armory/raw/forward/mesh.frag.glsl
2016-09-05 17:03:20 +02:00

731 lines
20 KiB
GLSL

#version 450
#ifdef GL_ES
precision mediump float;
#endif
#include "../compiled.glsl"
#ifdef _BaseTex
uniform sampler2D sbase;
#endif
#ifndef _NoShadows
uniform sampler2D shadowMap;
#endif
uniform float shirr[27];
#ifdef _Rad
uniform sampler2D senvmapRadiance;
uniform sampler2D senvmapBrdf;
uniform int envmapNumMipmaps;
#endif
// uniform sampler2D sltcMat;
// uniform sampler2D sltcMag;
#ifdef _NorTex
uniform sampler2D snormal;
#endif
#ifdef _NorStr
uniform float normalStrength;
#endif
#ifdef _OccTex
uniform sampler2D socclusion;
#else
uniform float occlusion;
#endif
#ifdef _RoughTex
uniform sampler2D srough;
#else
uniform float roughness;
#endif
#ifdef _RoughStr
uniform float roughnessStrength;
#endif
#ifdef _MetTex
uniform sampler2D smetal;
#else
uniform float metalness;
#endif
#ifdef _HeightTex
uniform sampler2D sheight;
uniform float heightStrength;
#endif
uniform float envmapStrength;
uniform bool receiveShadow;
uniform vec3 lightPos;
uniform vec3 lightDir;
uniform int lightType;
uniform vec3 lightColor;
uniform float lightStrength;
uniform float spotlightCutoff;
uniform float spotlightExponent;
uniform float shadowsBias;
uniform vec3 eye;
// LTC
/*uniform vec3 light;
// const float roughness = 0.25;
const vec3 dcolor = vec3(1.0, 1.0, 1.0);
const vec3 scolor = vec3(1.0, 1.0, 1.0);
const float intensity = 4.0; // 0-10
const float width = 4.0;
const float height = 4.0;
const vec2 resolution = vec2(800.0, 600.0);
const int sampleCount = 0;
const int NUM_SAMPLES = 8;
const float LUT_SIZE = 64.0;
const float LUT_SCALE = (LUT_SIZE - 1.0)/LUT_SIZE;
const float LUT_BIAS = 0.5/LUT_SIZE;
// vec2 mys[NUM_SAMPLES];
vec3 L0 = vec3(0.0);
vec3 L1 = vec3(0.0);
vec3 L2 = vec3(0.0);
vec3 L3 = vec3(0.0);
vec3 L4 = vec3(0.0);*/
in vec3 position;
#ifdef _Tex
in vec2 texCoord;
#endif
in vec4 lPos;
in vec4 matColor;
in vec3 eyeDir;
#ifdef _NorTex
in mat3 TBN;
#else
in vec3 normal;
#endif
out vec4 outColor;
#ifndef _NoShadows
// float linstep(float low, float high, float v) {
// return clamp((v - low) / (high - low), 0.0, 1.0);
// }
// float VSM(vec2 uv, float compare) {
// vec2 moments = texture(shadowMap, uv).xy;
// float p = smoothstep(compare - 0.02, compare, moments.x);
// float variance = max(moments.y - moments.x * moments.x, -0.001);
// float d = compare - moments.x;
// float p_max = linstep(0.2, 1.0, variance / (variance + d * d));
// return clamp(max(p, p_max), 0.0, 1.0);
// }
float texture2DCompare(vec2 uv, float compare){
float depth = texture(shadowMap, uv).r * 2.0 - 1.0;
return step(compare, depth);
}
float texture2DShadowLerp(vec2 size, vec2 uv, float compare){
