CAddrMan: stochastic address manager

Design goals:
 * Only keep a limited number of addresses around, so that addr.dat does not grow without bound.
 * Keep the address tables in-memory, and occasionally write the table to addr.dat.
 * Make sure no (localized) attacker can fill the entire table with his nodes/addresses.

See comments in addrman.h for more detailed information.
This commit is contained in:
Pieter Wuille 2012-01-04 23:39:45 +01:00
parent 8c12851ed4
commit 5fee401fe1
17 changed files with 1180 additions and 249 deletions

View file

@ -101,6 +101,7 @@ HEADERS += src/qt/bitcoingui.h \
src/qt/aboutdialog.h \
src/qt/editaddressdialog.h \
src/qt/bitcoinaddressvalidator.h \
src/addrman.h \
src/base58.h \
src/bignum.h \
src/checkpoints.h \
@ -174,6 +175,7 @@ SOURCES += src/qt/bitcoin.cpp src/qt/bitcoingui.cpp \
src/net.cpp \
src/irc.cpp \
src/checkpoints.cpp \
src/addrman.cpp \
src/db.cpp \
src/json/json_spirit_writer.cpp \
src/json/json_spirit_value.cpp \

506
src/addrman.cpp Normal file
View file

@ -0,0 +1,506 @@
// Copyright (c) 2012 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
#include "addrman.h"
using namespace std;
int CAddrInfo::GetTriedBucket(const std::vector<unsigned char> &nKey) const
{
CDataStream ss1(SER_GETHASH);
std::vector<unsigned char> vchKey = GetKey();
ss1 << nKey << vchKey;
uint64 hash1 = Hash(ss1.begin(), ss1.end()).Get64();
CDataStream ss2(SER_GETHASH);
std::vector<unsigned char> vchGroupKey = GetGroup();
ss2 << nKey << vchGroupKey << (hash1 % ADDRMAN_TRIED_BUCKETS_PER_GROUP);
uint64 hash2 = Hash(ss2.begin(), ss2.end()).Get64();
return hash2 % ADDRMAN_TRIED_BUCKET_COUNT;
}
int CAddrInfo::GetNewBucket(const std::vector<unsigned char> &nKey, const CNetAddr& src) const
{
CDataStream ss1(SER_GETHASH);
std::vector<unsigned char> vchGroupKey = GetGroup();
std::vector<unsigned char> vchSourceGroupKey = src.GetGroup();
ss1 << nKey << vchGroupKey << vchSourceGroupKey;
uint64 hash1 = Hash(ss1.begin(), ss1.end()).Get64();
CDataStream ss2(SER_GETHASH);
ss2 << nKey << vchSourceGroupKey << (hash1 % ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP);
uint64 hash2 = Hash(ss2.begin(), ss2.end()).Get64();
return hash2 % ADDRMAN_NEW_BUCKET_COUNT;
}
bool CAddrInfo::IsTerrible(int64 nNow) const
{
if (nLastTry && nLastTry >= nNow-60) // never remove things tried the last minute
return false;
if (nTime > nNow + 10*60) // came in a flying DeLorean
return true;
if (nTime==0 || nNow-nTime > ADDRMAN_HORIZON_DAYS*86400) // not seen in over a month
return true;
if (nLastSuccess==0 && nAttempts>=ADDRMAN_RETRIES) // tried three times and never a success
return true;
if (nNow-nLastSuccess > ADDRMAN_MIN_FAIL_DAYS*86400 && nAttempts>=ADDRMAN_MAX_FAILURES) // 10 successive failures in the last week
return true;
return false;
}
double CAddrInfo::GetChance(int64 nNow) const
{
double fChance = 1.0;
int64 nSinceLastSeen = nNow - nTime;
int64 nSinceLastTry = nNow - nLastTry;
if (nSinceLastSeen < 0) nSinceLastSeen = 0;
if (nSinceLastTry < 0) nSinceLastTry = 0;
fChance *= 600.0 / (600.0 + nSinceLastSeen);
// deprioritize very recent attempts away
if (nSinceLastTry < 60*10)
fChance *= 0.01;
// deprioritize 50% after each failed attempt
for (int n=0; n<nAttempts; n++)
fChance /= 1.5;
return fChance;
}
CAddrInfo* CAddrMan::Find(const CNetAddr& addr, int *pnId)
{
std::map<CNetAddr, int>::iterator it = mapAddr.find(addr);
if (it == mapAddr.end())
return NULL;
if (pnId)
*pnId = (*it).second;
std::map<int, CAddrInfo>::iterator it2 = mapInfo.find((*it).second);
if (it2 != mapInfo.end())
return &(*it2).second;
return NULL;
}
CAddrInfo* CAddrMan::Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId)
{
int nId = nIdCount++;
mapInfo[nId] = CAddrInfo(addr, addrSource);
mapAddr[addr] = nId;
mapInfo[nId].nRandomPos = vRandom.size();
vRandom.push_back(nId);
if (pnId)
*pnId = nId;
return &mapInfo[nId];
}
void CAddrMan::SwapRandom(int nRndPos1, int nRndPos2)
{
if (nRndPos1 == nRndPos2)
return;
int nId1 = vRandom[nRndPos1];
int nId2 = vRandom[nRndPos2];
mapInfo[nId1].nRandomPos = nRndPos2;
mapInfo[nId2].nRandomPos = nRndPos1;
vRandom[nRndPos1] = nId2;
vRandom[nRndPos2] = nId1;
}
int CAddrMan::SelectTried(int nKBucket)
{
std::vector<int> &vTried = vvTried[nKBucket];
// random shuffle the first few elements (using the entire list)
// find the least recently tried among them
int64 nOldest = -1;
for (int i=0; i<ADDRMAN_TRIED_ENTRIES_INSPECT_ON_EVICT && i<vTried.size(); i++)
{
int nPos = GetRandInt(vTried.size() - i) + i;
int nTemp = vTried[nPos];
vTried[nPos] = vTried[i];
vTried[i] = nTemp;
if (nOldest == -1 || mapInfo[nTemp].nLastSuccess < mapInfo[nOldest].nLastSuccess)
nOldest = nTemp;
}
return nOldest;
}
int CAddrMan::ShrinkNew(int nUBucket)
{
std::set<int> &vNew = vvNew[nUBucket];
// first look for deletable items
for (std::set<int>::iterator it = vNew.begin(); it != vNew.end(); it++)
{
CAddrInfo &info = mapInfo[*it];
if (info.IsTerrible())
{
if (--info.nRefCount == 0)
{
SwapRandom(info.nRandomPos, vRandom.size()-1);
vRandom.pop_back();
mapAddr.erase(info);
mapInfo.erase(*it);
nNew--;
}
vNew.erase(it);
return 0;
}
}
// otherwise, select four randomly, and pick the oldest of those to replace
int n[4] = {GetRandInt(vNew.size()), GetRandInt(vNew.size()), GetRandInt(vNew.size()), GetRandInt(vNew.size())};
int nI = 0;
int nOldest = -1;
for (std::set<int>::iterator it = vNew.begin(); it != vNew.end(); it++)
{
if (nI == n[0] || nI == n[1] || nI == n[2] || nI == n[3])
{
if (nOldest == -1 || mapInfo[*it].nTime < mapInfo[nOldest].nTime)
nOldest = *it;
}
nI++;
}
CAddrInfo &info = mapInfo[nOldest];
if (--info.nRefCount == 0)
{
SwapRandom(info.nRandomPos, vRandom.size()-1);
vRandom.pop_back();
mapAddr.erase(info);
mapInfo.erase(nOldest);
nNew--;
}
vNew.erase(nOldest);
return 1;
}
void CAddrMan::MakeTried(CAddrInfo& info, int nId, int nOrigin)
{
// remove the entry from all new buckets
for (std::vector<std::set<int> >::iterator it = vvNew.begin(); it != vvNew.end(); it++)
{
if ((*it).erase(nId))
info.nRefCount--;
}
nNew--;
// what tried bucket to move the entry to
int nKBucket = info.GetTriedBucket(nKey);
std::vector<int> &vTried = vvTried[nKBucket];
// first check whether there is place to just add it
if (vTried.size() < ADDRMAN_TRIED_BUCKET_SIZE)
{
vTried.push_back(nId);
nTried++;
info.fInTried = true;
return;
}
// otherwise, find an item to evict
int nPos = SelectTried(nKBucket);
// find which new bucket it belongs to
int nUBucket = mapInfo[vTried[nPos]].GetNewBucket(nKey);
std::set<int> &vNew = vvNew[nUBucket];
// remove the to-be-replaced tried entry from the tried set
CAddrInfo& infoOld = mapInfo[vTried[nPos]];
infoOld.fInTried = false;
infoOld.nRefCount = 1;
