armory/Shaders/std/shadows.glsl

372 lines
12 KiB
GLSL
Executable file

#ifndef _SHADOWS_GLSL_
#define _SHADOWS_GLSL_
#include "compiled.inc"
#ifdef _CSM
uniform vec4 casData[shadowmapCascades * 4 + 4];
#endif
#ifdef _SMSizeUniform
uniform vec2 smSizeUniform;
#endif
#ifdef _ShadowMap
#ifdef _Clusters
#ifdef _ShadowMapAtlas
uniform vec4 pointLightDataArray[maxLightsCluster * 6];
#endif
#endif
#endif
#ifdef _ShadowMapAtlas
// https://www.khronos.org/registry/OpenGL/specs/gl/glspec20.pdf // p:168
// https://www.gamedev.net/forums/topic/687535-implementing-a-cube-map-lookup-function/5337472/
vec2 sampleCube(vec3 dir, out int faceIndex) {
vec3 dirAbs = abs(dir);
float ma;
vec2 uv;
if(dirAbs.z >= dirAbs.x && dirAbs.z >= dirAbs.y) {
faceIndex = dir.z < 0.0 ? 5 : 4;
ma = 0.5 / dirAbs.z;
uv = vec2(dir.z < 0.0 ? -dir.x : dir.x, -dir.y);
}
else if(dirAbs.y >= dirAbs.x) {
faceIndex = dir.y < 0.0 ? 3 : 2;
ma = 0.5 / dirAbs.y;
uv = vec2(dir.x, dir.y < 0.0 ? -dir.z : dir.z);
}
else {
faceIndex = dir.x < 0.0 ? 1 : 0;
ma = 0.5 / dirAbs.x;
uv = vec2(dir.x < 0.0 ? dir.z : -dir.z, -dir.y);
}
// downscale uv a little to hide seams
// transform coordinates from clip space to texture space
#ifndef _FlipY
return uv * 0.9976 * ma + 0.5;
#else
#ifdef HLSL
return uv * 0.9976 * ma + 0.5;
#else
return vec2(uv.x * ma, uv.y * -ma) * 0.9976 + 0.5;
#endif
#endif
}
#endif
float PCF(sampler2DShadow shadowMap, const vec2 uv, const float compare, const vec2 smSize) {
float result = texture(shadowMap, vec3(uv + (vec2(-1.0, -1.0) / smSize), compare));
result += texture(shadowMap, vec3(uv + (vec2(-1.0, 0.0) / smSize), compare));
result += texture(shadowMap, vec3(uv + (vec2(-1.0, 1.0) / smSize), compare));
result += texture(shadowMap, vec3(uv + (vec2(0.0, -1.0) / smSize), compare));
result += texture(shadowMap, vec3(uv, compare));
result += texture(shadowMap, vec3(uv + (vec2(0.0, 1.0) / smSize), compare));
result += texture(shadowMap, vec3(uv + (vec2(1.0, -1.0) / smSize), compare));
result += texture(shadowMap, vec3(uv + (vec2(1.0, 0.0) / smSize), compare));
result += texture(shadowMap, vec3(uv + (vec2(1.0, 1.0) / smSize), compare));
return result / 9.0;
}
float lpToDepth(vec3 lp, const vec2 lightProj) {
lp = abs(lp);
float zcomp = max(lp.x, max(lp.y, lp.z));
zcomp = lightProj.x - lightProj.y / zcomp;
return zcomp * 0.5 + 0.5;
}
float PCFCube(samplerCubeShadow shadowMapCube, const vec3 lp, vec3 ml, const float bias, const vec2 lightProj, const vec3 n) {
const float s = shadowmapCubePcfSize; // TODO: incorrect...