vec2 texelSize = vec2(1.0) / size;
vec2 f = fract(uv * size + 0.5);
vec2 centroidUV = floor(uv * size + 0.5) / size;
float lb = texture2DCompare(centroidUV + texelSize * vec2(0.0, 0.0), compare);
float lt = texture2DCompare(centroidUV + texelSize * vec2(0.0, 1.0), compare);
float rb = texture2DCompare(centroidUV + texelSize * vec2(1.0, 0.0), compare);
float rt = texture2DCompare(centroidUV + texelSize * vec2(1.0, 1.0), compare);
float a = mix(lb, lt, f.y);
float b = mix(rb, rt, f.y);
float c = mix(a, b, f.x);
return c;
}
float PCF(vec2 uv, float compare) {
float result = 0.0;
// for (int x = -1; x <= 1; x++){
// for(int y = -1; y <= 1; y++){
// vec2 off = vec2(x, y) / shadowmapSize;
// result += texture2DShadowLerp(shadowmapSize, uv + off, compare);
vec2 off = vec2(-1, -1) / shadowmapSize;
result += texture2DShadowLerp(shadowmapSize, uv + off, compare);
off = vec2(-1, 0) / shadowmapSize;
result += texture2DShadowLerp(shadowmapSize, uv + off, compare);
off = vec2(-1, 1) / shadowmapSize;
result += texture2DShadowLerp(shadowmapSize, uv + off, compare);
off = vec2(0, -1) / shadowmapSize;
result += texture2DShadowLerp(shadowmapSize, uv + off, compare);
off = vec2(0, 0) / shadowmapSize;
result += texture2DShadowLerp(shadowmapSize, uv + off, compare);
off = vec2(0, 1) / shadowmapSize;
result += texture2DShadowLerp(shadowmapSize, uv + off, compare);
off = vec2(1, -1) / shadowmapSize;
result += texture2DShadowLerp(shadowmapSize, uv + off, compare);
off = vec2(1, 0) / shadowmapSize;
result += texture2DShadowLerp(shadowmapSize, uv + off, compare);
off = vec2(1, 1) / shadowmapSize;
result += texture2DShadowLerp(shadowmapSize, uv + off, compare);
// }
// }
return result / 9.0;
}
float shadowTest(vec4 lPos) {
vec4 lPosH = lPos / lPos.w;
lPosH.x = (lPosH.x + 1.0) / 2.0;
lPosH.y = (lPosH.y + 1.0) / 2.0;
return PCF(lPosH.xy, lPosH.z - shadowsBias);
// return VSM(lPosH.xy, lPosH.z);
// Basic
// float distanceFromLight = texture(shadowMap, lPosH.xy).r * 2.0 - 1.0;
// return float(distanceFromLight > lPosH.z - shadowsBias);
}
#endif
vec3 shIrradiance(vec3 nor, float scale) {
const float c1 = 0.429043;
const float c2 = 0.511664;
const float c3 = 0.743125;
const float c4 = 0.886227;
const float c5 = 0.247708;
vec3 cl00, cl1m1, cl10, cl11, cl2m2, cl2m1, cl20, cl21, cl22;
cl00 = vec3(shirr[0], shirr[1], shirr[2]);
cl1m1 = vec3(shirr[3], shirr[4], shirr[5]);
cl10 = vec3(shirr[6], shirr[7], shirr[8]);
cl11 = vec3(shirr[9], shirr[10], shirr[11]);
cl2m2 = vec3(shirr[12], shirr[13], shirr[14]);
cl2m1 = vec3(shirr[15], shirr[16], shirr[17]);
cl20 = vec3(shirr[18], shirr[19], shirr[20]);
cl21 = vec3(shirr[21], shirr[22], shirr[23]);
cl22 = vec3(shirr[24], shirr[25], shirr[26]);
