support: Add LockedPool

Add a pool for locked memory chunks, replacing LockedPageManager.

This is something I've been wanting to do for a long time. The current
approach of locking objects where they happen to be on the stack or heap
in-place causes a lot of mlock/munlock system call overhead, slowing
down any handling of keys.

Also locked memory is a limited resource on many operating systems (and
using a lot of it bogs down the system), so the previous approach of
locking every page that may contain any key information (but also other
information) is wasteful.
This commit is contained in:
Wladimir J. van der Laan 2016-09-18 09:55:14 +02:00
parent f4d1fc259b
commit 4536148b15
7 changed files with 832 additions and 328 deletions

View file

@ -133,7 +133,7 @@ BITCOIN_CORE_H = \
support/allocators/secure.h \
support/allocators/zeroafterfree.h \
support/cleanse.h \
support/pagelocker.h \
support/lockedpool.h \
sync.h \
threadsafety.h \
timedata.h \
@ -310,7 +310,7 @@ libbitcoin_common_a_SOURCES = \
libbitcoin_util_a_CPPFLAGS = $(AM_CPPFLAGS) $(BITCOIN_INCLUDES)
libbitcoin_util_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
libbitcoin_util_a_SOURCES = \
support/pagelocker.cpp \
support/lockedpool.cpp \
chainparamsbase.cpp \
clientversion.cpp \
compat/glibc_sanity.cpp \

View file

@ -6,7 +6,8 @@
#ifndef BITCOIN_SUPPORT_ALLOCATORS_SECURE_H
#define BITCOIN_SUPPORT_ALLOCATORS_SECURE_H
#include "support/pagelocker.h"
#include "support/lockedpool.h"
#include "support/cleanse.h"
#include <string>
@ -39,20 +40,15 @@ struct secure_allocator : public std::allocator<T> {
T* allocate(std::size_t n, const void* hint = 0)
{
T* p;
p = std::allocator<T>::allocate(n, hint);
if (p != NULL)
LockedPageManager::Instance().LockRange(p, sizeof(T) * n);
return p;
return static_cast<T*>(LockedPoolManager::Instance().alloc(sizeof(T) * n));
}
void deallocate(T* p, std::size_t n)
{
if (p != NULL) {
memory_cleanse(p, sizeof(T) * n);
LockedPageManager::Instance().UnlockRange(p, sizeof(T) * n);
}
std::allocator<T>::deallocate(p, n);
LockedPoolManager::Instance().free(p);
}
};

