return
# Check if mesh is using instanced rendering
is_instanced, instance_offsets = self.object_process_instancing(bobject, objectRef[1]["objectTable"])
# Mesh users have different modifier stack
for i in range(1, len(table)):
if not self.mod_equal_stack(bobject, table[i]):
log.warn('{0} users {1} and {2} differ in modifier stack - use Make Single User(U) - Object & Data for now'.format(oid, bobject.name, table[i].name))
break
print('Exporting mesh ' + arm.utils.asset_name(bobject.data))
o = {}
o['name'] = oid
mesh = objectRef[0]
structFlag = False;
# Save the morph state if necessary
activeShapeKeyIndex = bobject.active_shape_key_index
showOnlyShapeKey = bobject.show_only_shape_key
currentMorphValue = []
shapeKeys = ArmoryExporter.get_shape_keys(mesh)
if shapeKeys:
bobject.active_shape_key_index = 0
bobject.show_only_shape_key = True
baseIndex = 0
relative = shapeKeys.use_relative
if relative:
morphCount = 0
baseName = shapeKeys.reference_key.name
for block in shapeKeys.key_blocks:
if block.name == baseName:
baseIndex = morphCount
break
morphCount += 1
morphCount = 0
for block in shapeKeys.key_blocks:
currentMorphValue.append(block.value)
block.value = 0.0
if block.name != "":
# self.IndentWrite(B"Morph (index = ", 0, structFlag)
# self.WriteInt(morphCount)
# if (relative) and (morphCount != baseIndex):
# self.Write(B", base = ")
# self.WriteInt(baseIndex)
# self.Write(B")\n")
# self.IndentWrite(B"{\n")
# self.IndentWrite(B"Name {string {\"", 1)
# self.Write(bytes(block.name, "UTF-8"))
# self.Write(B"\"}}\n")
# self.IndentWrite(B"}\n")
# TODO
structFlag = True
morphCount += 1
shapeKeys.key_blocks[0].value = 1.0
mesh.update()
armature = bobject.find_armature()
apply_modifiers = not armature
# Apply all modifiers to create a new mesh with tessfaces
if bpy.app.version >= (2, 80, 1): # 2.8
exportMesh = bobject.to_mesh(scene, bpy.context.workspace.render_layer, apply_modifiers, "RENDER", True, False)
else:
exportMesh = bobject.to_mesh(scene, apply_modifiers, "RENDER", True, False)
if exportMesh == None:
log.warn(oid + ' was not exported')
return
if len(exportMesh.uv_layers) > 2:
log.warn(oid + ' exceeds maximum of 2 UV Maps supported')
# Process meshes
vert_list = self.export_mesh_data(exportMesh, bobject, fp, o)
if armature:
self.export_skin(bobject, armature, vert_list, o)
# Save aabb
for va in o['vertex_arrays']:
if va['attrib'].startswith('pos'):
positions = va['values']
stride = 0
ar = va['attrib'].split('_')
for a in ar:
if a == 'pos' or a == 'nor' or a == 'col' or a == 'tang':
stride += 3
elif a == 'tex' or a == 'tex1':
stride += 2
elif a == 'bone' or a == 'weight':
stride += 4
aabb_min = [-0.01, -0.01, -0.01]
aabb_max = [0.01, 0.01, 0.01]
i = 0
while i < len(positions):
if positions[i] > aabb_max[0]:
aabb_max[0] = positions[i];
if positions[i + 1] > aabb_max[1]:
aabb_max[1] = positions[i + 1];
if positions[i + 2] > aabb_max[2]:
aabb_max[2] = positions[i + 2];
if positions[i] < aabb_min[0]:
aabb_min[0] = positions[i];
if positions[i + 1] < aabb_min[1]:
aabb_min[1] = positions[i + 1];
if positions[i + 2] < aabb_min[2]:
aabb_min[2] = positions[i + 2];
i += stride;
if hasattr(bobject.data, 'arm_aabb'):
bobject.data.arm_aabb = [abs(aabb_min[0]) + abs(aabb_max[0]), abs(aabb_min[1]) + abs(aabb_max[1]), abs(aabb_min[2]) + abs(aabb_max[2])]
break
# Not axis-aligned
# arm_aabb = [bobject.matrix_world * Vector(v) for v in bobject.bound_box]
# Restore the morph state
if shapeKeys:
bobject.active_shape_key_index = activeShapeKeyIndex
bobject.show_only_shape_key = showOnlyShapeKey
for m in range(len(currentMorphValue)):
shapeKeys.key_blocks[m].value = currentMorphValue[m]
mesh.update()
# Save offset data for instanced rendering
if is_instanced == True:
o['instance_offsets'] = instance_offsets
# Export usage
if bobject.data.arm_dynamic_usage:
o['dynamic_usage'] = bobject.data.arm_dynamic_usage
self.write_mesh(bobject, fp, o)
def export_lamp(self, objectRef):
# This function exports a single lamp object
o = {}
o['name'] = objectRef[1]["structName"]
objref = objectRef[0]
objtype = objref.type
if objtype == 'SUN':
o['type'] = 'sun'
elif objtype == 'POINT':
o['type'] = 'point'
elif objtype == 'SPOT':
o['type'] = 'spot'
o['spot_size'] = math.cos(objref.spot_size / 2)
o['spot_blend'] = objref.spot_blend / 10 # Cycles defaults to 0.15
elif objtype == 'AREA':
o['type'] = 'area'
o['size'] = objref.size
o['size_y'] = objref.size_y
else: # Hemi
o['type'] = 'sun'
o['cast_shadow'] = objref.cycles.cast_shadow
o['near_plane'] = objref.arm_clip_start
o['far_plane'] = objref.arm_clip_end
o['fov'] = objref.arm_fov
o['shadows_bias'] = objref.arm_shadows_bias * 0.0001
rpdat = arm.utils.get_rp()
if rpdat.rp_shadowmap == 'Off':
o['shadowmap_size'] = 0
else:
o['shadowmap_size'] = int(rpdat.rp_shadowmap)
if o['type'] == 'sun': # Scale bias for ortho light matrix
o['shadows_bias'] *= 25.0
if o['shadowmap_size'] > 1024:
o['shadows_bias'] *= 1 / (o['shadowmap_size'] / 1024) # Less bias for bigger maps
if (objtype == 'POINT' or objtype == 'SPOT') and objref.shadow_soft_size > 0.1:
o['lamp_size'] = objref.shadow_soft_size * 10 # Match to Cycles
gapi = arm.utils.get_gapi()