return (
c1 * cl22 * (nor.y * nor.y - (-nor.z) * (-nor.z)) +
c3 * cl20 * nor.x * nor.x +
c4 * cl00 -
c5 * cl20 +
2.0 * c1 * cl2m2 * nor.y * (-nor.z) +
2.0 * c1 * cl21 * nor.y * nor.x +
2.0 * c1 * cl2m1 * (-nor.z) * nor.x +
2.0 * c2 * cl11 * nor.y +
2.0 * c2 * cl1m1 * (-nor.z) +
2.0 * c2 * cl10 * nor.x
) * scale;
}
vec2 envMapEquirect(vec3 normal) {
float phi = acos(normal.z);
float theta = atan(-normal.y, normal.x) + PI;
return vec2(theta / PI2, phi / PI);
}
vec2 LightingFuncGGX_FV(float dotLH, float roughness) {
float alpha = roughness*roughness;
// F
float F_a, F_b;
float dotLH5 = pow(1.0 - dotLH, 5.0);
F_a = 1.0;
F_b = dotLH5;
// V
float vis;
float k = alpha / 2.0;
float k2 = k * k;
float invK2 = 1.0 - k2;
//vis = rcp(dotLH * dotLH * invK2 + k2);
vis = inversesqrt(dotLH * dotLH * invK2 + k2);
return vec2(F_a * vis, F_b * vis);
}
float LightingFuncGGX_D(float dotNH, float roughness) {
float alpha = roughness * roughness;
float alphaSqr = alpha * alpha;
float pi = 3.14159;
float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0;
float D = alphaSqr / (pi * denom * denom);
return D;
}
// John Hable - Optimizing GGX Shaders
// http://www.filmicworlds.com/2014/04/21/optimizing-ggx-shaders-with-dotlh/
float LightingFuncGGX_OPT3(float dotNL, float dotLH, float dotNH, float roughness, float F0) {
// vec3 H = normalize(V + L);
// float dotNL = clamp(dot(N, L), 0.0, 1.0);
// float dotLH = clamp(dot(L, H), 0.0, 1.0);
// float dotNH = clamp(dot(N, H), 0.0, 1.0);
float D = LightingFuncGGX_D(dotNH, roughness);
vec2 FV_helper = LightingFuncGGX_FV(dotLH, roughness);
float FV = F0 * FV_helper.x + (1.0 - F0) * FV_helper.y;
float specular = dotNL * D * FV;
return specular;
}
vec3 f_schlick(vec3 f0, float vh) {
return f0 + (1.0-f0)*exp2((-5.55473 * vh - 6.98316)*vh);
}
float v_smithschlick(float nl, float nv, float a) {
return 1.0 / ( (nl*(1.0-a)+a) * (nv*(1.0-a)+a) );
}
float d_ggx(float nh, float a) {
float a2 = a*a;
float denom = pow(nh*nh * (a2-1.0) + 1.0, 2.0);
return a2 * (1.0 / 3.1415926535) / denom;
}
vec3 specularBRDF(vec3 f0, float roughness, float nl, float nh, float nv, float vh, float lh) {
float a = roughness * roughness;
return d_ggx(nh, a) * clamp(v_smithschlick(nl, nv, a), 0.0, 1.0) * f_schlick(f0, vh) / 4.0;
//return vec3(LightingFuncGGX_OPT3(nl, lh, nh, roughness, f0[0]));
}
vec3 lambert(vec3 albedo, float nl) {
return albedo * max(0.0, nl);
}
vec3 burley(vec3 albedo, float roughness, float NoV, float NoL, float VoH) {
float FD90 = 0.5 + 2 * VoH * VoH * roughness;
float FdV = 1 + (FD90 - 1) * pow( 1 - NoV, 5 );
float FdL = 1 + (FD90 - 1) * pow( 1 - NoL, 5 );
return albedo * ( (1.0 / 3.1415926535) * FdV * FdL );
}