383
src/support/lockedpool.cpp Normal file
View file

@ -0,0 +1,383 @@
// Copyright (c) 2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "support/lockedpool.h"
#include "support/cleanse.h"
#if defined(HAVE_CONFIG_H)
#include "config/bitcoin-config.h"
#endif
#ifdef WIN32
#ifdef _WIN32_WINNT
#undef _WIN32_WINNT
#endif
#define _WIN32_WINNT 0x0501
#define WIN32_LEAN_AND_MEAN 1
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#else
#include <sys/mman.h> // for mmap
#include <sys/resource.h> // for getrlimit
#include <limits.h> // for PAGESIZE
#include <unistd.h> // for sysconf
#endif
LockedPoolManager* LockedPoolManager::_instance = NULL;
std::once_flag LockedPoolManager::init_flag;
/*******************************************************************************/
// Utilities
//
/** Align up to power of 2 */
static inline size_t align_up(size_t x, size_t align)
{
return (x + align - 1) & ~(align - 1);
}
/*******************************************************************************/
// Implementation: Arena
Arena::Arena(void *base_in, size_t size_in, size_t alignment_in):
base(static_cast<char*>(base_in)), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in)
{
// Start with one free chunk that covers the entire arena
chunks.emplace(base, Chunk(size_in, false));
}
Arena::~Arena()
{
}
void* Arena::alloc(size_t size)
{
// Round to next multiple of alignment
size = align_up(size, alignment);
// Don't handle zero-sized chunks, or those bigger than MAX_SIZE
if (size == 0 || size >= Chunk::MAX_SIZE) {
return nullptr;
}
for (auto& chunk: chunks) {
if (!chunk.second.isInUse() && size <= chunk.second.getSize()) {
char* base = chunk.first;
size_t leftover = chunk.second.getSize() - size;
if (leftover > 0) { // Split chunk
chunks.emplace(base + size, Chunk(leftover, false));
chunk.second.setSize(size);
}
chunk.second.setInUse(true);
return reinterpret_cast<void*>(base);
}
}
return nullptr;
}
void Arena::free(void *ptr)
{
// Freeing the NULL pointer is OK.
if (ptr == nullptr) {
return;
}
auto i = chunks.find(static_cast<char*>(ptr));
if (i == chunks.end() || !i->second.isInUse()) {
throw std::runtime_error("Arena: invalid or double free");
}
i->second.setInUse(false);
if (i != chunks.begin()) { // Absorb into previous chunk if exists and free
auto prev = i;
--prev;
if (!prev->second.isInUse()) {
// Absorb current chunk size into previous chunk.
prev->second.setSize(prev->second.getSize() + i->second.getSize());
// Erase current chunk. Erasing does not invalidate current
// iterators for a map, except for that pointing to the object
// itself, which will be overwritten in the next statement.
chunks.erase(i);
// From here on, the previous chunk is our current chunk.
i = prev;
}
}
auto next = i;
++next;
if (next != chunks.end()) { // Absorb next chunk if exists and free
if (!next->second.isInUse()) {
// Absurb next chunk size into current chunk
i->second.setSize(i->second.getSize() + next->second.getSize());
// Erase next chunk.
chunks.erase(next);
}
}
}
Arena::Stats Arena::stats() const
{
Arena::Stats r;
r.used = r.free = r.total = r.chunks_used = r.chunks_free = 0;
for (const auto& chunk: chunks) {
if (chunk.second.isInUse()) {
r.used += chunk.second.getSize();
r.chunks_used += 1;
} else {
r.free += chunk.second.getSize();
r.chunks_free += 1;
}
r.total += chunk.second.getSize();
}
return r;
}
#ifdef ARENA_DEBUG
void Arena::walk() const
{
for (const auto& chunk: chunks) {
std::cout <<
"0x" << std::hex << std::setw(16) << std::setfill('0') << chunk.first <<
" 0x" << std::hex << std::setw(16) << std::setfill('0') << chunk.second.getSize() <<
" 0x" << chunk.second.isInUse() << std::endl;
}
std::cout << std::endl;
}
#endif
/*******************************************************************************/
// Implementation: Win32LockedPageAllocator
#ifdef WIN32
/** LockedPageAllocator specialized for Windows.
*/
class Win32LockedPageAllocator: public LockedPageAllocator
{
public:
Win32LockedPageAllocator();
void* AllocateLocked(size_t len, bool *lockingSuccess);
void FreeLocked(void* addr, size_t len);
size_t GetLimit();
private:
size_t page_size;
};
Win32LockedPageAllocator::Win32LockedPageAllocator()
{
// Determine system page size in bytes
SYSTEM_INFO sSysInfo;
GetSystemInfo(&sSysInfo);
page_size = sSysInfo.dwPageSize;
}
void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
{
len = align_up(len, page_size);
void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if (addr) {
// VirtualLock is used to attempt to keep keying material out of swap. Note
// that it does not provide this as a guarantee, but, in practice, memory
// that has been VirtualLock'd almost never gets written to the pagefile
// except in rare circumstances where memory is extremely low.
*lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0;
}
return addr;
}
void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len)
{
len = align_up(len, page_size);
memory_cleanse(addr, len);
VirtualUnlock(const_cast<void*>(addr), len);
}
size_t Win32LockedPageAllocator::GetLimit()