mobile_mat = rpdat.arm_material_model == 'Mobile' or rpdat.arm_material_model == 'Solid'
if objtype == 'POINT' and objref.arm_omni_shadows and not gapi.startswith('direct3d') and not mobile_mat:
o['fov'] = 1.5708 # 90 deg
o['shadowmap_cube'] = True
o['shadows_bias'] *= 2.0
if bpy.app.version >= (2, 80, 1) and self.scene.view_render.engine == 'BLENDER_EEVEE':
o['color'] = [objref.color[0], objref.color[1], objref.color[2]]
o['strength'] = objref.energy
if o['type'] == 'point' or o['type'] == 'spot':
o['strength'] *= 1.5
elif o['type'] == 'sun':
o['strength'] *= 0.325
elif objref.node_tree != None:
tree = objref.node_tree
for n in tree.nodes:
# Emission only for now
if n.type == 'EMISSION':
col = n.inputs[0].default_value
o['color'] = [col[0], col[1], col[2]]
o['strength'] = n.inputs[1].default_value
# Normalize lamp strength
if o['type'] == 'point' or o['type'] == 'spot':
o['strength'] *= 0.026
elif o['type'] == 'area':
o['strength'] *= 0.26
elif o['type'] == 'sun':
o['strength'] *= 0.325
# TODO: Lamp texture test..
if n.inputs[0].is_linked:
color_node = n.inputs[0].links[0].from_node
if color_node.type == 'TEX_IMAGE':
o['color_texture'] = color_node.image.name
break
else:
# o['color'] = [1.0, 1.0, 1.0]
o['color'] = [objref.color[0], objref.color[1], objref.color[2]]
o['strength'] = 100.0 * 0.026
o['type'] = 'point'
self.output['lamp_datas'].append(o)
def get_camera_clear_color(self):
if self.scene.world == None:
return [0.051, 0.051, 0.051, 1.0]
if self.scene.world.node_tree == None:
c = self.scene.world.horizon_color
return [c[0], c[1], c[2], 1.0]
if 'Background' in self.scene.world.node_tree.nodes:
background_node = self.scene.world.node_tree.nodes['Background']
col = background_node.inputs[0].default_value
strength = background_node.inputs[1].default_value
ar = [col[0] * strength, col[1] * strength, col[2] * strength, col[3]]
ar[0] = max(min(ar[0], 1.0), 0.0)
ar[1] = max(min(ar[1], 1.0), 0.0)
ar[2] = max(min(ar[2], 1.0), 0.0)
ar[3] = max(min(ar[3], 1.0), 0.0)
return ar
else:
return [0.051, 0.051, 0.051, 1.0]
def extract_projection(self, o, proj, with_planes=True):
a = proj[0][0]
b = proj[1][1]
c = proj[2][2]
d = proj[2][3]
k = (c - 1.0) / (c + 1.0)
o['fov'] = 2.0 * math.atan(1.0 / b)
if with_planes:
o['near_plane'] = (d * (1.0 - k)) / (2.0 * k)
o['far_plane'] = k * o['near_plane'];
def export_camera(self, objectRef):
o = {}
o['name'] = objectRef[1]["structName"]
objref = objectRef[0]
camera = objectRef[1]["objectTable"][0]
render = self.scene.render
proj = camera.calc_matrix_camera(
render.resolution_x,
render.resolution_y,
render.pixel_aspect_x,
render.pixel_aspect_y)
self.extract_projection(o, proj)
wrd = bpy.data.worlds['Arm']
if wrd.arm_play_camera != 'Scene':
pw = self.get_viewport_panels_w() # Tool shelf and properties hidden
proj, is_persp = self.get_viewport_projection_matrix()
windowed = not ArmoryExporter.in_viewport
if proj != None and is_persp and (pw == 0 or windowed):
self.extract_projection(o, proj, with_planes=False)
if objref.type == 'PERSP':
o['type'] = 'perspective'
else:
o['type'] = 'orthographic'
if objref.arm_render_to_texture:
o['render_to_texture'] = True
o['texture_resolution_x'] = int(objref.arm_texture_resolution_x)
o['texture_resolution_y'] = int(objref.arm_texture_resolution_y)
o['frustum_culling'] = objref.arm_frustum_culling
o['render_path'] = 'armory_default/armory_default'
o['clear_color'] = self.get_camera_clear_color()
self.output['camera_datas'].append(o)
def export_speaker(self, objectRef):
# This function exports a single speaker object
o = {}
o['name'] = objectRef[1]["structName"]
objref = objectRef[0]
if objref.sound:
# Packed
if objref.sound.packed_file != None:
unpack_path = arm.utils.get_fp_build() + '/compiled/Assets/unpacked'
if not os.path.exists(unpack_path):
os.makedirs(unpack_path)
unpack_filepath = unpack_path + '/' + objref.sound.name
if os.path.isfile(unpack_filepath) == False or os.path.getsize(unpack_filepath) != objref.sound.packed_file.size:
with open(unpack_filepath, 'wb') as f:
f.write(objref.sound.packed_file.data)
assets.add(unpack_filepath)
# External
else:
assets.add(arm.utils.asset_path(objref.sound.filepath)) # Link sound to assets
o['sound'] = arm.utils.extract_filename(objref.sound.filepath)
else:
o['sound'] = ''
o['muted'] = objref.muted
o['loop'] = objref.arm_loop
o['stream'] = objref.arm_stream
o['volume'] = objref.volume
o['pitch'] = objref.pitch
o['attenuation'] = objref.attenuation
o['play_on_start'] = objref.arm_play_on_start
self.output['speaker_datas'].append(o)
def make_default_mat(self, mat_name, mat_objs):
if mat_name in bpy.data.materials:
return
mat = bpy.data.materials.new(name=mat_name)
mat.use_nodes = True
o = {}
o['name'] = mat.name
o['contexts'] = []
mat_users = dict()
mat_users[mat] = mat_objs
mat_armusers = dict()
mat_armusers[mat] = [o]
make_material.parse(mat, o, mat_users, mat_armusers)
self.output['material_datas'].append(o)
bpy.data.materials.remove(mat)
if bpy.data.worlds['Arm'].arm_culling == False:
o['override_context'] = {}
o['override_context']['cull_mode'] = 'none'
def export_materials(self):
wrd = bpy.data.worlds['Arm']