vec3 orenNayar(vec3 albedo, float roughness, float NoV, float NoL, float VoH ) {
float pi = 3.1415926535;
float a = roughness * roughness;
float s = a;// / ( 1.29 + 0.5 * a );
float s2 = s * s;
float VoL = 2.0 * VoH * VoH - 1.0; // double angle identity
float Cosri = VoL - NoV * NoL;
float C1 = 1.0 - 0.5 * s2 / (s2 + 0.33);
float test = 1.0;
if (Cosri >= 0.0) test = (1.0 / ( max( NoL, NoV ) ));
float C2 = 0.45 * s2 / (s2 + 0.09) * Cosri * test;
return albedo / pi * ( C1 + C2 ) * ( 1.0 + roughness * 0.5 );
}
vec3 diffuseBRDF(vec3 albedo, float roughness, float nv, float nl, float vh, float lv) {
return lambert(albedo, nl);
//return burley(albedo, roughness, nv, nl, vh);
//return orenNayar(albedo, roughness, lv, nl, nv);
}
vec3 surfaceAlbedo(vec3 baseColor, float metalness) {
return mix(baseColor, vec3(0.0), metalness);
}
vec3 surfaceF0(vec3 baseColor, float metalness) {
return mix(vec3(0.04), baseColor, metalness);
}
#ifdef _Rad
float getMipLevelFromRoughness(float roughness) {
// First mipmap level = roughness 0, last = roughness = 1
return roughness * envmapNumMipmaps;
}
#endif
// Linearly Transformed Cosines
/*
vec3 mul(mat3 m, vec3 v) {
return m * v;
}
mat3 mul(mat3 m1, mat3 m2) {
return m1 * m2;
}
mat3 transpose2(mat3 v) {
mat3 tmp;
tmp[0] = vec3(v[0].x, v[1].x, v[2].x);
tmp[1] = vec3(v[0].y, v[1].y, v[2].y);
tmp[2] = vec3(v[0].z, v[1].z, v[2].z);
return tmp;
}
float IntegrateEdge(vec3 v1, vec3 v2) {
float cosTheta = dot(v1, v2);
cosTheta = clamp(cosTheta, -0.9999, 0.9999);
float theta = acos(cosTheta);
float res = cross(v1, v2).z * theta / sin(theta);
return res;
}
int ClipQuadToHorizon() { //inout vec3 L[5], out int n) {
// detect clipping config
int config = 0;
if (L0.z > 0.0) config += 1;
if (L1.z > 0.0) config += 2;
if (L2.z > 0.0) config += 4;
if (L3.z > 0.0) config += 8;
// clip
int n = 0;
if (config == 0) {
// clip all
}
else if (config == 1) { // V1 clip V2 V3 V4
n = 3;
L1 = -L1.z * L0 + L0.z * L1;
L2 = -L3.z * L0 + L0.z * L3;
}
else if (config == 2) { // V2 clip V1 V3 V4
n = 3;
L0 = -L0.z * L1 + L1.z * L0;
L2 = -L2.z * L1 + L1.z * L2;
}
else if (config == 3) { // V1 V2 clip V3 V4
n = 4;
L2 = -L2.z * L1 + L1.z * L2;
L3 = -L3.z * L0 + L0.z * L3;
}
else if (config == 4) { // V3 clip V1 V2 V4
n = 3;
L0 = -L3.z * L2 + L2.z * L3;
L1 = -L1.z * L2 + L2.z * L1;
}
else if (config == 5) { // V1 V3 clip V2 V4) impossible
n = 0;
}
else if (config == 6) { // V2 V3 clip V1 V4
n = 4;
L0 = -L0.z * L1 + L1.z * L0;
L3 = -L3.z * L2 + L2.z * L3;
}
else if (config == 7) { // V1 V2 V3 clip V4
n = 5;
L4 = -L3.z * L0 + L0.z * L3;
L3 = -L3.z * L2 + L2.z * L3;
}
else if (config == 8) { // V4 clip V1 V2 V3
n = 3;
L0 = -L0.z * L3 + L3.z * L0;
L1 = -L2.z * L3 + L3.z * L2;