{
// TODO is there a limit on windows, how to get it?
return std::numeric_limits<size_t>::max();
}
#endif
/*******************************************************************************/
// Implementation: PosixLockedPageAllocator
#ifndef WIN32
/** LockedPageAllocator specialized for OSes that don't try to be
* special snowflakes.
*/
class PosixLockedPageAllocator: public LockedPageAllocator
{
public:
PosixLockedPageAllocator();
void* AllocateLocked(size_t len, bool *lockingSuccess);
void FreeLocked(void* addr, size_t len);
size_t GetLimit();
private:
size_t page_size;
};
PosixLockedPageAllocator::PosixLockedPageAllocator()
{
// Determine system page size in bytes
#if defined(PAGESIZE) // defined in limits.h
page_size = PAGESIZE;
#else // assume some POSIX OS
page_size = sysconf(_SC_PAGESIZE);
#endif
}
void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
{
void *addr;
len = align_up(len, page_size);
addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (addr) {
*lockingSuccess = mlock(addr, len) == 0;
}
return addr;
}
void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len)
{
len = align_up(len, page_size);
memory_cleanse(addr, len);
munlock(addr, len);
munmap(addr, len);
}
size_t PosixLockedPageAllocator::GetLimit()
{
#ifdef RLIMIT_MEMLOCK
struct rlimit rlim;
if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
if (rlim.rlim_cur != RLIM_INFINITY) {
return rlim.rlim_cur;
}
}
#endif
return std::numeric_limits<size_t>::max();
}
#endif
/*******************************************************************************/
// Implementation: LockedPool
LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in):
allocator(std::move(allocator_in)), lf_cb(lf_cb_in), cumulative_bytes_locked(0)
{
}
LockedPool::~LockedPool()
{
}
void* LockedPool::alloc(size_t size)
{
std::lock_guard<std::mutex> lock(mutex);
// Try allocating from each current arena
for (auto &arena: arenas) {
void *addr = arena.alloc(size);
if (addr) {
return addr;
}
}
// If that fails, create a new one
if (new_arena(ARENA_SIZE, ARENA_ALIGN)) {
return arenas.back().alloc(size);
}
return nullptr;
}
void LockedPool::free(void *ptr)
{
std::lock_guard<std::mutex> lock(mutex);
// TODO we can do better than this linear search by keeping a map of arena
// extents to arena, and looking up the address.
for (auto &arena: arenas) {
if (arena.addressInArena(ptr)) {
arena.free(ptr);
return;
}
}
throw std::runtime_error("LockedPool: invalid address not pointing to any arena");
}
LockedPool::Stats LockedPool::stats() const
{
std::lock_guard<std::mutex> lock(mutex);
LockedPool::Stats r;
r.used = r.free = r.total = r.chunks_used = r.chunks_free = 0;
r.locked = cumulative_bytes_locked;
for (const auto &arena: arenas) {
Arena::Stats i = arena.stats();
r.used += i.used;
r.free += i.free;
r.total += i.total;
r.chunks_used += i.chunks_used;
r.chunks_free += i.chunks_free;
}
return r;
}
bool LockedPool::new_arena(size_t size, size_t align)
{
bool locked;
// If this is the first arena, handle this specially: Cap the upper size
// by the process limit. This makes sure that the first arena will at least
// be locked. An exception to this is if the process limit is 0:
// in this case no memory can be locked at all so we'll skip past this logic.
if (arenas.empty()) {
size_t limit = allocator->GetLimit();
if (limit > 0) {
size = std::min(size, limit);
}
}
void *addr = allocator->AllocateLocked(size, &locked);
if (!addr) {
return false;
}
if (locked) {
cumulative_bytes_locked += size;
} else if (lf_cb) { // Call the locking-failed callback if locking failed
if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed.
allocator->FreeLocked(addr, size);
return false;
}
}
arenas.emplace_back(allocator.get(), addr, size, align);
return true;
}
LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in):
Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in)
{
}
LockedPool::LockedPageArena::~LockedPageArena()
{
allocator->FreeLocked(base, size);
}
/*******************************************************************************/
// Implementation: LockedPoolManager
//
LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator):
LockedPool(std::move(allocator), &LockedPoolManager::LockingFailed)
{
}
bool LockedPoolManager::LockingFailed()
{
// TODO: log something but how? without including util.h
return true;
}
void LockedPoolManager::CreateInstance()
{
// Using a local static instance guarantees that the object is initialized
// when it's first needed and also deinitialized after all objects that use
// it are done with it. I can think of one unlikely scenario where we may
// have a static deinitialization order/problem, but the check in
// LockedPoolManagerBase's destructor helps us detect if that ever happens.
#ifdef WIN32
std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator());
#else
std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator());
#endif
static LockedPoolManager instance(std::move(allocator));
LockedPoolManager::_instance = &instance;
}