if wrd.arm_batch_materials:
mat_users = self.materialToObjectDict
mat_armusers = self.materialToArmObjectDict
mat_batch.build(self.materialArray, mat_users, mat_armusers)
transluc_used = False
overlays_used = False
decals_used = False
# sss_used = False
for materialRef in self.materialArray.items():
material = materialRef[0]
# If the material is unlinked, material becomes None
if material == None:
continue
o = {}
o['name'] = materialRef[1]["structName"]
if material.arm_skip_context != '':
o['skip_context'] = material.arm_skip_context
if material.arm_two_sided or wrd.arm_culling == False:
o['override_context'] = {}
o['override_context']['cull_mode'] = 'none'
elif material.arm_cull_mode != 'clockwise':
o['override_context'] = {}
o['override_context']['cull_mode'] = material.arm_cull_mode
o['contexts'] = []
if not material.use_nodes:
material.use_nodes = True
mat_users = self.materialToObjectDict
mat_armusers = self.materialToArmObjectDict
sd, rpasses = make_material.parse(material, o, mat_users, mat_armusers)
if 'translucent' in rpasses:
transluc_used = True
if 'overlay' in rpasses:
overlays_used = True
if 'decal' in rpasses:
decals_used = True
uv_export = False
tang_export = False
vcol_export = False
vs_str = ''
for con in sd['contexts']:
for elem in con['vertex_structure']:
if len(vs_str) > 0:
vs_str += ','
vs_str += elem['name']
if elem['name'] == 'tang':
tang_export = True
elif elem['name'] == 'tex':
uv_export = True
elif elem['name'] == 'col':
vcol_export = True
for con in o['contexts']: # TODO: blend context
if con['name'] == 'mesh' and material.arm_blending:
con['name'] = 'blend'
# TODO: use array and remove duplis to ensure correctness
material.vertex_structure = vs_str
if (material.export_tangents != tang_export) or \
(material.export_uvs != uv_export) or \
(material.export_vcols != vcol_export):
material.export_uvs = uv_export
material.export_vcols = vcol_export
material.export_tangents = tang_export
mat_users = self.materialToObjectDict[material]
for ob in mat_users:
ob.data.arm_cached = False
self.output['material_datas'].append(o)
material.is_cached = True
# Object with no material assigned in the scene
if len(self.defaultMaterialObjects) > 0:
self.make_default_mat('armdefault', self.defaultMaterialObjects)
if len(self.defaultSkinMaterialObjects) > 0:
self.make_default_mat('armdefaultskin', self.defaultSkinMaterialObjects)
# Auto-enable render-path featues
rebuild_rp = False
rpdat = arm.utils.get_rp()
if rpdat.rp_translucency_state == 'Auto' and rpdat.rp_translucency != transluc_used:
rpdat.rp_translucency = transluc_used
rebuild_rp = True
if rpdat.rp_overlays_state == 'Auto' and rpdat.rp_overlays != overlays_used:
rpdat.rp_overlays = overlays_used
rebuild_rp = True
if rpdat.rp_decals_state == 'Auto' and rpdat.rp_decals != decals_used:
rpdat.rp_decals = decals_used
rebuild_rp = True
# if rpdat.rp_sss_state == 'Auto' and rpdat.rp_sss != sss_used:
# rpdat.rp_sss = sss_used
# rebuild_rp = True
if rebuild_rp:
make_renderpath.build()
def export_particle_systems(self):
if len(self.particleSystemArray) > 0:
self.output['particle_datas'] = []
for particleRef in self.particleSystemArray.items():
o = {}
psettings = particleRef[0]
if psettings == None:
continue
if psettings.dupli_object == None or psettings.render_type != 'OBJECT':
continue
o['name'] = particleRef[1]["structName"]
if psettings.arm_gpu_sim:
o['gpu_sim'] = True
o['type'] = 0 if psettings.type == 'EMITTER' else 1 # HAIR
o['loop'] = psettings.arm_loop
# Emission
o['count'] = psettings.count * psettings.arm_count_mult
o['frame_start'] = psettings.frame_start
o['frame_end'] = psettings.frame_end
o['lifetime'] = psettings.lifetime
o['lifetime_random'] = psettings.lifetime_random
o['emit_from'] = 1 if psettings.emit_from == 'VOLUME' else 0 # VERT, FACE
# Velocity
# o['normal_factor'] = psettings.normal_factor;
# o['tangent_factor'] = psettings.tangent_factor;
# o['tangent_phase'] = psettings.tangent_phase;
o['object_align_factor'] = [psettings.object_align_factor[0], psettings.object_align_factor[1], psettings.object_align_factor[2]]
# o['object_factor'] = psettings.object_factor;
o['factor_random'] = psettings.factor_random
# Physics
o['physics_type'] = 1 if psettings.physics_type == 'NEWTON' else 0
o['particle_size'] = psettings.particle_size
o['size_random'] = psettings.size_random
o['mass'] = psettings.mass
# Render
o['dupli_object'] = psettings.dupli_object.name
self.objectToArmObjectDict[psettings.dupli_object]['is_particle'] = True
# Field weights
o['weight_gravity'] = psettings.effector_weights.gravity
self.output['particle_datas'].append(o)
def export_tilesheets(self):
wrd = bpy.data.worlds['Arm']
if len(wrd.arm_tilesheetlist) > 0:
self.output['tilesheet_datas'] = []
for ts in wrd.arm_tilesheetlist:
o = {}
o['name'] = ts.name
o['tilesx'] = ts.tilesx_prop
o['tilesy'] = ts.tilesy_prop
o['framerate'] = ts.framerate_prop
o['actions'] = []
for tsa in ts.arm_tilesheetactionlist:
ao = {}
ao['name'] = tsa.name
ao['start'] = tsa.start_prop
ao['end'] = tsa.end_prop
ao['loop'] = tsa.loop_prop
o['actions'].append(ao)
self.output['tilesheet_datas'].append(o)
def export_worlds(self):