// do not update nTried, as we are going to move something else there immediately
// check whether there is place in that one,
if (vNew.size() < ADDRMAN_NEW_BUCKET_SIZE)
{
// if so, move it back there
vNew.insert(vTried[nPos]);
} else {
// otherwise, move it to the new bucket nId came from (there is certainly place there)
vvNew[nOrigin].insert(vTried[nPos]);
}
nNew++;
vTried[nPos] = nId;
// we just overwrote an entry in vTried; no need to update nTried
info.fInTried = true;
return;
}
void CAddrMan::Good_(const CService &addr, int64 nTime)
{
// printf("Good: addr=%s\n", addr.ToString().c_str());
int nId;
CAddrInfo *pinfo = Find(addr, &nId);
// if not found, bail out
if (!pinfo)
return;
CAddrInfo &info = *pinfo;
// check whether we are talking about the exact same CService (including same port)
if (info != addr)
return;
// update info
info.nLastSuccess = nTime;
info.nLastTry = nTime;
info.nTime = nTime;
info.nAttempts = 0;
// if it is already in the tried set, don't do anything else
if (info.fInTried)
return;
// find a bucket it is in now
int nRnd = GetRandInt(vvNew.size());
int nUBucket = -1;
for (int n = 0; n < vvNew.size(); n++)
{
int nB = (n+nRnd) % vvNew.size();
std::set<int> &vNew = vvNew[nB];
if (vNew.count(nId))
{
nUBucket = nB;
break;
}
}
// if no bucket is found, something bad happened;
// TODO: maybe re-add the node, but for now, just bail out
if (nUBucket == -1) return;
printf("Moving %s to tried\n", addr.ToString().c_str());
// move nId to the tried tables
MakeTried(info, nId, nUBucket);
}
bool CAddrMan::Add_(const CAddress &addr, const CNetAddr& source, int64 nTimePenalty)
{
if (!addr.IsRoutable())
return false;
bool fNew = false;
int nId;
CAddrInfo *pinfo = Find(addr, &nId);
if (pinfo)
{
// periodically update nTime
bool fCurrentlyOnline = (GetAdjustedTime() - addr.nTime < 24 * 60 * 60);
int64 nUpdateInterval = (fCurrentlyOnline ? 60 * 60 : 24 * 60 * 60);
if (addr.nTime && (!pinfo->nTime || pinfo->nTime < addr.nTime - nUpdateInterval - nTimePenalty))
pinfo->nTime = max((int64)0, addr.nTime - nTimePenalty);
// add services
pinfo->nServices |= addr.nServices;
// do not update if no new information is present
if (!addr.nTime || pinfo->nTime && addr.nTime <= pinfo->nTime)
return false;
// do not update if the entry was already in the "tried" table
if (pinfo->fInTried)
return false;
// do not update if the max reference count is reached
if (pinfo->nRefCount == ADDRMAN_NEW_BUCKETS_PER_ADDRESS)
return false;
// stochastic test: previous nRefCount == N: 2^N times harder to increase it
int nFactor = 1;
for (int n=0; n<pinfo->nRefCount; n++)
nFactor *= 2;
if (nFactor > 1 && (GetRandInt(nFactor) != 0))
return false;
} else {
pinfo = Create(addr, source, &nId);
pinfo->nTime = max((int64)0, (int64)pinfo->nTime - nTimePenalty);
// printf("Added %s [nTime=%fhr]\n", pinfo->ToString().c_str(), (GetAdjustedTime() - pinfo->nTime) / 3600.0);
nNew++;
fNew = true;
}
int nUBucket = pinfo->GetNewBucket(nKey, source);
std::set<int> &vNew = vvNew[nUBucket];
if (!vNew.count(nId))
{
pinfo->nRefCount++;
if (vNew.size() == ADDRMAN_NEW_BUCKET_SIZE)
ShrinkNew(nUBucket);
vvNew[nUBucket].insert(nId);
}
return fNew;
}
void CAddrMan::Attempt_(const CService &addr, int64 nTime)
{
CAddrInfo *pinfo = Find(addr);
// if not found, bail out
if (!pinfo)
return;
CAddrInfo &info = *pinfo;
// check whether we are talking about the exact same CService (including same port)
if (info != addr)
return;
// update info
info.nLastTry = nTime;
info.nAttempts++;
}
CAddress CAddrMan::Select_(int nUnkBias)
{
if (size() == 0)
return CAddress();
double nCorTried = sqrt(nTried) * (100.0 - nUnkBias);
double nCorNew = sqrt(nNew) * nUnkBias;
if ((nCorTried + nCorNew)*GetRandInt(1<<30)/(1<<30) < nCorTried)
{
// use a tried node
double fChanceFactor = 1.0;
while(1)
{
int nKBucket = GetRandInt(vvTried.size());
std::vector<int> &vTried = vvTried[nKBucket];
if (vTried.size() == 0) continue;
int nPos = GetRandInt(vTried.size());
CAddrInfo &info = mapInfo[vTried[nPos]];
if (GetRandInt(1<<30) < fChanceFactor*info.GetChance()*(1<<30))
return info;
fChanceFactor *= 1.2;
}
} else {
// use an new node
double fChanceFactor = 1.0;
while(1)
{
int nUBucket = GetRandInt(vvNew.size());
std::set<int> &vNew = vvNew[nUBucket];
if (vNew.size() == 0) continue;
int nPos = GetRandInt(vNew.size());
std::set<int>::iterator it = vNew.begin();
while (nPos--)
it++;
CAddrInfo &info = mapInfo[*it];
if (GetRandInt(1<<30) < fChanceFactor*info.GetChance()*(1<<30))
return info;
fChanceFactor *= 1.2;
}
}
}
#ifdef DEBUG_ADDRMAN
int CAddrMan::Check_()
{
std::set<int> setTried;
std::map<int, int> mapNew;
if (vRandom.size() != nTried + nNew) return -7;
for (std::map<int, CAddrInfo>::iterator it = mapInfo.begin(); it != mapInfo.end(); it++)
{
int n = (*it).first;
CAddrInfo &info = (*it).second;
if (info.fInTried)
{
if (!info.nLastSuccess) return -1;
if (info.nRefCount) return -2;
setTried.insert(n);
} else {
if (info.nRefCount < 0 || info.nRefCount > ADDRMAN_NEW_BUCKETS_PER_ADDRESS) return -3;
if (!info.nRefCount) return -4;
mapNew[n] = info.nRefCount;
}
if (mapAddr[info] != n) return -5;
if (info.nRandomPos<0 || info.nRandomPos>=vRandom.size() || vRandom[info.nRandomPos] != n) return -14;
if (info.nLastTry < 0) return -6;
if (info.nLastSuccess < 0) return -8;
}
if (setTried.size() != nTried) return -9;
if (mapNew.size() != nNew) return -10;
for (int n=0; n<vvTried.size(); n++)
{
std::vector<int> &vTried = vvTried[n];
for (std::vector<int>::iterator it = vTried.begin(); it != vTried.end(); it++)
{
if (!setTried.count(*it)) return -11;
setTried.erase(*it);
}
}
for (int n=0; n<vvNew.size(); n++)
{
std::set<int> &vNew = vvNew[n];
for (std::set<int>::iterator it = vNew.begin(); it != vNew.end(); it++)
{
if (!mapNew.count(*it)) return -12;
if (--mapNew[*it] == 0)
mapNew.erase(*it);
}
}
if (setTried.size()) return -13;
if (mapNew.size()) return -15;
return 0;
}
#endif
void CAddrMan::GetAddr_(std::vector<CAddress> &vAddr)
{
int nNodes = ADDRMAN_GETADDR_MAX_PCT*vRandom.size()/100;
if (nNodes > ADDRMAN_GETADDR_MAX)
nNodes = ADDRMAN_GETADDR_MAX;
// perform a random shuffle over the first nNodes elements of vRandom (selecting from all)
for (int n = 0; n<nNodes; n++)
{
int nRndPos = GetRandInt(vRandom.size() - n) + n;
SwapRandom(n, nRndPos);
vAddr.push_back(mapInfo[vRandom[n]]);
}
}
void CAddrMan::Connected_(const CService &addr, int64 nTime)
{
CAddrInfo *pinfo = Find(addr);
// if not found, bail out
if (!pinfo)
return;
CAddrInfo &info = *pinfo;
// check whether we are talking about the exact same CService (including same port)
if (info != addr)
return;
// update info
int64 nUpdateInterval = 20 * 60;
if (nTime - info.nTime > nUpdateInterval)
info.nTime = nTime;
}