251
src/support/lockedpool.h Normal file
View file

@ -0,0 +1,251 @@
// Copyright (c) 2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SUPPORT_LOCKEDPOOL_H
#define BITCOIN_SUPPORT_LOCKEDPOOL_H
#include <stdint.h>
#include <list>
#include <map>
#include <mutex>
#include <memory>
/**
* OS-dependent allocation and deallocation of locked/pinned memory pages.
* Abstract base class.
*/
class LockedPageAllocator
{
public:
virtual ~LockedPageAllocator() {}
/** Allocate and lock memory pages.
* If len is not a multiple of the system page size, it is rounded up.
* Returns 0 in case of allocation failure.
*
* If locking the memory pages could not be accomplished it will still
* return the memory, however the lockingSuccess flag will be false.
* lockingSuccess is undefined if the allocation fails.
*/
virtual void* AllocateLocked(size_t len, bool *lockingSuccess) = 0;
/** Unlock and free memory pages.
* Clear the memory before unlocking.
*/
virtual void FreeLocked(void* addr, size_t len) = 0;
/** Get the total limit on the amount of memory that may be locked by this
* process, in bytes. Return size_t max if there is no limit or the limit
* is unknown. Return 0 if no memory can be locked at all.
*/
virtual size_t GetLimit() = 0;
};
/* An arena manages a contiguous region of memory by dividing it into
* chunks.
*/
class Arena
{
public:
Arena(void *base, size_t size, size_t alignment);
virtual ~Arena();
/** A chunk of memory.
*/
struct Chunk
{
/** Most significant bit of size_t. This is used to mark
* in-usedness of chunk.
*/
const static size_t SIZE_MSB = 1LLU << ((sizeof(size_t)*8)-1);
/** Maximum size of a chunk */
const static size_t MAX_SIZE = SIZE_MSB - 1;
Chunk(size_t size_in, bool used_in):
size(size_in | (used_in ? SIZE_MSB : 0)) {}
bool isInUse() const { return size & SIZE_MSB; }
void setInUse(bool used_in) { size = (size & ~SIZE_MSB) | (used_in ? SIZE_MSB : 0); }
size_t getSize() const { return size & ~SIZE_MSB; }
void setSize(size_t size_in) { size = (size & SIZE_MSB) | size_in; }
private:
size_t size;
};
/** Memory statistics. */
struct Stats
{
size_t used;
size_t free;
size_t total;
size_t chunks_used;
size_t chunks_free;
};
/** Allocate size bytes from this arena.
* Returns pointer on success, or 0 if memory is full or
* the application tried to allocate 0 bytes.
*/
void* alloc(size_t size);
/** Free a previously allocated chunk of memory.
* Freeing the zero pointer has no effect.
* Raises std::runtime_error in case of error.
*/
void free(void *ptr);
/** Get arena usage statistics */
Stats stats() const;
#ifdef ARENA_DEBUG
void walk() const;
#endif
/** Return whether a pointer points inside this arena.
* This returns base <= ptr < (base+size) so only use it for (inclusive)
* chunk starting addresses.
*/
bool addressInArena(void *ptr) const { return ptr >= base && ptr < end; }
private:
Arena(const Arena& other) = delete; // non construction-copyable
Arena& operator=(const Arena&) = delete; // non copyable
/** Map of chunk address to chunk information. This class makes use of the
* sorted order to merge previous and next chunks during deallocation.
*/
std::map<char*, Chunk> chunks;
/** Base address of arena */
char* base;
/** End address of arena */
char* end;
/** Minimum chunk alignment */
size_t alignment;
};
/** Pool for locked memory chunks.
*
* To avoid sensitive key data from being swapped to disk, the memory in this pool
* is locked/pinned.
*
* An arena manages a contiguous region of memory. The pool starts out with one arena
* but can grow to multiple arenas if the need arises.
*
* Unlike a normal C heap, the administrative structures are seperate from the managed
* memory. This has been done as the sizes and bases of objects are not in themselves sensitive
* information, as to conserve precious locked memory. In some operating systems
* the amount of memory that can be locked is small.
*/
class LockedPool
{
public:
/** Size of one arena of locked memory. This is a compromise.
* Do not set this too low, as managing many arenas will increase
* allocation and deallocation overhead. Setting it too high allocates
* more locked memory from the OS than strictly necessary.
*/
static const size_t ARENA_SIZE = 256*1024;
/** Chunk alignment. Another compromise. Setting this too high will waste
* memory, setting it too low will facilitate fragmentation.
*/
static const size_t ARENA_ALIGN = 16;
/** Callback when allocation succeeds but locking fails.
*/
typedef bool (*LockingFailed_Callback)();
/** Memory statistics. */
struct Stats
{
size_t used;
size_t free;
size_t total;
size_t locked;
size_t chunks_used;
size_t chunks_free;
};
/** Create a new LockedPool. This takes ownership of the MemoryPageLocker,
* you can only instantiate this with LockedPool(std::move(...)).
*
* The second argument is an optional callback when locking a newly allocated arena failed.
* If this callback is provided and returns false, the allocation fails (hard fail), if
* it returns true the allocation proceeds, but it could warn.
*/
LockedPool(std::unique_ptr<LockedPageAllocator> allocator, LockingFailed_Callback lf_cb_in = 0);
~LockedPool();
/** Allocate size bytes from this arena.
* Returns pointer on success, or 0 if memory is full or
* the application tried to allocate 0 bytes.
*/
void* alloc(size_t size);
/** Free a previously allocated chunk of memory.
* Freeing the zero pointer has no effect.
* Raises std::runtime_error in case of error.
*/
void free(void *ptr);
/** Get pool usage statistics */
Stats stats() const;
private:
LockedPool(const LockedPool& other) = delete; // non construction-copyable
LockedPool& operator=(const LockedPool&) = delete; // non copyable
std::unique_ptr<LockedPageAllocator> allocator;
/** Create an arena from locked pages */
class LockedPageArena: public Arena
{
public:
LockedPageArena(LockedPageAllocator *alloc_in, void *base_in, size_t size, size_t align);
~LockedPageArena();
private:
void *base;
size_t size;
LockedPageAllocator *allocator;
};
bool new_arena(size_t size, size_t align);
std::list<LockedPageArena> arenas;
LockingFailed_Callback lf_cb;
size_t cumulative_bytes_locked;
/** Mutex protects access to this pool's data structures, including arenas.
*/
mutable std::mutex mutex;
};
/**
* Singleton class to keep track of locked (ie, non-swappable) memory, for use in
* std::allocator templates.
*
* Some implementations of the STL allocate memory in some constructors (i.e., see
* MSVC's vector<T> implementation where it allocates 1 byte of memory in the allocator.)
* Due to the unpredictable order of static initializers, we have to make sure the
* LockedPoolManager instance exists before any other STL-based objects that use
* secure_allocator are created. So instead of having LockedPoolManager also be
* static-initialized, it is created on demand.
*/
class LockedPoolManager : public LockedPool
{
public:
/** Return the current instance, or create it once */
static LockedPoolManager& Instance()
{
std::call_once(LockedPoolManager::init_flag, LockedPoolManager::CreateInstance);
return *LockedPoolManager::_instance;
}
private:
LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator);
/** Create a new LockedPoolManager specialized to the OS */
static void CreateInstance();
/** Called when locking fails, warn the user here */
static bool LockingFailed();
static LockedPoolManager* _instance;
static std::once_flag init_flag;
};
#endif // BITCOIN_SUPPORT_LOCKEDPOOL_H