float compare = lpToDepth(lp, lightProj) - bias * 1.5;
ml = ml + n * bias * 20;
#ifdef _InvY
ml.y = -ml.y;
#endif
float result = texture(shadowMapCube, vec4(ml, compare));
result += texture(shadowMapCube, vec4(ml + vec3(s, s, s), compare));
result += texture(shadowMapCube, vec4(ml + vec3(-s, s, s), compare));
result += texture(shadowMapCube, vec4(ml + vec3(s, -s, s), compare));
result += texture(shadowMapCube, vec4(ml + vec3(s, s, -s), compare));
result += texture(shadowMapCube, vec4(ml + vec3(-s, -s, s), compare));
result += texture(shadowMapCube, vec4(ml + vec3(s, -s, -s), compare));
result += texture(shadowMapCube, vec4(ml + vec3(-s, s, -s), compare));
result += texture(shadowMapCube, vec4(ml + vec3(-s, -s, -s), compare));
return result / 9.0;
}
#ifdef _ShadowMapAtlas
// transform "out-of-bounds" coordinates to the correct face/coordinate system
// https://www.khronos.org/opengl/wiki/File:CubeMapAxes.png
vec2 transformOffsetedUV(const int faceIndex, out int newFaceIndex, vec2 uv) {
if (uv.x < 0.0) {
if (faceIndex == 0) { // X+
newFaceIndex = 4; // Z+
}
else if (faceIndex == 1) { // X-
newFaceIndex = 5; // Z-
}
else if (faceIndex == 2) { // Y+
newFaceIndex = 1; // X-
}
else if (faceIndex == 3) { // Y-
newFaceIndex = 1; // X-
}
else if (faceIndex == 4) { // Z+
newFaceIndex = 1; // X-
}
else { // Z-
newFaceIndex = 0; // X+
}
uv = vec2(1.0 + uv.x, uv.y);
}
else if (uv.x > 1.0) {
if (faceIndex == 0) { // X+
newFaceIndex = 5; // Z-
}
else if (faceIndex == 1) { // X-
newFaceIndex = 4; // Z+
}
else if (faceIndex == 2) { // Y+
newFaceIndex = 0; // X+
}
else if (faceIndex == 3) { // Y-
newFaceIndex = 0; // X+
}
else if (faceIndex == 4) { // Z+
newFaceIndex = 0; // X+
}
else { // Z-
newFaceIndex = 1; // X-
}
uv = vec2(1.0 - uv.x, uv.y);
}
else if (uv.y < 0.0) {
if (faceIndex == 0) { // X+
newFaceIndex = 2; // Y+
}
else if (faceIndex == 1) { // X-
newFaceIndex = 2; // Y+
}
else if (faceIndex == 2) { // Y+
newFaceIndex = 5; // Z-
}
else if (faceIndex == 3) { // Y-
newFaceIndex = 4; // Z+
}
else if (faceIndex == 4) { // Z+
newFaceIndex = 2; // Y+
}
else { // Z-
newFaceIndex = 2; // Y+
}
uv = vec2(uv.x, 1.0 + uv.y);
}
else if (uv.y > 1.0) {
if (faceIndex == 0) { // X+
newFaceIndex = 3; // Y-
}
else if (faceIndex == 1) { // X-
newFaceIndex = 3; // Y-
}
else if (faceIndex == 2) { // Y+
newFaceIndex = 4; // Z+
}
else if (faceIndex == 3) { // Y-
newFaceIndex = 5; // Z-
}
else if (faceIndex == 4) { // Z+
newFaceIndex = 3; // Y-
}
else { // Z-
newFaceIndex = 3; // Y-
}
uv = vec2(uv.x, 1.0 - uv.y);
} else {
newFaceIndex = faceIndex;
}
// cover corner cases too
return uv;
}
float PCFFakeCube(sampler2DShadow shadowMap, const vec3 lp, vec3 ml, const float bias, const vec2 lightProj, const vec3 n, const int index) {
const vec2 smSize = smSizeUniform; // TODO: incorrect...