worldRef = self.scene.world
if worldRef != None:
o = {}
w = worldRef
o['name'] = w.name
self.post_export_world(w, o)
self.output['world_datas'].append(o)
def is_compress(self, obj):
return ArmoryExporter.compress_enabled and obj.arm_compress
def export_objects(self, scene):
if not ArmoryExporter.option_mesh_only:
self.output['lamp_datas'] = []
self.output['camera_datas'] = []
self.output['speaker_datas'] = []
for objectRef in self.lampArray.items():
self.export_lamp(objectRef)
for objectRef in self.cameraArray.items():
self.export_camera(objectRef)
for objectRef in self.speakerArray.items():
self.export_speaker(objectRef)
for objectRef in self.meshArray.items():
self.output['mesh_datas'] = [];
self.export_mesh(objectRef, scene)
def execute(self, context, filepath, scene=None, write_capture_info=False, play_area=None):
profile_time = time.time()
self.output = {}
self.filepath = filepath
self.play_area = play_area
self.scene = context.scene if scene == None else scene
print('Exporting ' + arm.utils.asset_name(self.scene))
current_frame, current_subframe = scene.frame_current, scene.frame_subframe
self.beginFrame = self.scene.frame_start
self.output['frame_time'] = 1.0 / (self.scene.render.fps / self.scene.render.fps_base)
if write_capture_info:
self.output['capture_info'] = {}
self.output['capture_info']['path'] = bpy.path.abspath(self.scene.render.filepath)
self.output['capture_info']['frame_start'] = self.scene.frame_start
self.output['capture_info']['frame_end'] = self.scene.frame_end
self.bobjectArray = {}
self.bobjectBoneArray = {}
self.meshArray = {}
self.lampArray = {}
self.cameraArray = {}
self.camera_spawned = False
self.speakerArray = {}
self.materialArray = {}
self.particleSystemArray = {}
self.worldArray = {} # Export all worlds
self.boneParentArray = {}
self.materialToObjectDict = dict()
self.defaultMaterialObjects = [] # If no material is assigned, provide default to mimick cycles
self.defaultSkinMaterialObjects = []
self.materialToArmObjectDict = dict()
self.objectToArmObjectDict = dict()
self.active_layers = []
self.bone_tracks = []
for i in range(0, len(self.scene.layers)):
if self.scene.layers[i] == True:
self.active_layers.append(i)
self.preprocess()
if bpy.app.version >= (2, 80, 1): # 2.8
scene_objects = self.scene.master_collection.collections[0].objects
else:
scene_objects = self.scene.objects
for bobject in scene_objects:
# Map objects to game objects
o = {}
o['traits'] = []
self.objectToArmObjectDict[bobject] = o
# Process
if not bobject.parent:
self.process_bobject(bobject)
self.process_skinned_meshes()
self.output['name'] = arm.utils.safestr(self.scene.name)
if self.filepath.endswith('.zip'):
self.output['name'] += '.zip'
# Fix material variants
# Skinned and non-skined objects can not share material
matvars = []
matslots = []
for bo in scene_objects:
if arm.utils.export_bone_data(bo):
for slot in bo.material_slots:
if slot.material == None:
continue
if slot.material.name.endswith('_armskin'):
continue
matslots.append(slot)
mat_name = slot.material.name + '_armskin'
mat = bpy.data.materials.get(mat_name)
if mat == None:
mat = slot.material.copy()
mat.name = mat_name
matvars.append(mat)
slot.material = mat
# Auto-bones
wrd = bpy.data.worlds['Arm']
if wrd.arm_skin_max_bones_auto:
max_bones = 8
for armature in bpy.data.armatures:
if max_bones < len(armature.bones):
max_bones = len(armature.bones)
wrd.arm_skin_max_bones = max_bones
self.output['objects'] = []
for bo in scene_objects:
if not bo.parent:
self.export_object(bo, self.scene)
if len(bpy.data.groups) > 0:
self.output['groups'] = []
for group in bpy.data.groups:
# Blender automatically stores physics objects in this group,
# can cause stuck unused objects, skip for now
if group.name.startswith('RigidBodyWorld') or group.name.startswith('Trait|'):
continue
o = {}
o['name'] = group.name
o['object_refs'] = []
# Add unparented objects only, then instantiate full object child tree
for bobject in group.objects:
if bobject.parent == None and bobject.arm_export:
# Add external linked objects
if bobject.name not in scene_objects: # and bobject.ls_linked
self.process_bobject(bobject)
self.export_object(bobject, self.scene)
o['object_refs'].append(arm.utils.asset_name(bobject))
else:
o['object_refs'].append(bobject.name)
self.output['groups'].append(o)
if not ArmoryExporter.option_mesh_only:
if self.scene.camera != None:
self.output['camera_ref'] = self.scene.camera.name
else:
if self.scene.name == arm.utils.get_project_scene_name():
log.warn('No camera found in active scene')
self.output['material_datas'] = []
self.export_materials()
# Ensure same vertex structure for object materials
if not wrd.arm_deinterleaved_buffers:
for bobject in scene_objects:
if len(bobject.material_slots) > 1:
mat = bobject.material_slots[0].material
if mat == None:
continue
vs = mat.vertex_structure
for i in range(len(bobject.material_slots)):
nmat = bobject.material_slots[i].material
if nmat == None:
continue
if vs != nmat.vertex_structure:
log.warn('Object ' + bobject.name + ' - unable to bind materials to vertex data, please separate object by material (select object - edit mode - P - By Material) or enable Deinterleaved Buffers in Armory Player')