View file

@ -1,70 +0,0 @@
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "support/pagelocker.h"
#if defined(HAVE_CONFIG_H)
#include "config/bitcoin-config.h"
#endif
#ifdef WIN32
#ifdef _WIN32_WINNT
#undef _WIN32_WINNT
#endif
#define _WIN32_WINNT 0x0501
#define WIN32_LEAN_AND_MEAN 1
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
// This is used to attempt to keep keying material out of swap
// Note that VirtualLock does not provide this as a guarantee on Windows,
// but, in practice, memory that has been VirtualLock'd almost never gets written to
// the pagefile except in rare circumstances where memory is extremely low.
#else
#include <sys/mman.h>
#include <limits.h> // for PAGESIZE
#include <unistd.h> // for sysconf
#endif
LockedPageManager* LockedPageManager::_instance = NULL;
boost::once_flag LockedPageManager::init_flag = BOOST_ONCE_INIT;
/** Determine system page size in bytes */
static inline size_t GetSystemPageSize()
{
size_t page_size;
#if defined(WIN32)
SYSTEM_INFO sSysInfo;
GetSystemInfo(&sSysInfo);
page_size = sSysInfo.dwPageSize;
#elif defined(PAGESIZE) // defined in limits.h
page_size = PAGESIZE;
#else // assume some POSIX OS
page_size = sysconf(_SC_PAGESIZE);
#endif
return page_size;
}
bool MemoryPageLocker::Lock(const void* addr, size_t len)
{
#ifdef WIN32
return VirtualLock(const_cast<void*>(addr), len) != 0;
#else
return mlock(addr, len) == 0;
#endif
}
bool MemoryPageLocker::Unlock(const void* addr, size_t len)
{
#ifdef WIN32
return VirtualUnlock(const_cast<void*>(addr), len) != 0;
#else
return munlock(addr, len) == 0;
#endif
}
LockedPageManager::LockedPageManager() : LockedPageManagerBase<MemoryPageLocker>(GetSystemPageSize())
{
}