L2 = L3;
}
else if (config == 9) { // V1 V4 clip V2 V3
n = 4;
L1 = -L1.z * L0 + L0.z * L1;
L2 = -L2.z * L3 + L3.z * L2;
}
else if (config == 10) { // V2 V4 clip V1 V3) impossible
n = 0;
}
else if (config == 11) { // V1 V2 V4 clip V3
n = 5;
L4 = L3;
L3 = -L2.z * L3 + L3.z * L2;
L2 = -L2.z * L1 + L1.z * L2;
}
else if (config == 12) { // V3 V4 clip V1 V2
n = 4;
L1 = -L1.z * L2 + L2.z * L1;
L0 = -L0.z * L3 + L3.z * L0;
}
else if (config == 13) { // V1 V3 V4 clip V2
n = 5;
L4 = L3;
L3 = L2;
L2 = -L1.z * L2 + L2.z * L1;
L1 = -L1.z * L0 + L0.z * L1;
}
else if (config == 14) { // V2 V3 V4 clip V1
n = 5;
L4 = -L0.z * L3 + L3.z * L0;
L0 = -L0.z * L1 + L1.z * L0;
}
else if (config == 15) { // V1 V2 V3 V4
n = 4;
}
if (n == 3)
L3 = L0;
if (n == 4)
L4 = L0;
return n;
}
vec3 LTC_Evaluate(vec3 N, vec3 V, vec3 P, mat3 Minv, vec3 points0, vec3 points1, vec3 points2, vec3 points3, bool twoSided) {
// construct orthonormal basis around N
vec3 T1, T2;
T1 = normalize(V - N*dot(V, N));
T2 = cross(N, T1);
// rotate area light in (T1, T2, R) basis
Minv = mul(Minv, transpose2(mat3(T1, T2, N)));
// polygon (allocate 5 vertices for clipping)
// vec3 L[5];
L0 = mul(Minv, points0 - P);
L1 = mul(Minv, points1 - P);
L2 = mul(Minv, points2 - P);
L3 = mul(Minv, points3 - P);
int n = ClipQuadToHorizon(); //L, n);
if (n == 0) {
return vec3(0, 0, 0);
}
// project onto sphere
L0 = normalize(L0);
L1 = normalize(L1);
L2 = normalize(L2);
L3 = normalize(L3);
L4 = normalize(L4);
// integrate
float sum = 0.0;
sum += IntegrateEdge(L0, L1);
sum += IntegrateEdge(L1, L2);
sum += IntegrateEdge(L2, L3);
if (n >= 4) {
sum += IntegrateEdge(L3, L4);
}
if (n == 5) {
sum += IntegrateEdge(L4, L0);
}
sum = twoSided ? abs(sum) : max(0.0, -sum);
vec3 Lo_i = vec3(sum, sum, sum);
return Lo_i;
}*/
#ifdef _Toon
float stepmix(float edge0, float edge1, float E, float x) {
float T = clamp(0.5 * (x - edge0 + E) / E, 0.0, 1.0);
return mix(edge0, edge1, T);
}
#endif
void main() {
#ifdef _NorTex
vec3 n = (texture(snormal, texCoord).rgb * 2.0 - 1.0);
n = normalize(TBN * normalize(n));
// vec3 nn = normalize(normal);
// vec3 dp1 = dFdx( position );
// vec3 dp2 = dFdy( position );
// vec2 duv1 = dFdx( texCoord );
// vec2 duv2 = dFdy( texCoord );
// vec3 dp2perp = cross( dp2, nn );
// vec3 dp1perp = cross( nn, dp1 );
// vec3 T = dp2perp * duv1.x + dp1perp * duv2.x;
// vec3 B = dp2perp * duv1.y + dp1perp * duv2.y;
// float invmax = inversesqrt( max( dot(T,T), dot(B,B) ) );
// mat3 TBN = mat3(T * invmax, B * invmax, nn);
// vec3 n = normalize(TBN * nn);
#else
vec3 n = normalize(normal);
#endif
#ifdef _NorStr
n *= normalStrength;
#endif
// Move out
vec3 l;
if (lightType == 0) { // Sun
l = lightDir;
}