499
src/addrman.h Normal file
View file

@ -0,0 +1,499 @@
// Copyright (c) 2012 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
#ifndef _BITCOIN_ADDRMAN
#define _BITCOIN_ADDRMAN 1
#include "netbase.h"
#include "protocol.h"
#include "util.h"
#include <map>
#include <vector>
#include <openssl/rand.h>
// Extended statistics about a CAddress
class CAddrInfo : public CAddress
{
private:
// where knowledge about this address first came from
CNetAddr source;
// last succesfull connection by us
int64 nLastSuccess;
// last try whatsoever by us:
// int64 CAddress::nLastTry
// connection attempts since last succesful attempt
int nAttempts;
// reference count in new sets (memory only)
int nRefCount;
// in tried set? (memory only)
bool fInTried;
// position in vRandom
int nRandomPos;
friend class CAddrMan;
public:
IMPLEMENT_SERIALIZE(
CAddress* pthis = (CAddress*)(this);
READWRITE(*pthis);
READWRITE(source);
READWRITE(nLastSuccess);
READWRITE(nAttempts);
)
void Init()
{
nLastSuccess = 0;
nLastTry = 0;
nAttempts = 0;
nRefCount = 0;
fInTried = false;
nRandomPos = -1;
}
CAddrInfo(const CAddress &addrIn, const CNetAddr &addrSource) : CAddress(addrIn)
{
Init();
}
CAddrInfo() : CAddress(), source()
{
Init();
}
// Calculate in which "tried" bucket this entry belongs
int GetTriedBucket(const std::vector<unsigned char> &nKey) const;
// Calculate in which "new" bucket this entry belongs, given a certain source
int GetNewBucket(const std::vector<unsigned char> &nKey, const CNetAddr& src) const;
// Calculate in which "new" bucket this entry belongs, using its default source
int GetNewBucket(const std::vector<unsigned char> &nKey) const
{
return GetNewBucket(nKey, source);
}
// Determine whether the statistics about this entry are bad enough so that it can just be deleted
bool IsTerrible(int64 nNow = GetAdjustedTime()) const;
// Calculate the relative chance this entry should be given when selecting nodes to connect to
double GetChance(int64 nNow = GetAdjustedTime()) const;
};
// Stochastic address manager
//
// Design goals:
// * Only keep a limited number of addresses around, so that addr.dat and memory requirements do not grow without bound.
// * Keep the address tables in-memory, and asynchronously dump the entire to able in addr.dat.
// * Make sure no (localized) attacker can fill the entire table with his nodes/addresses.
//
// To that end:
// * Addresses are organized into buckets.
// * Address that have not yet been tried go into 256 "new" buckets.
// * Based on the address range (/16 for IPv4) of source of the information, 32 buckets are selected at random
// * The actual bucket is chosen from one of these, based on the range the address itself is located.
// * One single address can occur in up to 4 different buckets, to increase selection chances for addresses that
// are seen frequently. The chance for increasing this multiplicity decreases exponentially.
// * When adding a new address to a full bucket, a randomly chosen entry (with a bias favoring less recently seen
// ones) is removed from it first.
// * Addresses of nodes that are known to be accessible go into 64 "tried" buckets.
// * Each address range selects at random 4 of these buckets.
// * The actual bucket is chosen from one of these, based on the full address.
// * When adding a new good address to a full bucket, a randomly chosen entry (with a bias favoring less recently
// tried ones) is evicted from it, back to the "new" buckets.
// * Bucket selection is based on cryptographic hashing, using a randomly-generated 256-bit key, which should not
// be observable by adversaries.
// * Several indexes are kept for high performance. Defining DEBUG_ADDRMAN will introduce frequent (and expensive)
// consistency checks for the entire datastructure.
// total number of buckets for tried addresses
#define ADDRMAN_TRIED_BUCKET_COUNT 64
// maximum allowed number of entries in buckets for tried addresses
#define ADDRMAN_TRIED_BUCKET_SIZE 64
// total number of buckets for new addresses
#define ADDRMAN_NEW_BUCKET_COUNT 256
// maximum allowed number of entries in buckets for new addresses
#define ADDRMAN_NEW_BUCKET_SIZE 64
// over how many buckets entries with tried addresses from a single group (/16 for IPv4) are spread
#define ADDRMAN_TRIED_BUCKETS_PER_GROUP 4
// over how many buckets entries with new addresses originating from a single group are spread
#define ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP 32
// in how many buckets for entries with new addresses a single address may occur
#define ADDRMAN_NEW_BUCKETS_PER_ADDRESS 4
// how many entries in a bucket with tried addresses are inspected, when selecting one to replace
#define ADDRMAN_TRIED_ENTRIES_INSPECT_ON_EVICT 4
// how old addresses can maximally be
#define ADDRMAN_HORIZON_DAYS 30
// after how many failed attempts we give up on a new node
#define ADDRMAN_RETRIES 3
// how many successive failures are allowed ...
#define ADDRMAN_MAX_FAILURES 10
// ... in at least this many days
#define ADDRMAN_MIN_FAIL_DAYS 7
// the maximum percentage of nodes to return in a getaddr call
#define ADDRMAN_GETADDR_MAX_PCT 23
// the maximum number of nodes to return in a getaddr call
#define ADDRMAN_GETADDR_MAX 2500
class CAddrMan
{
private:
// critical section to protect the inner data structures
mutable CCriticalSection cs;
// secret key to randomize bucket select with
std::vector<unsigned char> nKey;
// last used nId
int nIdCount;
// table with information about all nId's
std::map<int, CAddrInfo> mapInfo;
// find an nId based on its network address
std::map<CNetAddr, int> mapAddr;
// randomly-ordered vector of all nId's
std::vector<int> vRandom;
// number of "tried" entries
int nTried;
// list of "tried" buckets
std::vector<std::vector<int> > vvTried;
// number of (unique) "new" entries
int nNew;
// list of "new" buckets
std::vector<std::set<int> > vvNew;
protected:
// Find an entry.
CAddrInfo* Find(const CNetAddr& addr, int *pnId = NULL);
// find an entry, creating it if necessary.
// nTime and nServices of found node is updated, if necessary.
CAddrInfo* Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId = NULL);
// Swap two elements in vRandom.
void SwapRandom(int nRandomPos1, int nRandomPos2);
// Return position in given bucket to replace.
int SelectTried(int nKBucket);
// Remove an element from a "new" bucket.
// This is the only place where actual deletes occur.
// They are never deleted while in the "tried" table, only possibly evicted back to the "new" table.
int ShrinkNew(int nUBucket);