View file

@ -1,160 +0,0 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SUPPORT_PAGELOCKER_H
#define BITCOIN_SUPPORT_PAGELOCKER_H
#include "support/cleanse.h"
#include <map>
#include <boost/thread/mutex.hpp>
#include <boost/thread/once.hpp>
/**
* Thread-safe class to keep track of locked (ie, non-swappable) memory pages.
*
* Memory locks do not stack, that is, pages which have been locked several times by calls to mlock()
* will be unlocked by a single call to munlock(). This can result in keying material ending up in swap when
* those functions are used naively. This class simulates stacking memory locks by keeping a counter per page.
*
* @note By using a map from each page base address to lock count, this class is optimized for
* small objects that span up to a few pages, mostly smaller than a page. To support large allocations,
* something like an interval tree would be the preferred data structure.
*/
template <class Locker>
class LockedPageManagerBase
{
public:
LockedPageManagerBase(size_t _page_size) : page_size(_page_size)
{
// Determine bitmask for extracting page from address
assert(!(_page_size & (_page_size - 1))); // size must be power of two
page_mask = ~(_page_size - 1);
}
~LockedPageManagerBase()
{
}
// For all pages in affected range, increase lock count
void LockRange(void* p, size_t size)
{
boost::mutex::scoped_lock lock(mutex);
if (!size)
return;
const size_t base_addr = reinterpret_cast<size_t>(p);
const size_t start_page = base_addr & page_mask;
const size_t end_page = (base_addr + size - 1) & page_mask;
for (size_t page = start_page; page <= end_page; page += page_size) {
Histogram::iterator it = histogram.find(page);
if (it == histogram.end()) // Newly locked page
{
locker.Lock(reinterpret_cast<void*>(page), page_size);
histogram.insert(std::make_pair(page, 1));
} else // Page was already locked; increase counter
{
it->second += 1;
}
}
}
// For all pages in affected range, decrease lock count
void UnlockRange(void* p, size_t size)
{
boost::mutex::scoped_lock lock(mutex);
if (!size)
return;
const size_t base_addr = reinterpret_cast<size_t>(p);
const size_t start_page = base_addr & page_mask;
const size_t end_page = (base_addr + size - 1) & page_mask;
for (size_t page = start_page; page <= end_page; page += page_size) {
Histogram::iterator it = histogram.find(page);
assert(it != histogram.end()); // Cannot unlock an area that was not locked
// Decrease counter for page, when it is zero, the page will be unlocked
it->second -= 1;
if (it->second == 0) // Nothing on the page anymore that keeps it locked
{
// Unlock page and remove the count from histogram
locker.Unlock(reinterpret_cast<void*>(page), page_size);
histogram.erase(it);
}
}
}
// Get number of locked pages for diagnostics
int GetLockedPageCount()
{
boost::mutex::scoped_lock lock(mutex);
return histogram.size();
}
private:
Locker locker;
boost::mutex mutex;
size_t page_size, page_mask;
// map of page base address to lock count
typedef std::map<size_t, int> Histogram;
Histogram histogram;
};
/**
* OS-dependent memory page locking/unlocking.
* Defined as policy class to make stubbing for test possible.
*/
class MemoryPageLocker
{
public:
/** Lock memory pages.
* addr and len must be a multiple of the system page size
*/
bool Lock(const void* addr, size_t len);
/** Unlock memory pages.
* addr and len must be a multiple of the system page size
*/
bool Unlock(const void* addr, size_t len);
};
/**
* Singleton class to keep track of locked (ie, non-swappable) memory pages, for use in
* std::allocator templates.
*
* Some implementations of the STL allocate memory in some constructors (i.e., see
* MSVC's vector<T> implementation where it allocates 1 byte of memory in the allocator.)
* Due to the unpredictable order of static initializers, we have to make sure the
* LockedPageManager instance exists before any other STL-based objects that use
* secure_allocator are created. So instead of having LockedPageManager also be
* static-initialized, it is created on demand.
*/
class LockedPageManager : public LockedPageManagerBase<MemoryPageLocker>
{
public:
static LockedPageManager& Instance()
{
boost::call_once(LockedPageManager::CreateInstance, LockedPageManager::init_flag);
return *LockedPageManager::_instance;
}
private:
LockedPageManager();
static void CreateInstance()
{
// Using a local static instance guarantees that the object is initialized
// when it's first needed and also deinitialized after all objects that use
// it are done with it. I can think of one unlikely scenario where we may
// have a static deinitialization order/problem, but the check in
// LockedPageManagerBase's destructor helps us detect if that ever happens.
static LockedPageManager instance;
LockedPageManager::_instance = &instance;
}
static LockedPageManager* _instance;
static boost::once_flag init_flag;
};
#endif // BITCOIN_SUPPORT_PAGELOCKER_H

