
1

Required Properties
(Or: Initialization Debt)

In the base type, we have to state LastName 4 times!
2 times in every derived type
MiddleName has to be constantly restated, even though it's optional

2

C# 8 Class Hierarchy
class Person
{

public string FirstName { get; }
public string LastName { get; }
Public string MiddleName { get; }
public Person(string firstName, string lastName, string middleName = “”)

=> (FirstName, LastName, MiddleName) =
(firstName, lastName, middleName);

}
class Student
{

public string Id { get; }
public Student(string firstName, string lastName, string id,

string middleName = “”)
: base(firstName, lastName, middleName)
=> Id = id;

}

LastName is repeated 6 times!

We got rid of restating the optional MiddleName, and removed the 3 restatements of
LastName from the base class. However, the subclasses still require LastName to be
restated twice.

3

C# 9 Record Hierarchy

record Person(string FirstName, string LastName)

{

public string MiddleName { get; init; } = “”;

}

record Student(string FirstName, string LastName, string
Id) : Person(FirstName, LastName);

record Professor(string FirstName, string LastName, string
Title) : Person(FirstName, LastName);

Only repeated 5 times, and 1 additional class

We don’t need to restate LastName at every level: good! However, we’ve lost an
important requirement, as LastName is no longer required to be set at the creation
site, and we get nullable warnings on the classes

4

C# 9 Nominal Record Hierarchy

record Person
{

public string FirstName { get; init; }
public string MiddleName { get; init; } = “”;
public string LastName { get; init; }

}
record Student: Person
{

public string Id { get; init; }
}
record Professor : Person
{

public string Title { get; init; }
}

Contract: given these inputs, I can construct an output of this type
Ordering makes this positional
Please remember contract. I’m going to use it for the rest of the presentation

5

What is a constructor?

• A constructor is the set of information required to construct a class
• Parameter Types

• Parameter Names

• Ordering

• Or: a contract for construction

public Student(
string firstName,
string lastName,
string middleName = “”)

Conflating nullability with requiredness is a common theme among users
Multiple contracts: think of copy constructors, for example

6

Positional Constructors

Pro

• Ability to specify both required
and optional parameters

• Nullability of parameters is not
conflated with requiredness

• If a new required element is
added and constructing code is
not updated, we see a runtime
failure

• Ability to have multiple
contracts

Con

• Order matters: reordering is a
breaking change

• Constructors are cumulative. All
previous contracts must be
restated, even if they are
unmodified

• Breaks occur in the derived
constructor, not at the point that
actually depends on the contract

7

Glimmers of a solution: Properties

• Concerns around order lead us to examine properties and object
initializers as an initialization mechanism

• Pros:
• No order

• No restating base class properties required – including when new properties
are added!

• Cons:
• No contract – This is the big one, and what we’re trying to solve here

• Let a lone multiple contracts

Next slide for an example

8

Components of a contract

• Calling a constructor is a form of validating a contract
• All parameters must be present. If a new parameter has been added or an old

parameter has been removed, the runtime will fail

• All parameters must be the correct type. If a parameter has changed to an
incompatible type, the runtime will fail

• Everywhere that depends on a contract will validate this, directly or indirectly

• However, there is no way of stating “I have whatever contract that
thing had, plus my own”
• All previous terms must be restated.

• The contract failure doesn’t occur at the best place: the component that
actually depends on the contract.

If these are in separate assemblies, and Person is updated, then the contract failure
occurs in the base call, despite the fact that Student doesn’t care about the base
contract

9

Restating contracts
class Person
{

public string FirstName { get; }
public string LastName { get; }
Public string MiddleName { get; }
public Person(string firstName, string lastName, string middleName = “”)

=> (FirstName, LastName, MiddleName) =
(firstName, lastName, middleName);

}
class Student
{

public string Id { get; }
public Student(string firstName, string lastName, string id,

string middleName = “”)
: base(firstName, lastName, middleName)
=> Id = id;

}

We also need to consider how to ensure that multiple contracts can be created in this
property-based world. It’s not enough to say “Just these properties are required”
Consider also future expansions into factories. We’d want MakeAMads to be able to
say “You must specify LastName”, but allow it to elide FirstName

10

Multiple Contracts

public class Person
{

public string FirstName { get; required init; }
public string? MiddleName { get; init; }
public string LastName { get; required init; }

// Requires FirstName/LastName to be set by consumers
public Person() {}

// Requires nothing to be set by consumers
public Person(Person other)
{

FirstName = other.FirstName;
MiddleName = other.MiddleName;
LastName = other.LastName;

}
}

This means that, if I was creating a new instance of student, I should have to validate
that the contract for student and the contract for person are both satisfied at the
construction site
If I create a new constructor that provides defaults for some base parameters, then
that constructor would have to validate the contract and export an entirely new
contract, because it depends on the contract

11

Break it up: Nominal contracts

• Take the contracts we have today and break them up.