// Move an entry from the "new" table(s) to the "tried" table
// @pre vvUnkown[nOrigin].count(nId) != 0
void MakeTried(CAddrInfo& info, int nId, int nOrigin);
// Mark an entry "good", possibly moving it from "new" to "tried".
void Good_(const CService &addr, int64 nTime);
// Add an entry to the "new" table.
bool Add_(const CAddress &addr, const CNetAddr& source, int64 nTimePenalty);
// Mark an entry as attempted to connect.
void Attempt_(const CService &addr, int64 nTime);
// Select an address to connect to.
// nUnkBias determines how much to favor new addresses over tried ones (min=0, max=100)
CAddress Select_(int nUnkBias);
#ifdef DEBUG_ADDRMAN
// Perform consistency check. Returns an error code or zero.
int Check_();
#endif
// Select several addresses at once.
void GetAddr_(std::vector<CAddress> &vAddr);
// Mark an entry as currently-connected-to.
void Connected_(const CService &addr, int64 nTime);
public:
IMPLEMENT_SERIALIZE
(({
// serialized format:
// * version byte (currently 0)
// * nKey
// * nNew
// * nTried
// * number of "new" buckets
// * all nNew addrinfo's in vvNew
// * all nTried addrinfo's in vvTried
// * for each bucket:
// * number of elements
// * for each element: index
//
// Notice that vvTried, mapAddr and vVector are never encoded explicitly;
// they are instead reconstructed from the other information.
//
// vvNew is serialized, but only used if ADDRMAN_UNKOWN_BUCKET_COUNT didn't change,
// otherwise it is reconstructed as well.
//
// This format is more complex, but significantly smaller (at most 1.5 MiB), and supports
// changes to the ADDRMAN_ parameters without breaking the on-disk structure.
CRITICAL_BLOCK(cs)
{
unsigned char nVersion = 0;
READWRITE(nVersion);
READWRITE(nKey);
READWRITE(nNew);
READWRITE(nTried);
CAddrMan *am = const_cast<CAddrMan*>(this);
if (fWrite)
{
int nUBuckets = ADDRMAN_NEW_BUCKET_COUNT;
READWRITE(nUBuckets);
std::map<int, int> mapUnkIds;
int nIds = 0;
for (std::map<int, CAddrInfo>::iterator it = am->mapInfo.begin(); it != am->mapInfo.end(); it++)
{
if (nIds == nNew) break; // this means nNew was wrong, oh ow
mapUnkIds[(*it).first] = nIds;
CAddrInfo &info = (*it).second;
if (info.nRefCount)
{
READWRITE(info);
nIds++;
}
}
nIds = 0;
for (std::map<int, CAddrInfo>::iterator it = am->mapInfo.begin(); it != am->mapInfo.end(); it++)
{
if (nIds == nTried) break; // this means nTried was wrong, oh ow
CAddrInfo &info = (*it).second;
if (info.fInTried)
{
READWRITE(info);
nIds++;
}
}
for (std::vector<std::set<int> >::iterator it = am->vvNew.begin(); it != am->vvNew.end(); it++)
{
const std::set<int> &vNew = (*it);
int nSize = vNew.size();
READWRITE(nSize);
for (std::set<int>::iterator it2 = vNew.begin(); it2 != vNew.end(); it2++)
{
int nIndex = mapUnkIds[*it2];
READWRITE(nIndex);
}
}
} else {
int nUBuckets = 0;
READWRITE(nUBuckets);
am->nIdCount = 0;
am->mapInfo.clear();
am->mapAddr.clear();
am->vRandom.clear();
am->vvTried = std::vector<std::vector<int> >(ADDRMAN_TRIED_BUCKET_COUNT, std::vector<int>(0));
am->vvNew = std::vector<std::set<int> >(ADDRMAN_NEW_BUCKET_COUNT, std::set<int>());
for (int n = 0; n < am->nNew; n++)
{
CAddrInfo &info = am->mapInfo[n];
READWRITE(info);
am->mapAddr[info] = n;
info.nRandomPos = vRandom.size();
am->vRandom.push_back(n);
if (nUBuckets != ADDRMAN_NEW_BUCKET_COUNT)
{
am->vvNew[info.GetNewBucket(am->nKey)].insert(n);
info.nRefCount++;
}
}
am->nIdCount = am->nNew;
int nLost = 0;
for (int n = 0; n < am->nTried; n++)
{
CAddrInfo info;
READWRITE(info);
std::vector<int> &vTried = am->vvTried[info.GetTriedBucket(am->nKey)];
if (vTried.size() < ADDRMAN_TRIED_BUCKET_SIZE)
{
info.nRandomPos = vRandom.size();
info.fInTried = true;
am->vRandom.push_back(am->nIdCount);
am->mapInfo[am->nIdCount] = info;
am->mapAddr[info] = am->nIdCount;
vTried.push_back(am->nIdCount);
am->nIdCount++;
} else {
nLost++;
}
}
am->nTried -= nLost;
for (int b = 0; b < nUBuckets; b++)
{
std::set<int> &vNew = am->vvNew[b];
int nSize = 0;
READWRITE(nSize);
for (int n = 0; n < nSize; n++)
{
int nIndex = 0;
READWRITE(nIndex);
CAddrInfo &info = am->mapInfo[nIndex];
if (nUBuckets == ADDRMAN_NEW_BUCKET_COUNT && info.nRefCount < ADDRMAN_NEW_BUCKETS_PER_ADDRESS)
{
info.nRefCount++;
vNew.insert(nIndex);
}
}
}
}
}
});)
CAddrMan() : vRandom(0), vvTried(ADDRMAN_TRIED_BUCKET_COUNT, std::vector<int>(0)), vvNew(ADDRMAN_NEW_BUCKET_COUNT, std::set<int>())
{
nKey.resize(32);
RAND_bytes(&nKey[0], 32);
nIdCount = 0;
nTried = 0;
nNew = 0;
}
// Return the number of (unique) addresses in all tables.
int size()
{
return vRandom.size();
}
// Consistency check
void Check()
{
#ifdef DEBUG_ADDRMAN
CRITICAL_BLOCK(cs)
{
int err;
if ((err=Check_()))
printf("ADDRMAN CONSISTENCY CHECK FAILED!!! err=%i\n", err);
}
#endif
}
// Add a single address.
bool Add(const CAddress &addr, const CNetAddr& source, int64 nTimePenalty = 0)
{
bool fRet = false;
CRITICAL_BLOCK(cs)
{
Check();
fRet |= Add_(addr, source, nTimePenalty);
Check();
}
if (fRet)
printf("Added %s from %s: %i tried, %i new\n", addr.ToStringIPPort().c_str(), source.ToString().c_str(), nTried, nNew);
return fRet;
}
// Add multiple addresses.
bool Add(const std::vector<CAddress> &vAddr, const CNetAddr& source, int64 nTimePenalty = 0)
{
int nAdd = 0;
CRITICAL_BLOCK(cs)
{
Check();
for (std::vector<CAddress>::const_iterator it = vAddr.begin(); it != vAddr.end(); it++)
nAdd += Add_(*it, source, nTimePenalty) ? 1 : 0;
Check();
}
if (nAdd)
printf("Added %i addresses from %s: %i tried, %i new\n", nAdd, source.ToString().c_str(), nTried, nNew);
return nAdd > 0;
}
// Mark an entry as accessible.
void Good(const CService &addr, int64 nTime = GetAdjustedTime())
{
CRITICAL_BLOCK(cs)
{
Check();
Good_(addr, nTime);
Check();
}
}
// Mark an entry as connection attempted to.
void Attempt(const CService &addr, int64 nTime = GetAdjustedTime())
{
CRITICAL_BLOCK(cs)
{
Check();
Attempt_(addr, nTime);
Check();
}
}
// Choose an address to connect to.
// nUnkBias determines how much "new" entries are favored over "tried" ones (0-100).
CAddress Select(int nUnkBias = 50)
{
CAddress addrRet;
CRITICAL_BLOCK(cs)
{
Check();
addrRet = Select_(nUnkBias);
Check();
}
return addrRet;
}
// Return a bunch of addresses, selected at random.
std::vector<CAddress> GetAddr()
{
Check();
std::vector<CAddress> vAddr;
CRITICAL_BLOCK(cs)
GetAddr_(vAddr);
Check();
return vAddr;
}
// Mark an entry as currently-connected-to.
void Connected(const CService &addr, int64 nTime = GetAdjustedTime())
{
CRITICAL_BLOCK(cs)
{
Check();
Connected_(addr, nTime);
Check();
}
}
};
#endif