View file

@ -11,110 +11,214 @@
BOOST_FIXTURE_TEST_SUITE(allocator_tests, BasicTestingSetup)
// Dummy memory page locker for platform independent tests
static const void *last_lock_addr, *last_unlock_addr;
static size_t last_lock_len, last_unlock_len;
class TestLocker
BOOST_AUTO_TEST_CASE(arena_tests)
{
// Fake memory base address for testing
// without actually using memory.
void *synth_base = reinterpret_cast<void*>(0x08000000);
const size_t synth_size = 1024*1024;
Arena b(synth_base, synth_size, 16);
void *chunk = b.alloc(1000);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(chunk != nullptr);
BOOST_CHECK(b.stats().used == 1008); // Aligned to 16
BOOST_CHECK(b.stats().total == synth_size); // Nothing has disappeared?
b.free(chunk);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(b.stats().used == 0);
BOOST_CHECK(b.stats().free == synth_size);
try { // Test exception on double-free
b.free(chunk);
BOOST_CHECK(0);
} catch(std::runtime_error &)
{
}
void *a0 = b.alloc(128);
BOOST_CHECK(a0 == synth_base); // first allocation must start at beginning
void *a1 = b.alloc(256);
void *a2 = b.alloc(512);
BOOST_CHECK(b.stats().used == 896);
BOOST_CHECK(b.stats().total == synth_size);
#ifdef ARENA_DEBUG
b.walk();
#endif
b.free(a0);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(b.stats().used == 768);
b.free(a1);
BOOST_CHECK(b.stats().used == 512);
void *a3 = b.alloc(128);
#ifdef ARENA_DEBUG
b.walk();
#endif
BOOST_CHECK(b.stats().used == 640);
b.free(a2);
BOOST_CHECK(b.stats().used == 128);
b.free(a3);
BOOST_CHECK(b.stats().used == 0);
BOOST_CHECK(b.stats().total == synth_size);
BOOST_CHECK(b.stats().free == synth_size);
std::vector<void*> addr;
BOOST_CHECK(b.alloc(0) == nullptr); // allocating 0 always returns nullptr
#ifdef ARENA_DEBUG
b.walk();
#endif
// Sweeping allocate all memory
for (int x=0; x<1024; ++x)
addr.push_back(b.alloc(1024));
BOOST_CHECK(addr[0] == synth_base); // first allocation must start at beginning
BOOST_CHECK(b.stats().free == 0);
BOOST_CHECK(b.alloc(1024) == nullptr); // memory is full, this must return nullptr
BOOST_CHECK(b.alloc(0) == nullptr);
for (int x=0; x<1024; ++x)
b.free(addr[x]);
addr.clear();
BOOST_CHECK(b.stats().total == synth_size);
BOOST_CHECK(b.stats().free == synth_size);
// Now in the other direction...
for (int x=0; x<1024; ++x)
addr.push_back(b.alloc(1024));
for (int x=0; x<1024; ++x)
b.free(addr[1023-x]);
addr.clear();
// Now allocate in smaller unequal chunks, then deallocate haphazardly
// Not all the chunks will succeed allocating, but freeing nullptr is
// allowed so that is no problem.
for (int x=0; x<2048; ++x)
addr.push_back(b.alloc(x+1));
for (int x=0; x<2048; ++x)
b.free(addr[((x*23)%2048)^242]);
addr.clear();
// Go entirely wild: free and alloc interleaved,
// generate targets and sizes using pseudo-randomness.
for (int x=0; x<2048; ++x)
addr.push_back(0);
uint32_t s = 0x12345678;
for (int x=0; x<5000; ++x) {
int idx = s & (addr.size()-1);
if (s & 0x80000000) {
b.free(addr[idx]);
addr[idx] = 0;
} else if(!addr[idx]) {
addr[idx] = b.alloc((s >> 16) & 2047);
}
bool lsb = s & 1;
s >>= 1;
if (lsb)
s ^= 0xf00f00f0; // LFSR period 0xf7ffffe0
}
for (void *ptr: addr)
b.free(ptr);
addr.clear();
BOOST_CHECK(b.stats().total == synth_size);
BOOST_CHECK(b.stats().free == synth_size);
}
/** Mock LockedPageAllocator for testing */
class TestLockedPageAllocator: public LockedPageAllocator
{
public:
bool Lock(const void *addr, size_t len)
TestLockedPageAllocator(int count_in, int lockedcount_in): count(count_in), lockedcount(lockedcount_in) {}
void* AllocateLocked(size_t len, bool *lockingSuccess)
{
last_lock_addr = addr;
last_lock_len = len;
return true;
*lockingSuccess = false;
if (count > 0) {
--count;
if (lockedcount > 0) {
--lockedcount;
*lockingSuccess = true;
}
return reinterpret_cast<void*>(0x08000000 + (count<<24)); // Fake address, do not actually use this memory
}
return 0;
}
bool Unlock(const void *addr, size_t len)
void FreeLocked(void* addr, size_t len)
{
last_unlock_addr = addr;
last_unlock_len = len;
return true;
}
size_t GetLimit()
{
return std::numeric_limits<size_t>::max();
}
private:
int count;
int lockedcount;
};
BOOST_AUTO_TEST_CASE(test_LockedPageManagerBase)
BOOST_AUTO_TEST_CASE(lockedpool_tests_mock)
{
const size_t test_page_size = 4096;
LockedPageManagerBase<TestLocker> lpm(test_page_size);
size_t addr;
last_lock_addr = last_unlock_addr = 0;
last_lock_len = last_unlock_len = 0;