break
self.export_particle_systems()
self.output['world_datas'] = []
self.export_worlds()
self.export_tilesheets()
if self.scene.world != None:
self.output['world_ref'] = self.scene.world.name
if self.scene.use_gravity:
self.output['gravity'] = [self.scene.gravity[0], self.scene.gravity[1], self.scene.gravity[2]]
else:
self.output['gravity'] = [0.0, 0.0, 0.0]
self.export_objects(self.scene)
if not self.camera_spawned:
log.warn('No camera found in active scene layers')
if (len(self.output['camera_datas']) == 0 and len(bpy.data.cameras) == 0) or not self.camera_spawned:
log.warn('Creating default camera')
o = {}
o['name'] = 'DefaultCamera'
o['near_plane'] = 0.1
o['far_plane'] = 100.0
o['fov'] = 0.85
# if ArmoryExporter.in_viewport: # Wrong P returned when no camera present?
# pw = self.get_viewport_panels_w()
# proj, is_persp = self.get_viewport_projection_matrix()
# if pw == 0 and is_persp:
# a = proj[0][0]
# b = proj[1][1]
# c = proj[2][2]
# d = proj[2][3]
# k = (c - 1.0) / (c + 1.0)
# o['near_plane'] = (d * (1.0 - k)) / (2.0 * k)
# o['far_plane'] = k * o['near_plane'];
# o['fov'] = 2.0 * math.atan(1.0 / b)
o['type'] = 'perspective'
o['frustum_culling'] = True
o['render_path'] = 'armory_default/armory_default'
o['clear_color'] = self.get_camera_clear_color()
self.output['camera_datas'].append(o)
o = {}
o['name'] = 'DefaultCamera'
o['type'] = 'camera_object'
o['data_ref'] = 'DefaultCamera'
o['material_refs'] = []
o['transform'] = {}
viewport_matrix = self.get_viewport_view_matrix()
if viewport_matrix != None:
o['transform']['values'] = self.write_matrix(viewport_matrix.inverted())
o['local_transform_only'] = True
else:
o['transform']['values'] = [1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0]
o['traits'] = []
navigation_trait = {}
navigation_trait['type'] = 'Script'
navigation_trait['class_name'] = 'armory.trait.WalkNavigation'
navigation_trait['parameters'] = [str(arm.utils.get_ease_viewport_camera()).lower()]
o['traits'].append(navigation_trait)
self.output['objects'].append(o)
self.output['camera_ref'] = 'DefaultCamera'
# Scene root traits
if wrd.arm_physics != 'Disabled' and ArmoryExporter.export_physics:
if not 'traits' in self.output:
self.output['traits'] = []
x = {}
x['type'] = 'Script'
pkg = 'bullet' if bpy.data.worlds['Arm'].arm_physics == 'Bullet' else 'oimo'
x['class_name'] = 'armory.trait.physics.' + pkg + '.PhysicsWorld'
self.output['traits'].append(x)
if wrd.arm_navigation != 'Disabled' and ArmoryExporter.export_navigation:
if not 'traits' in self.output:
self.output['traits'] = []
x = {}
x['type'] = 'Script'
x['class_name'] = 'armory.trait.navigation.Navigation'
self.output['traits'].append(x)
if wrd.arm_play_console:
if not 'traits' in self.output:
self.output['traits'] = []
ArmoryExporter.export_ui = True
x = {}
x['type'] = 'Script'
x['class_name'] = 'armory.trait.internal.DebugConsole'
x['parameters'] = []
self.output['traits'].append(x)
if len(self.scene.arm_traitlist) > 0:
if not 'traits' in self.output:
self.output['traits'] = []
self.export_traits(self.scene, self.output)
if 'traits' in self.output:
for x in self.output['traits']:
ArmoryExporter.import_traits.append(x['class_name'])
# Write embedded data references
if len(assets.embedded_data) > 0:
self.output['embedded_datas'] = []
for file in assets.embedded_data:
self.output['embedded_datas'].append(file)
# Write scene file
arm.utils.write_arm(self.filepath, self.output)
# Remove created material variants
for slot in matslots: # Set back to original material
orig_mat = slot.material.name[:-len('_armskin')]
slot.material = bpy.data.materials[orig_mat]
for mat in matvars:
bpy.data.materials.remove(mat, do_unlink=True)
# Restore frame
if scene.frame_current != current_frame:
scene.frame_set(current_frame, current_subframe)
print('Scene built in ' + str(time.time() - profile_time))
return {'FINISHED'}
# Callbacks
def is_mesh_cached(self, bobject):
if bobject.type == 'FONT' or bobject.type == 'META': # No verts
return bobject.data.arm_cached
if bobject.data.arm_cached_verts != len(bobject.data.vertices):
return False
if bobject.data.arm_cached_edges != len(bobject.data.edges):
return False
if not bobject.arm_cached:
return False
return bobject.data.arm_cached
def get_export_tangents(self, mesh):
for m in mesh.materials:
if m != None and m.export_tangents == True:
return True
return False
def get_export_vcols(self, mesh):
for m in mesh.materials:
if m != None and m.export_vcols == True:
return True
return False
def get_export_uvs(self, mesh):
for m in mesh.materials:
if m != None and m.export_uvs == True:
return True
return False
def object_process_instancing(self, bobject, refs):
is_instanced = False
instance_offsets = None
for n in refs:
if n.arm_instanced == True:
is_instanced = True
# Save offset data
instance_offsets = [0.0, 0.0, 0.0] # Include parent
for sn in n.children:
# Child hidden
if sn.arm_export == False:
continue
# Do not take parent matrix into account
loc = sn.matrix_local.to_translation()
instance_offsets.append(loc.x)
instance_offsets.append(loc.y)
instance_offsets.append(loc.z)