View file

@ -621,44 +621,65 @@ bool CAddrDB::WriteAddress(const CAddress& addr)
return Write(make_pair(string("addr"), addr.GetKey()), addr);
}
bool CAddrDB::WriteAddrman(const CAddrMan& addrman)
{
return Write(string("addrman"), addrman);
}
bool CAddrDB::EraseAddress(const CAddress& addr)
{
return Erase(make_pair(string("addr"), addr.GetKey()));
}
bool CAddrDB::LoadAddresses()
bool CAddrDB::LoadAddresses(bool &fUpdate)
{
CRITICAL_BLOCK(cs_mapAddresses)
bool fAddrMan = false;
if (Read(string("addrman"), addrman))
{
// Get cursor
Dbc* pcursor = GetCursor();
if (!pcursor)
printf("Loaded %i addresses\n", addrman.size());
fAddrMan = true;
}
vector<CAddress> vAddr;
// Get cursor
Dbc* pcursor = GetCursor();
if (!pcursor)
return false;
loop
{
// Read next record
CDataStream ssKey;
CDataStream ssValue;
int ret = ReadAtCursor(pcursor, ssKey, ssValue);
if (ret == DB_NOTFOUND)
break;
else if (ret != 0)
return false;
loop
// Unserialize
string strType;
ssKey >> strType;
if (strType == "addr")
{
// Read next record
CDataStream ssKey;
CDataStream ssValue;
int ret = ReadAtCursor(pcursor, ssKey, ssValue);
if (ret == DB_NOTFOUND)
break;
else if (ret != 0)
return false;
// Unserialize
string strType;
ssKey >> strType;
if (strType == "addr")
if (fAddrMan)
fUpdate = true;
else
{
CAddress addr;
ssValue >> addr;
mapAddresses.insert(make_pair(addr.GetKey(), addr));
vAddr.push_back(addr);
}
}
pcursor->close();
printf("Loaded %d addresses\n", mapAddresses.size());
}
}
pcursor->close();
if (!fAddrMan)
{
addrman.Add(vAddr, CNetAddr("0.0.0.0"));
printf("Loaded %i addresses\n", addrman.size());
}
return true;
@ -666,7 +687,11 @@ bool CAddrDB::LoadAddresses()
bool LoadAddresses()
{
return CAddrDB("cr+").LoadAddresses();
bool fUpdate = false;
bool fRet = CAddrDB("cr+").LoadAddresses(fUpdate);
if (fUpdate)
CDB::Rewrite("addr.dat", "\004addr");
return fRet;
}

View file

@ -16,6 +16,7 @@
class CAccount;
class CAccountingEntry;
class CAddress;
class CAddrMan;
class CBlockLocator;
class CDiskBlockIndex;
class CDiskTxPos;
@ -307,7 +308,8 @@ private:
public:
bool WriteAddress(const CAddress& addr);
bool EraseAddress(const CAddress& addr);
bool LoadAddresses();
bool WriteAddrman(const CAddrMan& addr);
bool LoadAddresses(bool &fUpdate);
};
bool LoadAddresses();

View file

@ -543,7 +543,7 @@ bool AppInit2(int argc, char* argv[])
CAddress addr(CService(strAddr, GetDefaultPort(), fAllowDNS));
addr.nTime = 0; // so it won't relay unless successfully connected
if (addr.IsValid())
AddAddress(addr);
addrman.Add(addr, CNetAddr("127.0.0.1"));
}
}