// Test over three virtual arenas, of which one will succeed being locked
std::unique_ptr<LockedPageAllocator> x(new TestLockedPageAllocator(3, 1));
LockedPool pool(std::move(x));
BOOST_CHECK(pool.stats().total == 0);
BOOST_CHECK(pool.stats().locked == 0);
/* Try large number of small objects */
addr = 0;
for(int i=0; i<1000; ++i)
{
lpm.LockRange(reinterpret_cast<void*>(addr), 33);
addr += 33;
}
/* Try small number of page-sized objects, straddling two pages */
addr = test_page_size*100 + 53;
for(int i=0; i<100; ++i)
{
lpm.LockRange(reinterpret_cast<void*>(addr), test_page_size);
addr += test_page_size;
}
/* Try small number of page-sized objects aligned to exactly one page */
addr = test_page_size*300;
for(int i=0; i<100; ++i)
{
lpm.LockRange(reinterpret_cast<void*>(addr), test_page_size);
addr += test_page_size;
}
/* one very large object, straddling pages */
lpm.LockRange(reinterpret_cast<void*>(test_page_size*600+1), test_page_size*500);
BOOST_CHECK(last_lock_addr == reinterpret_cast<void*>(test_page_size*(600+500)));
/* one very large object, page aligned */
lpm.LockRange(reinterpret_cast<void*>(test_page_size*1200), test_page_size*500-1);
BOOST_CHECK(last_lock_addr == reinterpret_cast<void*>(test_page_size*(1200+500-1)));
void *a0 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a0);
BOOST_CHECK(pool.stats().locked == LockedPool::ARENA_SIZE);
void *a1 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a1);
void *a2 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a2);
void *a3 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a3);
void *a4 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a4);
void *a5 = pool.alloc(LockedPool::ARENA_SIZE / 2);
BOOST_CHECK(a5);
// We've passed a count of three arenas, so this allocation should fail
void *a6 = pool.alloc(16);
BOOST_CHECK(!a6);
BOOST_CHECK(lpm.GetLockedPageCount() == (
(1000*33+test_page_size-1)/test_page_size + // small objects
101 + 100 + // page-sized objects
501 + 500)); // large objects
BOOST_CHECK((last_lock_len & (test_page_size-1)) == 0); // always lock entire pages
BOOST_CHECK(last_unlock_len == 0); // nothing unlocked yet
pool.free(a0);
pool.free(a2);
pool.free(a4);
pool.free(a1);
pool.free(a3);
pool.free(a5);
BOOST_CHECK(pool.stats().total == 3*LockedPool::ARENA_SIZE);
BOOST_CHECK(pool.stats().locked == LockedPool::ARENA_SIZE);
BOOST_CHECK(pool.stats().used == 0);
}
/* And unlock again */
addr = 0;
for(int i=0; i<1000; ++i)
{
lpm.UnlockRange(reinterpret_cast<void*>(addr), 33);
addr += 33;
}
addr = test_page_size*100 + 53;
for(int i=0; i<100; ++i)
{
lpm.UnlockRange(reinterpret_cast<void*>(addr), test_page_size);
addr += test_page_size;
}
addr = test_page_size*300;
for(int i=0; i<100; ++i)
{
lpm.UnlockRange(reinterpret_cast<void*>(addr), test_page_size);
addr += test_page_size;
}
lpm.UnlockRange(reinterpret_cast<void*>(test_page_size*600+1), test_page_size*500);
lpm.UnlockRange(reinterpret_cast<void*>(test_page_size*1200), test_page_size*500-1);
// These tests used the live LockedPoolManager object, this is also used
// by other tests so the conditions are somewhat less controllable and thus the
// tests are somewhat more error-prone.
BOOST_AUTO_TEST_CASE(lockedpool_tests_live)
{
LockedPoolManager &pool = LockedPoolManager::Instance();
LockedPool::Stats initial = pool.stats();
/* Check that everything is released */
BOOST_CHECK(lpm.GetLockedPageCount() == 0);
void *a0 = pool.alloc(16);
BOOST_CHECK(a0);
// Test reading and writing the allocated memory
*((uint32_t*)a0) = 0x1234;
BOOST_CHECK(*((uint32_t*)a0) == 0x1234);
/* A few and unlocks of size zero (should have no effect) */
addr = 0;
for(int i=0; i<1000; ++i)
pool.free(a0);
try { // Test exception on double-free
pool.free(a0);
BOOST_CHECK(0);
} catch(std::runtime_error &)
{
lpm.LockRange(reinterpret_cast<void*>(addr), 0);
addr += 1;
}
BOOST_CHECK(lpm.GetLockedPageCount() == 0);
addr = 0;
for(int i=0; i<1000; ++i)
{
lpm.UnlockRange(reinterpret_cast<void*>(addr), 0);
addr += 1;
}
BOOST_CHECK(lpm.GetLockedPageCount() == 0);
BOOST_CHECK((last_unlock_len & (test_page_size-1)) == 0); // always unlock entire pages
// If more than one new arena was allocated for the above tests, something is wrong
BOOST_CHECK(pool.stats().total <= (initial.total + LockedPool::ARENA_SIZE));
// Usage must be back to where it started
BOOST_CHECK(pool.stats().used == initial.used);
}
BOOST_AUTO_TEST_SUITE_END()