# m = sn.matrix_local
# instance_offsets.append(m[0][3]) #* m[0][0]) # Scale
# instance_offsets.append(m[1][3]) #* m[1][1])
# instance_offsets.append(m[2][3]) #* m[2][2])
break
# Instance render groups with same children?
# elif n.dupli_type == 'GROUP' and n.dupli_group != None:
# is_instanced = True
# instance_offsets = []
# for sn in bpy.data.groups[n.dupli_group].objects:
# loc = sn.matrix_local.to_translation()
# instance_offsets.append(loc.x)
# instance_offsets.append(loc.y)
# instance_offsets.append(loc.z)
# break
return is_instanced, instance_offsets
def preprocess(self):
wrd = bpy.data.worlds['Arm']
ArmoryExporter.export_all_flag = True
ArmoryExporter.export_physics = False # Indicates whether rigid body is exported
ArmoryExporter.export_navigation = False
ArmoryExporter.export_ui = False
if not hasattr(ArmoryExporter, 'compress_enabled'):
ArmoryExporter.compress_enabled = False
if not hasattr(ArmoryExporter, 'in_viewport'):
ArmoryExporter.in_viewport = False
if not hasattr(ArmoryExporter, 'import_traits'):
ArmoryExporter.import_traits = [] # Referenced traits
ArmoryExporter.option_mesh_only = False
ArmoryExporter.option_mesh_per_file = True
ArmoryExporter.option_minimize = wrd.arm_minimize
ArmoryExporter.option_sample_animation = wrd.arm_sampled_animation
ArmoryExporter.sample_animation_flag = ArmoryExporter.option_sample_animation
# Used for material shader export and khafile
ArmoryExporter.mesh_context = 'mesh'
ArmoryExporter.mesh_context_empty = ''
ArmoryExporter.shadows_context = 'shadowmap'
ArmoryExporter.translucent_context = 'translucent'
ArmoryExporter.overlay_context = 'overlay'
def preprocess_object(self, bobject): # Returns false if object should not be exported
export_object = True
# Disabled object
if bobject.arm_export == False:
return False
for m in bobject.modifiers:
if m.type == 'OCEAN':
# Do not export ocean mesh, just take specified constants
export_object = False
rdpat = arm.utils.get_rp()
wrd = bpy.data.worlds['Arm']
rdpat.rp_ocean = True
# Take position and bounds
wrd.arm_ocean_level = 0.0#bobject.location.z
return export_object
def post_export_object(self, bobject, o, type):
# Export traits
self.export_traits(bobject, o)
# Rigid body trait
if bobject.rigid_body != None and bpy.data.worlds['Arm'].arm_physics != 'Disabled':
ArmoryExporter.export_physics = True
rb = bobject.rigid_body
shape = 0 # BOX
if bobject.arm_rb_terrain: # Override selected shape as terrain..
shape = 7
elif rb.collision_shape == 'SPHERE':
shape = 1
elif rb.collision_shape == 'CONVEX_HULL':
shape = 2
elif rb.collision_shape == 'MESH':
shape = 3
elif rb.collision_shape == 'CONE':
shape = 4
elif rb.collision_shape == 'CYLINDER':
shape = 5
elif rb.collision_shape == 'CAPSULE':
shape = 6
body_mass = rb.mass
is_static = not rb.enabled or (rb.type == 'PASSIVE' and not rb.kinematic)
if is_static:
body_mass = 0
x = {}
x['type'] = 'Script'
pkg = 'bullet' if bpy.data.worlds['Arm'].arm_physics == 'Bullet' else 'oimo'
x['class_name'] = 'armory.trait.physics.' + pkg + '.RigidBody'
x['parameters'] = [str(body_mass), str(shape), str(rb.friction), str(rb.restitution)]
if rb.use_margin:
x['parameters'].append(str(rb.collision_margin))
else:
x['parameters'].append('0.0')
x['parameters'].append(str(rb.linear_damping))
x['parameters'].append(str(rb.angular_damping))
x['parameters'].append(str(rb.kinematic).lower())
lin_fac = '[{0}, {1}, {2}]'.format(str(bobject.arm_rb_linear_factor[0]), str(bobject.arm_rb_linear_factor[1]), str(bobject.arm_rb_linear_factor[2]))
ang_fac = '[{0}, {1}, {2}]'.format(str(bobject.arm_rb_angular_factor[0]), str(bobject.arm_rb_angular_factor[1]), str(bobject.arm_rb_angular_factor[2]))
x['parameters'].append(lin_fac)
x['parameters'].append(ang_fac)
col_group = ''
for b in rb.collision_groups:
col_group = ('1' if b else '0') + col_group
x['parameters'].append(str(int(col_group, 2)))
x['parameters'].append(str(bobject.arm_rb_trigger).lower())
if rb.use_deactivation or bobject.arm_rb_force_deactivation:
deact_params = lin_fac = '[{0}, {1}, {2}]'.format(str(rb.deactivate_linear_velocity), str(rb.deactivate_angular_velocity), str(bobject.arm_rb_deactivation_time))
x['parameters'].append(deact_params)
else:
x['parameters'].append('null')
o['traits'].append(x)
# Soft bodies modifier
soft_type = -1
soft_mod = None
for m in bobject.modifiers:
if m.type == 'CLOTH':
soft_type = 0
soft_mod = m
break
elif m.type == 'SOFT_BODY':
soft_type = 1 # Volume
soft_mod = m
break
if soft_type >= 0 and bpy.data.worlds['Arm'].arm_physics != 'Disabled':
ArmoryExporter.export_physics = True
assets.add_khafile_def('arm_physics_soft')
cloth_trait = {}
cloth_trait['type'] = 'Script'
pkg = 'bullet' if bpy.data.worlds['Arm'].arm_physics == 'Bullet' else 'oimo'
cloth_trait['class_name'] = 'armory.trait.physics.' + pkg + '.SoftBody'
if soft_type == 0:
bend = soft_mod.settings.bending_stiffness
elif soft_type == 1:
bend = (soft_mod.settings.bend + 1.0) * 10
cloth_trait['parameters'] = [str(soft_type), str(bend), str(soft_mod.settings.mass), str(bobject.arm_soft_body_margin)]
o['traits'].append(cloth_trait)
if soft_type == 0 and soft_mod.settings.use_pin_cloth:
self.add_hook_trait(o, bobject, '', soft_mod.settings.vertex_group_mass)
# RB Constraint
if bobject.rigid_body_constraint != None and bpy.data.worlds['Arm'].arm_physics != 'Disabled':
rbc = bobject.rigid_body_constraint
target = rbc.object1 if rbc.object2.name == bobject.name else rbc.object2
to = self.objectToArmObjectDict[target]
if rbc.type == 'HINGE':
self.add_constraint_trait(o, rbc.object1, rbc.object2)
else:
self.add_hook_trait(to, target, bobject.name, '')
# Hook modifier
# hook_mod = None
# for m in bobject.modifiers:
# if m.type == 'HOOK':
# hook_mod = m
# break
# if hook_mod != None:
# group_name = hook_mod.vertex_group
# target_name = hook_mod.object.name
# self.add_hook_trait(o, bobject, target_name, group_name)
# Camera traits
if type == NodeTypeCamera:
# Viewport camera enabled, attach navigation to active camera
if self.scene.camera != None and bobject.name == self.scene.camera.name and bpy.data.worlds['Arm'].arm_play_camera != 'Scene':
navigation_trait = {}
navigation_trait['type'] = 'Script'
navigation_trait['class_name'] = 'armory.trait.WalkNavigation'
navigation_trait['parameters'] = [str(arm.utils.get_ease_viewport_camera()).lower()]
o['traits'].append(navigation_trait)
# Map objects to materials, can be used in later stages
for i in range(len(bobject.material_slots)):
mat = bobject.material_slots[i].material
if mat in self.materialToObjectDict:
self.materialToObjectDict[mat].append(bobject)
self.materialToArmObjectDict[mat].append(o)
else:
self.materialToObjectDict[mat] = [bobject]
self.materialToArmObjectDict[mat] = [o]
# Export constraints
if len(bobject.constraints) > 0:
o['constraints'] = []
for constr in bobject.constraints:
if constr.mute:
continue
co = {}
co['name'] = constr.name
co['type'] = constr.type
if constr.type == 'COPY_LOCATION':
co['target'] = constr.target.name
co['use_x'] = constr.use_x
co['use_y'] = constr.use_y
co['use_z'] = constr.use_z
co['invert_x'] = constr.invert_x
co['invert_y'] = constr.invert_y
co['invert_z'] = constr.invert_z
co['use_offset'] = constr.use_offset
co['influence'] = constr.influence
o['constraints'].append(co)
for x in o['traits']:
ArmoryExporter.import_traits.append(x['class_name'])
def export_traits(self, bobject, o):
if hasattr(bobject, 'arm_traitlist'):
for t in bobject.arm_traitlist:
if t.enabled_prop == False:
continue
x = {}
if t.type_prop == 'Logic Nodes' and t.nodes_name_prop != '':
x['type'] = 'Script'
x['class_name'] = arm.utils.safestr(bpy.data.worlds['Arm'].arm_project_package) + '.node.' + arm.utils.safesrc(t.nodes_name_prop)
if len(t.nodes_name_prop) > 0 and not t.nodes_name_prop[0].isupper():
log.warn('Logic tree name "' + t.nodes_name_prop + '" must start with upper-case letter')
elif t.type_prop == 'WebAssembly':
pass
elif t.type_prop == 'UI Canvas':
ArmoryExporter.export_ui = True
x['type'] = 'Script'
x['class_name'] = 'armory.trait.internal.CanvasScript'
x['parameters'] = ["'" + t.canvas_name_prop + "'"]
# assets.add(assetpath) # Bundled is auto-added
# Read file list and add canvas assets
assetpath = arm.utils.get_fp() + '/Bundled/canvas/' + t.canvas_name_prop + '.files'
if os.path.exists(assetpath):
with open(assetpath) as f:
fileList = f.read().splitlines()
for asset in fileList:
# Relative to the root/Bundled/canvas path
asset = asset[6:] # Strip ../../ to start in project root
assets.add(asset)
else: # Haxe/Bundled Script
if t.class_name_prop == '': # Empty class name, skip
continue
x['type'] = 'Script'
if t.type_prop == 'Bundled Script':
trait_prefix = 'armory.trait.'