• Every constructor has a property contract

• That contract states “You must initialize these properties”

• Derived constructors can say “You must initialize my properties, and
see BaseContract_1 for the other things you must do”

• Contracts must be validated where they are depended upon
• If your constructor is only adding to a base contract, it does not depend on it!

The first 3 implementation methods we’ll go over are static verification

12

Nominal Contracts Implementations

• This is where input is needed

• There are 2 general approaches:
• Static verification. These approaches force the CLR to call a method, or

construct a generic type, that will fail if a contract has changed

• Manual verification. These approaches track what was been assigned and
what has not, then verify that everything that should be set has been set

This unfortunately leaves us where we are today: the contract is typed in the
constructor, so the base call to a required parameter constructor is a silent
restatement of the requirements. If you add a required property to assembly A,
assembly B would be required to update before it’s usable in assembly C
Type names have a limited size, so this would almost certainly run into issues where
we’d have to do things like generating multiple types

13

Implementation 1: Contract Types

• Every contract would generate a type, and the constructor would be modreq’d
with that type

• That type would contain information in it describing the required properties
and types

• Any changes to the contract break the call to the constructor

public modreq(typeof(

Requirements_System.String_FirstName_System.String_LastName
)) Person() {}

Benefits: adding a new required property will change the method, creating a
missingmethodexception at runtime at the correct location
Making a property optional later could be a breaking change, unless we have a “so,
include this in the contract for backcompat but not really enforce it” mechanism

14

Implementation 2: Verification Methods

• In this approach, we’d have a 5 step approach
1. modreq the constructor with some type that means “You must check a contract”

2. Produce a method that encodes in its parameters the types and names of the contract
elements

3. Attribute the constructor as requiring that contract method to be called

4. If any base constructors are called, attribute the constructor as calling those base
constructors

5. At construction site, the compiler emits a call to these methods. If things change, this
call will fail at the relevant construction point.

public void $Verify(string FirstName, string LastName) {}

If the contract changes, then II will no longer be a valid substitute for IR, and you’ll get
a type mismatch exception
Pros: could tolerate some property moves to base classes
Cons: actually forcing the runtime to perform this type of type check is hard. Would
have to design how it would work with multi-level constructors, and ensure there are
no ordering issues.

15

Implementation 3: Variance

interface II<in TMember, out TRest> { } // I Initialize

interface IR<TMember, TRest> : // I Require

II<TMember, TRest>,

II<object, IR<TMember, TRest>> { }

interface IE : II<object, IE> { } // I Empty

• Create a variance scenario where if the requirements change, substitution would
no longer work

• Constructor would create a generic method where T is constrained to:
• IR<FirstName, IR<LastName, IE>>

• Call point would then call the method with a type that contains what it initializes:
• II<FirstName, II<MiddleName, II<LastName, IE>>>

We liked the idea of validators before, this would be a need to readd them.
Resilient to most hierarchy changes: moving a property to a base type could be done
safely, and making it optional
Could be expensive for structs: an additional storage requirement might mean that
most structs and the BCL are unable to adopt this

16

Implementation 4: Track assignments in the
type
• Create a post-constructor method that must be called by the

constructing point

• The type will track backing field initializations (maybe a bit array)

• Post validation will be responsible for throwing

Pros: No size bloat in classes and structs
Resilient to moving properties between class levels
Cons: Very leaky abstraction. We’ll have to thread this through potentially many
constructor levels, future factory work, type classes…
This basically brings back the record builder approach.

17

Implementation 5: Track assignments outside
the type
• Each type would create a class or struct that tracks assignments

• When creating an instance of a type, we silently create one of these
tracking types, and track the assignments in it.

• After construction, we call a method on the tracking type to verify
that all requirements were met

This is a very simple, but very brittle approach. I’m including it here as an extreme
end, but I don’t actually expect us to choose it

18

Implementation 6: Magic Cookies

• We create a stable algorithm to generate a magic cookie value from
the requirements

• This cookie is passed as part of a constructor

• If the cookie does not validate, we throw

19

Implementation N/A: No verification

• To put all the options on the table, we could have no verification of
the contract at all

• No runtime failures when contracts are violated

• Version updates might introduce source-breaking changes that do not
translate into runtime-breaking changes

20

Putting it all together: Initialization Debt

1. The user declares that some properties must be set. This is
analogous to a user saying that some parameters are optional
• This is the debt

2. Every constructor exports some contract, allowing it to say “Users
must set these things”
• Letting users know about the debt they’ll incur if they use this constructor

3. We have some kind of verification method
• Ensuring that the debt is paid