View file

@ -341,7 +341,7 @@ void ThreadIRCSeed2(void* parg)
if (DecodeAddress(pszName, addr))
{
addr.nTime = GetAdjustedTime();
if (AddAddress(addr, 51 * 60))
if (addrman.Add(addr, addrConnect, 51 * 60))
printf("IRC got new address: %s\n", addr.ToString().c_str());
nGotIRCAddresses++;
}

View file

@ -2155,11 +2155,18 @@ bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv)
}
// Get recent addresses
if (pfrom->nVersion >= 31402 || mapAddresses.size() < 1000)
if (pfrom->nVersion >= 31402 || addrman.size() < 1000)
{
pfrom->PushMessage("getaddr");
pfrom->fGetAddr = true;
}
addrman.Good(pfrom->addr);
} else {
if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom)
{
addrman.Add(addrFrom, addrFrom);
addrman.Good(addrFrom);
}
}
// Ask the first connected node for block updates
@ -2205,7 +2212,7 @@ bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv)
vRecv >> vAddr;
// Don't want addr from older versions unless seeding
if (pfrom->nVersion < 31402 && mapAddresses.size() > 1000)
if (pfrom->nVersion < 31402 && addrman.size() > 1000)
return true;
if (vAddr.size() > 1000)
{
@ -2214,8 +2221,6 @@ bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv)
}
// Store the new addresses
CAddrDB addrDB;
addrDB.TxnBegin();
int64 nNow = GetAdjustedTime();
int64 nSince = nNow - 10 * 60;
BOOST_FOREACH(CAddress& addr, vAddr)
@ -2227,7 +2232,6 @@ bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv)
continue;
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60)
addr.nTime = nNow - 5 * 24 * 60 * 60;
AddAddress(addr, 2 * 60 * 60, &addrDB);
pfrom->AddAddressKnown(addr);
if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable())
{
@ -2259,7 +2263,7 @@ bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv)
}
}
}
addrDB.TxnCommit(); // Save addresses (it's ok if this fails)
addrman.Add(vAddr, pfrom->addr, 2 * 60 * 60);
if (vAddr.size() < 1000)
pfrom->fGetAddr = false;
}
@ -2500,25 +2504,10 @@ bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv)
else if (strCommand == "getaddr")
{
// Nodes rebroadcast an addr every 24 hours
pfrom->vAddrToSend.clear();
int64 nSince = GetAdjustedTime() - 3 * 60 * 60; // in the last 3 hours
CRITICAL_BLOCK(cs_mapAddresses)
{
unsigned int nCount = 0;
BOOST_FOREACH(const PAIRTYPE(vector<unsigned char>, CAddress)& item, mapAddresses)
{
const CAddress& addr = item.second;
if (addr.nTime > nSince)
nCount++;
}
BOOST_FOREACH(const PAIRTYPE(vector<unsigned char>, CAddress)& item, mapAddresses)
{
const CAddress& addr = item.second;
if (addr.nTime > nSince && GetRand(nCount) < 2500)
pfrom->PushAddress(addr);
}
}
vector<CAddress> vAddr = addrman.GetAddr();
BOOST_FOREACH(const CAddress &addr, vAddr)
pfrom->PushAddress(addr);
}
@ -2760,35 +2749,6 @@ bool SendMessages(CNode* pto, bool fSendTrickle)
nLastRebroadcast = GetTime();
}
// Clear out old addresses periodically so it's not too much work at once
static int64 nLastClear;
if (nLastClear == 0)
nLastClear = GetTime();
if (GetTime() - nLastClear > 10 * 60 && vNodes.size() >= 3)
{
nLastClear = GetTime();
CRITICAL_BLOCK(cs_mapAddresses)
{
CAddrDB addrdb;
int64 nSince = GetAdjustedTime() - 14 * 24 * 60 * 60;
for (map<vector<unsigned char>, CAddress>::iterator mi = mapAddresses.begin();
mi != mapAddresses.end();)
{
const CAddress& addr = (*mi).second;
if (addr.nTime < nSince)
{
if (mapAddresses.size() < 1000 || GetTime() > nLastClear + 20)
break;
addrdb.EraseAddress(addr);
mapAddresses.erase(mi++);
}
else
mi++;
}
}
}
//
// Message: addr
//

View file

@ -45,6 +45,7 @@ HEADERS = $(wildcard *.h)
OBJS= \
obj/checkpoints.o \
obj/netbase.o \
obj/addrman.o \
obj/crypter.o \
obj/key.o \
obj/db.o \

View file

@ -43,6 +43,7 @@ HEADERS = $(wildcard *.h)
OBJS= \
obj/checkpoints.o \
obj/netbase.o \
obj/addrman.o \
obj/crypter.o \
obj/key.o \
obj/db.o \

View file

@ -60,6 +60,7 @@ CFLAGS=-mmacosx-version-min=10.5 -arch i386 -O3 \
OBJS= \
obj/checkpoints.o \
obj/netbase.o \
obj/addrman.o \
obj/crypter.o \
obj/key.o \
obj/db.o \

View file

@ -91,6 +91,7 @@ xCXXFLAGS=-pthread -Wextra -Wno-sign-compare -Wno-char-subscripts -Wno-invalid-o
OBJS= \
obj/checkpoints.o \
obj/netbase.o \
obj/addrman.o \
obj/crypter.o \
obj/key.o \
obj/db.o \