else { // Point, spot
l = normalize(lightPos - position.xyz);
}
float dotNL = max(dot(n, l), 0.0);
float visibility = 1.0;
#ifndef _NoShadows
if (receiveShadow) {
if (lPos.w > 0.0) {
visibility = shadowTest(lPos);
}
}
#endif
vec3 baseColor = matColor.rgb;
#ifdef _BaseTex
vec4 texel = texture(sbase, texCoord);
#ifdef _AlphaTest
if (texel.a < 0.4)
discard;
#endif
texel.rgb = pow(texel.rgb, vec3(2.2));
baseColor *= texel.rgb;
#endif
vec3 v = normalize(eyeDir);
vec3 h = normalize(v + l);
float dotNV = max(dot(n, v), 0.0);
float dotNH = max(dot(n, h), 0.0);
float dotVH = max(dot(v, h), 0.0);
float dotLV = max(dot(l, v), 0.0);
float dotLH = max(dot(l, h), 0.0);
#ifdef _MetTex
float metalness = texture(smetal, texCoord).r;
#endif
vec3 albedo = surfaceAlbedo(baseColor, metalness);
vec3 f0 = surfaceF0(baseColor, metalness);
#ifdef _RoughTex
float roughness = texture(srough, texCoord).r;
#endif
#ifdef _RoughStr
roughness *= roughnessStrength;
#endif
// #ifdef _Toon
// vec3 v = normalize(eyeDir);
// vec3 h = normalize(v + l);
// const vec3 ambientMaterial = baseColor * vec3(0.35, 0.35, 0.35) + vec3(0.15);
// const vec3 diffuseMaterial = baseColor;
// const vec3 specularMaterial = vec3(0.45, 0.35, 0.35);
// const float shininess = 0.5;
// float df = max(0.0, dotNL);
// float sf = max(0.0, dot(n, h));
// sf = pow(sf, shininess);
// const float A = 0.1;
// const float B = 0.3;
// const float C = 0.6;
// const float D = 1.0;
// float E = fwidth(df);
// bool f = false;
// if (df > A - E) if (df < A + E) {
// f = true;
// df = stepmix(A, B, E, df);
// }
// /*else*/if (!f) if (df > B - E) if(df < B + E) {
// f = true;
// df = stepmix(B, C, E, df);
// }
// /*else*/if (!f) if (df > C - E) if (df < C + E) {
// f = true;
// df = stepmix(C, D, E, df);
// }
// /*else*/if (!f) if (df < A) {
// df = 0.0;
// }
// else if (df < B) {
// df = B;
// }
// else if (df < C) {
// df = C;
// }
// else df = D;
// E = fwidth(sf);
// if (sf > 0.5 - E && sf < 0.5 + E) {
// sf = smoothstep(0.5 - E, 0.5 + E, sf);
// }
// else {
// sf = step(0.5, sf);
// }
// outColor.rgb = ambientMaterial + (df * diffuseMaterial + sf * specularMaterial) * visibility;
// float edgeDetection = (dot(v, n) < 0.1) ? 0.0 : 1.0;
// outColor.rgb *= edgeDetection;
// // const int levels = 4;
// // const float scaleFactor = 1.0 / levels;
// // float diffuse = max(0, dotNL);
// // const float material_kd = 0.8;
// // const float material_ks = 0.3;
// // vec3 diffuseColor = vec3(0.40, 0.60, 0.70);
// // diffuseColor = diffuseColor * material_kd * floor(diffuse * levels) * scaleFactor;
// // float specular = 0.0;
// // if(dotNL > 0.0) {
// // specular = material_ks * pow( max(0, dot( h, n)), shininess);
// // }