const float compare = lpToDepth(lp, lightProj) - bias * 1.5;
ml = ml + n * bias * 20;
int faceIndex = 0;
const int lightIndex = index * 6;
const vec2 uv = sampleCube(ml, faceIndex);
vec4 pointLightTile = pointLightDataArray[lightIndex + faceIndex]; // x: tile X offset, y: tile Y offset, z: tile size relative to atlas
vec2 uvtiled = pointLightTile.z * uv + pointLightTile.xy;
#ifdef _FlipY
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
#endif
float result = texture(shadowMap, vec3(uvtiled, compare));
// soft shadowing
int newFaceIndex = 0;
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(-1.0, 0.0) / smSize)));
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
#ifdef _FlipY
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
#endif
result += texture(shadowMap, vec3(uvtiled, compare));
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(-1.0, 1.0) / smSize)));
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
#ifdef _FlipY
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
#endif
result += texture(shadowMap, vec3(uvtiled, compare));
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(0.0, -1.0) / smSize)));
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
#ifdef _FlipY
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
#endif
result += texture(shadowMap, vec3(uvtiled, compare));
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(-1.0, -1.0) / smSize)));
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
#ifdef _FlipY
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
#endif
result += texture(shadowMap, vec3(uvtiled, compare));
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(0.0, 1.0) / smSize)));
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
#ifdef _FlipY
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
#endif
result += texture(shadowMap, vec3(uvtiled, compare));
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(1.0, -1.0) / smSize)));
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
#ifdef _FlipY
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
#endif
result += texture(shadowMap, vec3(uvtiled, compare));
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(1.0, 0.0) / smSize)));
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
#ifdef _FlipY
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
#endif
result += texture(shadowMap, vec3(uvtiled, compare));
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(1.0, 1.0) / smSize)));
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
#ifdef _FlipY
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
#endif
result += texture(shadowMap, vec3(uvtiled, compare));
return result / 9.0;
}
#endif
float shadowTest(sampler2DShadow shadowMap, const vec3 lPos, const float shadowsBias) {
#ifdef _SMSizeUniform
vec2 smSize = smSizeUniform;
#else
const vec2 smSize = shadowmapSize;
#endif
if (lPos.x < 0.0 || lPos.y < 0.0 || lPos.x > 1.0 || lPos.y > 1.0) return 1.0;
return PCF(shadowMap, lPos.xy, lPos.z - shadowsBias, smSize);
}
#ifdef _CSM
mat4 getCascadeMat(const float d, out int casi, out int casIndex) {
const int c = shadowmapCascades;
// Get cascade index
// TODO: use bounding box slice selection instead of sphere
const vec4 ci = vec4(float(c > 0), float(c > 1), float(c > 2), float(c > 3));
// int ci;
// if (d < casData[c * 4].x) ci = 0;
// else if (d < casData[c * 4].y) ci = 1 * 4;
// else if (d < casData[c * 4].z) ci = 2 * 4;
// else ci = 3 * 4;
// Splits
vec4 comp = vec4(
float(d > casData[c * 4].x),
float(d > casData[c * 4].y),
float(d > casData[c * 4].z),
float(d > casData[c * 4].w));
casi = int(min(dot(ci, comp), c));
// Get cascade mat
casIndex = casi * 4;
return mat4(
casData[casIndex ],
casData[casIndex + 1],
casData[casIndex + 2],
casData[casIndex + 3]);
// if (casIndex == 0) return mat4(casData[0], casData[1], casData[2], casData[3]);
// ..
}
float shadowTestCascade(sampler2DShadow shadowMap, const vec3 eye, const vec3 p, const float shadowsBias) {
#ifdef _SMSizeUniform
vec2 smSize = smSizeUniform;
#else
const vec2 smSize = shadowmapSize * vec2(shadowmapCascades, 1.0);
#endif
const int c = shadowmapCascades;
float d = distance(eye, p);
int casi;
int casIndex;
mat4 LWVP = getCascadeMat(d, casi, casIndex);
vec4 lPos = LWVP * vec4(p, 1.0);
lPos.xyz /= lPos.w;
float visibility = 1.0;
if (lPos.w > 0.0) visibility = PCF(shadowMap, lPos.xy, lPos.z - shadowsBias, smSize);
// Blend cascade
// https://github.com/TheRealMJP/Shadows
const float blendThres = 0.15;
float nextSplit = casData[c * 4][casi];
float splitSize = casi == 0 ? nextSplit : nextSplit - casData[c * 4][casi - 1];
float splitDist = (nextSplit - d) / splitSize;
if (splitDist <= blendThres && casi != c - 1) {
int casIndex2 = casIndex + 4;
mat4 LWVP2 = mat4(
casData[casIndex2 ],
casData[casIndex2 + 1],
casData[casIndex2 + 2],
casData[casIndex2 + 3]);
vec4 lPos2 = LWVP2 * vec4(p, 1.0);
lPos2.xyz /= lPos2.w;
float visibility2 = 1.0;
if (lPos2.w > 0.0) visibility2 = PCF(shadowMap, lPos2.xy, lPos2.z - shadowsBias, smSize);
float lerpAmt = smoothstep(0.0, blendThres, splitDist);
return mix(visibility2, visibility, lerpAmt);
}
return visibility;
// Visualize cascades
// if (ci == 0) albedo.rgb = vec3(1.0, 0.0, 0.0);
// if (ci == 4) albedo.rgb = vec3(0.0, 1.0, 0.0);
// if (ci == 8) albedo.rgb = vec3(0.0, 0.0, 1.0);
// if (ci == 12) albedo.rgb = vec3(1.0, 1.0, 0.0);
}
#endif
#endif