View file

@ -9,6 +9,7 @@
#include "net.h"
#include "init.h"
#include "strlcpy.h"
#include "addrman.h"
#ifdef WIN32
#include <string.h>
@ -49,11 +50,10 @@ static CNode* pnodeLocalHost = NULL;
uint64 nLocalHostNonce = 0;
array<int, THREAD_MAX> vnThreadsRunning;
static SOCKET hListenSocket = INVALID_SOCKET;
CAddrMan addrman;
vector<CNode*> vNodes;
CCriticalSection cs_vNodes;
map<vector<unsigned char>, CAddress> mapAddresses;
CCriticalSection cs_mapAddresses;
map<CInv, CDataStream> mapRelay;
deque<pair<int64, CInv> > vRelayExpiration;
CCriticalSection cs_mapRelay;
@ -279,86 +279,9 @@ void ThreadGetMyExternalIP(void* parg)
bool AddAddress(CAddress addr, int64 nTimePenalty, CAddrDB *pAddrDB)
{
if (!addr.IsRoutable())
return false;
if ((CService)addr == (CService)addrLocalHost)
return false;
addr.nTime = max((int64)0, (int64)addr.nTime - nTimePenalty);
bool fUpdated = false;
bool fNew = false;
CAddress addrFound = addr;
CRITICAL_BLOCK(cs_mapAddresses)
{
map<vector<unsigned char>, CAddress>::iterator it = mapAddresses.find(addr.GetKey());
if (it == mapAddresses.end())
{
// New address
printf("AddAddress(%s)\n", addr.ToString().c_str());
mapAddresses.insert(make_pair(addr.GetKey(), addr));
fUpdated = true;
fNew = true;
}
else
{
addrFound = (*it).second;
if ((addrFound.nServices | addr.nServices) != addrFound.nServices)
{
// Services have been added
addrFound.nServices |= addr.nServices;
fUpdated = true;
}
bool fCurrentlyOnline = (GetAdjustedTime() - addr.nTime < 24 * 60 * 60);
int64 nUpdateInterval = (fCurrentlyOnline ? 60 * 60 : 24 * 60 * 60);
if (addrFound.nTime < addr.nTime - nUpdateInterval)
{
// Periodically update most recently seen time
addrFound.nTime = addr.nTime;
fUpdated = true;
}
}
}
// There is a nasty deadlock bug if this is done inside the cs_mapAddresses
// CRITICAL_BLOCK:
// Thread 1: begin db transaction (locks inside-db-mutex)
// then AddAddress (locks cs_mapAddresses)
// Thread 2: AddAddress (locks cs_mapAddresses)
// ... then db operation hangs waiting for inside-db-mutex
if (fUpdated)
{
if (pAddrDB)
pAddrDB->WriteAddress(addrFound);
else
CAddrDB().WriteAddress(addrFound);
}
return fNew;
}
void AddressCurrentlyConnected(const CService& addr)
{
CAddress *paddrFound = NULL;
CRITICAL_BLOCK(cs_mapAddresses)
{
// Only if it's been published already
map<vector<unsigned char>, CAddress>::iterator it = mapAddresses.find(addr.GetKey());
if (it != mapAddresses.end())
paddrFound = &(*it).second;
}
if (paddrFound)
{
int64 nUpdateInterval = 20 * 60;
if (paddrFound->nTime < GetAdjustedTime() - nUpdateInterval)
{
// Periodically update most recently seen time
paddrFound->nTime = GetAdjustedTime();
CAddrDB addrdb;
addrdb.WriteAddress(*paddrFound);
}
}
addrman.Connected(addr);
}
@ -505,13 +428,11 @@ CNode* ConnectNode(CAddress addrConnect, int64 nTimeout)
}
/// debug print
printf("trying connection %s lastseen=%.1fhrs lasttry=%.1fhrs\n",
printf("trying connection %s lastseen=%.1fhrs\n",
addrConnect.ToString().c_str(),
(double)(addrConnect.nTime - GetAdjustedTime())/3600.0,
(double)(addrConnect.nLastTry - GetAdjustedTime())/3600.0);
(double)(addrConnect.nTime - GetAdjustedTime())/3600.0);
CRITICAL_BLOCK(cs_mapAddresses)
mapAddresses[addrConnect.GetKey()].nLastTry = GetAdjustedTime();
addrman.Attempt(addrConnect);
// Connect
SOCKET hSocket;
@ -1125,12 +1046,15 @@ void MapPort(bool /* unused fMapPort */)
static const char *strDNSSeed[] = {
"bitseed.xf2.org",
"dnsseed.bluematt.me",
"seed.bitcoin.sipa.be",
"dnsseed.bitcoin.dashjr.org",
// DNS seeds
// Each pair gives a source name and a seed name.
// The first name is used as information source for addrman.
// The second name should resolve to a list of seed addresses.
static const char *strDNSSeed[][2] = {
{"xf2.org", "bitseed.xf2.org"},
{"bluematt.me", "dnsseed.bluematt.me"},
{"bitcoin.sipa.be", "seed.bitcoin.sipa.be"},
{"dashjr.org", "dnsseed.bitcoin.dashjr.org"},
};
void ThreadDNSAddressSeed(void* parg)
@ -1163,22 +1087,18 @@ void ThreadDNSAddressSeed2(void* parg)
for (int seed_idx = 0; seed_idx < ARRAYLEN(strDNSSeed); seed_idx++) {
vector<CNetAddr> vaddr;
if (LookupHost(strDNSSeed[seed_idx], vaddr))
vector<CAddress> vAdd;
if (LookupHost(strDNSSeed[seed_idx][1], vaddr))
{
CAddrDB addrDB;
addrDB.TxnBegin();
BOOST_FOREACH (CNetAddr& ip, vaddr)
BOOST_FOREACH(CNetAddr& ip, vaddr)
{
if (ip.IsRoutable())
{
CAddress addr(CService(ip, GetDefaultPort()), NODE_NETWORK);
addr.nTime = 0;
AddAddress(addr, 0, &addrDB);
found++;
}
CAddress addr = CAddress(CService(ip, GetDefaultPort()));
addr.nTime = 0;
vAdd.push_back(addr);
found++;
}
addrDB.TxnCommit(); // Save addresses (it's ok if this fails)
}
addrman.Add(vAdd, CNetAddr(strDNSSeed[seed_idx][0], true));
}
}
@ -1277,7 +1197,37 @@ unsigned int pnSeed[] =
0xc461d84a, 0xb2dbe247,
};
void DumpAddresses()
{
CAddrDB adb;
adb.WriteAddrman(addrman);
}
void ThreadDumpAddress2(void* parg)
{
vnThreadsRunning[THREAD_DUMPADDRESS]++;
while (!fShutdown)
{
DumpAddresses();
vnThreadsRunning[THREAD_DUMPADDRESS]--;
Sleep(100000);
vnThreadsRunning[THREAD_DUMPADDRESS]++;
}
vnThreadsRunning[THREAD_DUMPADDRESS]--;
}
void ThreadDumpAddress(void* parg)
{
IMPLEMENT_RANDOMIZE_STACK(ThreadDumpAddress(parg));
try
{
ThreadDumpAddress2(parg);
}
catch (std::exception& e) {
PrintException(&e, "ThreadDumpAddress()");
}
printf("ThreadDumpAddress exiting\n");
}
void ThreadOpenConnections(void* parg)
{
@ -1326,6 +1276,8 @@ void ThreadOpenConnections2(void* parg)
int64 nStart = GetTime();
loop
{
int nOutbound = 0;
vnThreadsRunning[THREAD_OPENCONNECTIONS]--;
Sleep(500);
vnThreadsRunning[THREAD_OPENCONNECTIONS]++;
@ -1335,7 +1287,7 @@ void ThreadOpenConnections2(void* parg)
// Limit outbound connections
loop
{
int nOutbound = 0;
nOutbound = 0;
CRITICAL_BLOCK(cs_vNodes)
BOOST_FOREACH(CNode* pnode, vNodes)
if (!pnode->fInbound)
@ -1353,16 +1305,11 @@ void ThreadOpenConnections2(void* parg)
bool fAddSeeds = false;
CRITICAL_BLOCK(cs_mapAddresses)
{
// Add seed nodes if IRC isn't working
bool fTOR = (fUseProxy && addrProxy.GetPort() == 9050);
if (mapAddresses.empty() && (GetTime() - nStart > 60 || fTOR) && !fTestNet)
fAddSeeds = true;
}
if (fAddSeeds)
// Add seed nodes if IRC isn't working
bool fTOR = (fUseProxy && addrProxy.GetPort() == 9050);
if (addrman.size()==0 && (GetTime() - nStart > 60 || fTOR) && !fTestNet)
{
std::vector<CAddress> vAdd;
for (int i = 0; i < ARRAYLEN(pnSeed); i++)
{
// It'll only connect to one or two seed nodes because once it connects,
@ -1374,8 +1321,9 @@ void ThreadOpenConnections2(void* parg)
memcpy(&ip, &pnSeed[i], sizeof(ip));
CAddress addr(CService(ip, GetDefaultPort()));
addr.nTime = GetTime()-GetRand(nOneWeek)-nOneWeek;
AddAddress(addr);
vAdd.push_back(addr);
}
addrman.Add(vAdd, CNetAddr("127.0.0.1"));
}
//
@ -1393,59 +1341,28 @@ void ThreadOpenConnections2(void* parg)
int64 nANow = GetAdjustedTime();
CRITICAL_BLOCK(cs_mapAddresses)
int nTries = 0;
loop
{
BOOST_FOREACH(const PAIRTYPE(vector<unsigned char>, CAddress)& item, mapAddresses)
{
const CAddress& addr = item.second;
if (!addr.IsIPv4() || !addr.IsValid() || setConnected.count(addr.GetGroup()))
continue;
int64 nSinceLastSeen = nANow - addr.nTime;
int64 nSinceLastTry = nANow - addr.nLastTry;
// use an nUnkBias between 10 (no outgoing connections) and 90 (8 outgoing connections)
CAddress addr = addrman.Select(10 + min(nOutbound,8)*10);
// Randomize the order in a deterministic way, putting the standard port first
int64 nRandomizer = (uint64)(nStart * 4951 + addr.nLastTry * 9567851 + addr.GetHash()) % (2 * 60 * 60);
if (addr.GetPort() != GetDefaultPort())
nRandomizer += 2 * 60 * 60;
// if we selected an invalid address, restart
if (!addr.IsIPv4() || !addr.IsValid() || setConnected.count(addr.GetGroup()) || addr == addrLocalHost)
break;
// Last seen Base retry frequency
// <1 hour 10 min
// 1 hour 1 hour
// 4 hours 2 hours
// 24 hours 5 hours
// 48 hours 7 hours
// 7 days 13 hours
// 30 days 27 hours
// 90 days 46 hours
// 365 days 93 hours
int64 nDelay = (int64)(3600.0 * sqrt(fabs((double)nSinceLastSeen) / 3600.0) + nRandomizer);
nTries++;
// Fast reconnect for one hour after last seen
if (nSinceLastSeen < 60 * 60)
nDelay = 10 * 60;
// only consider very recently tried nodes after 30 failed attempts
if (nANow - addr.nLastTry < 600 && nTries < 30)
continue;
// Limit retry frequency
if (nSinceLastTry < nDelay)
continue;
// do not allow non-default ports, unless after 50 invalid addresses selected already
if (addr.GetPort() != GetDefaultPort() && nTries < 50)
continue;
// If we have IRC, we'll be notified when they first come online,
// and again every 24 hours by the refresh broadcast.
if (nGotIRCAddresses > 0 && vNodes.size() >= 2 && nSinceLastSeen > 24 * 60 * 60)
continue;
// Only try the old stuff if we don't have enough connections
if (vNodes.size() >= 8 && nSinceLastSeen > 24 * 60 * 60)
continue;
// If multiple addresses are ready, prioritize by time since
// last seen and time since last tried.
int64 nScore = min(nSinceLastTry, (int64)24 * 60 * 60) - nSinceLastSeen - nRandomizer;
if (nScore > nBest)
{
nBest = nScore;
addrConnect = addr;
}
}
addrConnect = addr;
break;
}
if (addrConnect.IsValid())
@ -1811,6 +1728,10 @@ void StartNode(void* parg)
if (!CreateThread(ThreadMessageHandler, NULL))
printf("Error: CreateThread(ThreadMessageHandler) failed\n");
// Dump network addresses
if (!CreateThread(ThreadDumpAddress, NULL))
printf("Error; CreateThread(ThreadDumpAddress) failed\n");
// Generate coins in the background
GenerateBitcoins(fGenerateBitcoins, pwalletMain);
}
@ -1840,10 +1761,11 @@ bool StopNode()
if (fHaveUPnP && vnThreadsRunning[THREAD_UPNP] > 0) printf("ThreadMapPort still running\n");
if (vnThreadsRunning[THREAD_DNSSEED] > 0) printf("ThreadDNSAddressSeed still running\n");
if (vnThreadsRunning[THREAD_ADDEDCONNECTIONS] > 0) printf("ThreadOpenAddedConnections still running\n");
if (vnThreadsRunning[THREAD_DUMPADDRESS] > 0) printf("ThreadDumpAddresses still running\n");
while (vnThreadsRunning[THREAD_MESSAGEHANDLER] > 0 || vnThreadsRunning[THREAD_RPCSERVER] > 0)
Sleep(20);
Sleep(50);
DumpAddresses();
return true;
}