// // // Limit specular
// // float specMask = (pow(dot(h, n), shininess) > 0.4) ? 1.0 : 0.0;
// // float edgeDetection = (dot(v, n) > 0.3) ? 1.0 : 0.0;
// // outColor.rgb = edgeDetection * ((diffuseColor + specular * specMask) * visibility + ambientMaterial);
// #endif
// LTC
// const float rectSizeX = 2.5;
// const float rectSizeY = 1.2;
// vec3 ex = vec3(1, 0, 0)*rectSizeX;
// vec3 ey = vec3(0, 0, 1)*rectSizeY;
// vec3 p1 = light - ex + ey;
// vec3 p2 = light + ex + ey;
// vec3 p3 = light + ex - ey;
// vec3 p4 = light - ex - ey;
// float theta = acos(dotNV);
// vec2 tuv = vec2(roughness, theta/(0.5*PI));
// tuv = tuv*LUT_SCALE + LUT_BIAS;
// vec4 t = texture(sltcMat, tuv);
// mat3 Minv = mat3(
// vec3( 1, t.y, 0),
// vec3( 0, 0, t.z),
// vec3(t.w, 0, t.x)
// );
// vec3 ltcspec = LTC_Evaluate(n, v, position, Minv, p1, p2, p3, p4, true);
// ltcspec *= texture(sltcMag, tuv).a;
// vec3 ltcdiff = LTC_Evaluate(n, v, position, mat3(1), p1, p2, p3, p4, true);
// vec3 ltccol = ltcspec + ltcdiff * albedo;
// ltccol /= 2.0*PI;
// Direct
vec3 direct = diffuseBRDF(albedo, roughness, dotNV, dotNL, dotVH, dotLV) + specularBRDF(f0, roughness, dotNL, dotNH, dotNV, dotVH, dotLH);
if (lightType == 2) { // Spot
float spotEffect = dot(lightDir, l);
if (spotEffect < spotlightCutoff) {
spotEffect = smoothstep(spotlightCutoff - spotlightExponent, spotlightCutoff, spotEffect);
direct *= spotEffect;
}
}
direct = direct * lightColor * lightStrength;
// Indirect
vec3 indirectDiffuse = shIrradiance(n, 2.2) / PI;
#ifdef _EnvLDR
indirectDiffuse = pow(indirectDiffuse, vec3(2.2));
#endif
indirectDiffuse *= albedo;
vec3 indirect = indirectDiffuse;
#ifdef _Rad
vec3 reflectionWorld = reflect(-v, n);
float lod = getMipLevelFromRoughness(roughness);// + 1.0;
vec3 prefilteredColor = textureLod(senvmapRadiance, envMapEquirect(reflectionWorld), lod).rgb;
#ifdef _EnvLDR
prefilteredColor = pow(prefilteredColor, vec3(2.2));
#endif
vec2 envBRDF = texture(senvmapBrdf, vec2(roughness, 1.0 - dotNV)).xy;
vec3 indirectSpecular = prefilteredColor * (f0 * envBRDF.x + envBRDF.y);
indirect += indirectSpecular;
#endif
indirect = indirect * envmapStrength;// * lightColor * lightStrength;
outColor = vec4(vec3(direct * visibility + indirect), 1.0);
#ifdef _OccTex
vec3 occ = texture(socclusion, texCoord).rgb;
outColor.rgb *= occ;
#else
outColor.rgb *= occlusion;
#endif
// LTC
// outColor.rgb = ltccol * 10.0 * visibility + indirect / 14.0;
#ifdef _LDR
// gl_FragColor = vec4(pow(outColor.rgb, vec3(1.0 / 2.2)), outColor.a);
outColor = vec4(pow(outColor.rgb, vec3(1.0 / 2.2)), outColor.a);
// #else
// gl_FragColor = vec4(outColor.rgb, outColor.a);
//outColor = vec4(outColor.rgb, outColor.a);
#endif
}