# TODO: temporary, export single mesh navmesh as obj
if t.class_name_prop == 'NavMesh' and bobject.type == 'MESH' and bpy.data.worlds['Arm'].arm_navigation != 'Disabled':
ArmoryExporter.export_navigation = True
nav_path = arm.utils.get_fp_build() + '/compiled/Assets/navigation'
if not os.path.exists(nav_path):
os.makedirs(nav_path)
nav_filepath = nav_path + '/nav_' + bobject.data.name + '.arm'
assets.add(nav_filepath)
# TODO: Implement cache
#if os.path.isfile(nav_filepath) == False:
override = {'selected_objects': [bobject]}
# bobject.scale.y *= -1
# mesh = obj.data
# for face in mesh.faces:
# face.v.reverse()
# bpy.ops.export_scene.obj(override, use_selection=True, filepath=nav_filepath, check_existing=False, use_normals=False, use_uvs=False, use_materials=False)
# bobject.scale.y *= -1
with open(nav_filepath, 'w') as f:
for v in bobject.data.vertices:
f.write("v %.4f " % (v.co[0] * bobject.scale.x))
f.write("%.4f " % (v.co[2] * bobject.scale.z))
f.write("%.4f\n" % (v.co[1] * bobject.scale.y)) # Flipped
for p in bobject.data.polygons:
f.write("f")
for i in reversed(p.vertices): # Flipped normals
f.write(" %d" % (i + 1))
f.write("\n")
else:
trait_prefix = arm.utils.safestr(bpy.data.worlds['Arm'].arm_project_package) + '.'
x['class_name'] = trait_prefix + t.class_name_prop
if len(t.arm_traitparamslist) > 0:
x['parameters'] = []
for pt in t.arm_traitparamslist: # Append parameters
x['parameters'].append(pt.name)
if len(t.arm_traitpropslist) > 0:
x['props'] = []
for pt in t.arm_traitpropslist: # Append props
prop = pt.name.replace(')', '').split('(')
x['props'].append(prop[0])
if(len(prop) > 1):
if prop[1] == 'String':
value = "'" + pt.value + "'"
else:
value = pt.value
else:
value = pt.value
x['props'].append(value)
o['traits'].append(x)
def add_hook_trait(self, o, bobject, target_name, group_name):
hook_trait = {}
hook_trait['type'] = 'Script'
pkg = 'bullet' if bpy.data.worlds['Arm'].arm_physics == 'Bullet' else 'oimo'
hook_trait['class_name'] = 'armory.trait.physics.' + pkg + '.PhysicsHook'
verts = []
if group_name != '':
group = bobject.vertex_groups[group_name].index
for v in bobject.data.vertices:
for g in v.groups:
if g.group == group:
verts.append(v.co.x)
verts.append(v.co.y)
verts.append(v.co.z)
hook_trait['parameters'] = ["'" + target_name + "'", str(verts)]
o['traits'].append(hook_trait)
def add_constraint_trait(self, o, rb1, rb2):
constr_trait = {}
constr_trait['type'] = 'Script'
pkg = 'bullet' if bpy.data.worlds['Arm'].arm_physics == 'Bullet' else 'oimo'
constr_trait['class_name'] = 'armory.trait.physics.' + pkg + '.PhysicsConstraint'
constr_trait['parameters'] = ["'" + rb1.name + "'", "'" + rb2.name + "'"]
o['traits'].append(constr_trait)
def post_export_world(self, world, o):
wrd = bpy.data.worlds['Arm']
bgcol = world.arm_envtex_color
if '_LDR' in wrd.world_defs: # No compositor used
for i in range(0, 3):
bgcol[i] = pow(bgcol[i], 1.0 / 2.2)
o['background_color'] = arm.utils.color_to_int(bgcol)
if '_EnvSky' in wrd.world_defs:
# Sky data for probe
o['sun_direction'] = list(world.arm_envtex_sun_direction)
o['turbidity'] = world.arm_envtex_turbidity
o['ground_albedo'] = world.arm_envtex_ground_albedo
disable_hdr = world.arm_envtex_name.endswith('.jpg')
if '_EnvTex' in wrd.world_defs or '_EnvImg' in wrd.world_defs:
o['envmap'] = world.arm_envtex_name.rsplit('.', 1)[0]
if disable_hdr:
o['envmap'] += '.jpg'
else:
o['envmap'] += '.hdr'
o['probes'] = []
# Main probe
rpdat = arm.utils.get_rp()
solid_mat = rpdat.arm_material_model == 'Solid'
arm_irradiance = wrd.arm_irradiance and not solid_mat
arm_radiance = False
radtex = world.arm_envtex_name.rsplit('.', 1)[0]
irrsharmonics = world.arm_envtex_irr_name
# Radiance
if '_EnvTex' in wrd.world_defs:
arm_radiance = bpy.data.worlds['Arm'].arm_radiance
elif '_EnvSky' in wrd.world_defs and bpy.data.worlds['Arm'].arm_radiance_sky:
arm_radiance = bpy.data.worlds['Arm'].arm_radiance
radtex = 'hosek'
num_mips = world.arm_envtex_num_mips
strength = world.arm_envtex_strength
po = {}
po['name'] = world.name
if arm_irradiance:
po['irradiance'] = irrsharmonics + '_irradiance'
if arm_radiance:
po['radiance'] = radtex + '_radiance'
if disable_hdr:
po['radiance'] += '.jpg'
else:
po['radiance'] += '.hdr'
po['radiance_mipmaps'] = num_mips
else:
po['irradiance'] = '' # No irradiance data, fallback to default at runtime
po['strength'] = strength
po['blending'] = 1.0
po['volume'] = [0, 0, 0]
po['volume_center'] = [0, 0, 0]
o['probes'].append(po)
# https://blender.stackexchange.com/questions/70629
def mod_equal(self, mod1, mod2):
return all([getattr(mod1, prop, True) == getattr(mod2, prop, False) for prop in mod1.bl_rna.properties.keys()])
def mod_equal_stack(self, obj1, obj2):
if len(obj1.modifiers) == 0 and len(obj2.modifiers) == 0:
return True
if len(obj1.modifiers) == 0 or len(obj2.modifiers) == 0:
return False
return all([self.mod_equal(m, obj2.modifiers[i]) for i,m in enumerate(obj1.modifiers)])