View file

@ -16,6 +16,7 @@
#include "netbase.h"
#include "protocol.h"
#include "addrman.h"
class CAddrDB;
class CRequestTracker;
@ -31,7 +32,6 @@ static const unsigned int PUBLISH_HOPS = 5;
bool RecvLine(SOCKET hSocket, std::string& strLine);
bool GetMyExternalIP(CNetAddr& ipRet);
bool AddAddress(CAddress addr, int64 nTimePenalty=0, CAddrDB *pAddrDB=NULL);
void AddressCurrentlyConnected(const CService& addr);
CNode* FindNode(const CNetAddr& ip);
CNode* FindNode(const CService& ip);
@ -79,6 +79,7 @@ enum threadId
THREAD_UPNP,
THREAD_DNSSEED,
THREAD_ADDEDCONNECTIONS,
THREAD_DUMPADDRESS,
THREAD_MAX
};
@ -89,11 +90,10 @@ extern uint64 nLocalServices;
extern CAddress addrLocalHost;
extern uint64 nLocalHostNonce;
extern boost::array<int, THREAD_MAX> vnThreadsRunning;
extern CAddrMan addrman;
extern std::vector<CNode*> vNodes;
extern CCriticalSection cs_vNodes;
extern std::map<std::vector<unsigned char>, CAddress> mapAddresses;
extern CCriticalSection cs_mapAddresses;
extern std::map<CInv, CDataStream> mapRelay;
extern std::deque<std::pair<int64, CInv> > vRelayExpiration;
extern CCriticalSection cs_mapRelay;

View file

@ -519,15 +519,22 @@ bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
std::vector<unsigned char> CNetAddr::GetGroup() const
{
std::vector<unsigned char> vchRet;
int nClass = 0; // 0=IPv6, 1=IPv4, 255=unroutable
int nClass = 0; // 0=IPv6, 1=IPv4, 254=local, 255=unroutable
int nStartByte = 0;
int nBits = 16;
// for unroutable addresses, each address is considered different
// all local addresses belong to the same group
if (IsLocal())
{
nClass = 254;
nBits = 0;
}
// all unroutable addresses belong to the same group
if (!IsRoutable())
{
nClass = 255;
nBits = 128;
nBits = 0;
}
// for IPv4 addresses, '1' + the 16 higher-order bits of the IP
// includes mapped IPv4, SIIT translated IPv4, and the well-known prefix

View file

@ -94,7 +94,7 @@ class CAddress : public CService
unsigned int nTime;
// memory only
unsigned int nLastTry;
int64 nLastTry;
};
class CInv

View file

@ -348,6 +348,10 @@ public:
return sizeof(pn);
}
uint64 Get64(int n=0) const
{
return pn[2*n] | (uint64)pn[2*n+1] << 32;
}
unsigned int GetSerializeSize(int nType=0, int nVersion=PROTOCOL_VERSION) const
{